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1. ANALYTICAL METHODS 36 

1.1. Zircon trace elemental analyses and U-Pb dating 37 

Eight samples were selected for zircon U-Pb dating. U-Th-Pb isotopes and trace 38 

elements of zircons were analyzed synchronously using an Agilent 7900 ICP-MS 39 

system combined with a NewWave 193UC excimer laser ablation (LA) system at the 40 

Milma Lab, China University of Geosciences, Beijing (CUGB). The laser denudation 41 

diameter of 35 um, the repetition rate of 6–8 Hz, and the energy density of 4–6 J/cm2 42 

were used for all spot analyses. Each spot analysis consisted of background 43 

acquisition of 18 s (gas blank), sample integration of 50 s, and a delay of 30 s to 44 

washout and prepare for the next spot analysis. We use zircon 91,500 (Wiedenbeck et 45 

al., 1995) and glass NIST SRM 610 as external standards to correct U-Pb age and 46 

trace elements, respectively. Zircon GJ-1 (Jackson et al., 2004) and Plešovice (Sláma 47 

et al., 2008) were used as monitor standards to examine the instrument state and the 48 

accuracy of the calibration. Detailed setting parameters and conditions for the LA 49 

system and ICP-MS equipment are consistent with the introductions in Zhang et al. 50 

(2019). The ICPMSDataCal (Liu et al., 2010), a Microsoft software, was applied to 51 

conduct off-line analyses of data. The common Pb correction, concordia diagram 52 

plotting, and weighted mean age calculation were carried out by using the 53 

ComPbCorr#3.17 (Andersen, 2002) and ISOPLOT (ver 3.0) (Ludwig, 2003), 54 

respectively. The concordance degree was calculated by the ratio of 207Pb/235U and 55 

208Pb/238U ages and data with discordance larger than 10% were eliminated. 56 

Uncertainties for individual analyses are reported at 1-sigma and mean 206Pb/238U 57 

analyses at 2-sigma. 58 



 59 

1.2. In-situ zircon Hf isotope measurements 60 

Zircon in-situ Hf isotopes were analyzed on the same zircon grains previously 61 

analyzed for U-Pb dating at Milma Lab, CUGB by using multi-collector 62 

(MC)-ICP-MS attached to a New Wave 193UC excimer LA system. During analysis, 63 

the spot size of 35 μm, the laser repetition rate of 6 Hz, and the energy density of 3–4 64 

J/cm2 were applied for all spot analyses. Each analysis includes background 65 

acquisition of 50 s, data acquisition of 50 s, and washout of 5 s. The detailed setting 66 

parameters and analytical procedures were described by Zhang et al. (2019). Zircon 67 

91500 (Blichert-Toft, 2008) was analyzed as the external standard for correcting mass 68 

discrimination, and zircon standards GJ-1(Jackson et al., 2004) and Plesovice (Sláma 69 

et al., 2008) were used as unknown samples. Raw data were processed by using Iolite 70 

software (Paton et al., 2011). We calculate zircon εHf(t) values reported in this study 71 

and literature using the Chondrite Lu-Hf isotopic values (176Lu/177Hf = 0.0336 and 72 

176Hf/177Hf = 0.282785; Bouvier et al., 2008). 73 

 74 

1.3. Whole-rock geochemical analysis 75 

Twenty-five samples were analyzed for major and trace element compositions. 76 

Whole-rock major element oxides (wt.%) were measured on fused glass discs, using 77 

X-ray fluorescence (Axios MAX) at Chinese Academy of Sciences, Beijing, China. 78 

The analytical uncertainties are generally better than 5% for all elements. Whole-rock 79 

trace elements were measured using Agilent 7700e ICP-MS at the Wuhan 80 

SampleSolution Analytical Technology Co., Ltd., Wuhan, China. Multiple-reference 81 

materials, including AGV-2, BHVO-2, BCR-2, and RGM-2, were used to calibrate 82 

the elemental concentrations of samples. The accuracy is commonly better than 10%. 83 

 84 

2. DATA SETS AND FIGURES 85 

Tables S1–S6 are listed in an Excel file 86 

 87 



 88 

Figure S1. (A–F) Whole-rock TiO2, Al2O3, TFe2O3, MgO, CaO, and Na2O versus 89 

SiO2 diagrams for intrusive rocks from the Zhegu, Wengmunong, and Dulu plutons in 90 

the central Lhasa subterrane. The sources of literature data are the same as in Figure 5. 91 

 92 

 93 

 94 

Figure S2. (A) Whole-rock εNd(t) and (B) whole-rock (87Sr/86Sr)i values versus zircon 95 

U-Pb ages diagrams for Middle Jurassic-Early Cretaceous igneous rocks in the central 96 

Lhasa subterrane. Literature data are from Wang et al. (2017), Liu et al. (2018), Zheng 97 

et al. (2018), Wu et al. (2021), and Tong et al. (2022). 98 



 99 

 100 

 101 

Figure S3. Ba/Th versus La/Sm (A) and Zr and Ba versus SiO2 (B–C) diagrams for 102 

Middle-Late Jurassic igneous rocks in the central Lhasa subterrane. MORB = mid 103 

ocean ridge basalt. N-MORB = normal MORB. The data for N-MORB and Shiquan 104 

River high-Mg andesites (HMAs) are from Gale et al. (2013) and Liu et al. (2018), 105 

respectively. Data sources of intrusive rocks (172–150 Ma) are listed in Table S5. 106 

 107 
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