1 2 3 4 5	Zheng, D., Chang, SC., Ramezani, J., Xu, X., Xu, H., Wang, H., Pei, R., Fang, Y., Wang, J., Wang, B., and Zhang, H., 2023, Calibrating Early Cretaceous Urho Pterosaur Fauna in the Junggar Basin and implications for the evolution of the Jehol Biota: GSA Bulletin, https://doi.org/10.1130/B36795.1.
6	Supplemental Material
7 8 9	Supplemental Text S1. Stratigraphic information, U-Pb geochronology by LA-MC-ICP-MS, and U-Pb geochronology by CA-ID-TIMS.
10 11	Figure S1. Cathodoluminescent images of zircons from sample W-1 with youngest ages analyzed by LA-MC-ICP-MS U-Pb dating.
12 13	Figure S2. Rank order plot of LA-MC-ICP-MS U-Pb ages for youngest zircon subpopulations from sample W-1.
14	Table S1. Vertebrate and trace fossils from the Tugulu Group of the Junggar Basin.
15	Table S2. LA-MC-ICP-MS U-Pb analytical results for standard zircons and sample W-1.
16	Table S3. CA-ID-TIMS U-Pb analytical results for sample W-1.
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

32 Supplemental Text S1

33 Stratigraphic information

Abundant fossils, especially belonging to vertebrates, have been reported from the Tugulu Group (Table S1). These include diverse pterosaur, plesiosaur, dinosaur, crocodylomorph, fish, turtle, conchostracan, bivalve, ostracod, charophyte, and sporopollen fossils. In the southern Junggar Basin, the Tugulu Group consists of the Qingshuihe, Hutubihe, Shengjinkou, and Lianmuqin formations. The Qingshuihe Formation is absent in the NW Junggar Basin (Zhao, 1980).

In Urho, the Hutubihe Formation unconformably overlies a thick Devonian conglomerate, reaches 150 m thickness, and consists primarily of grey-green, greyyellow conglomerate, sandstone, and red-brown, grey-green mudstone. Mudstone in the lower Hutubihe Formation hosts vertebrate fossils including material from pterosaurs, plesiosaurs, crocodylomorphs, and dinosaurs. These fossils however have not been systematically interpreted (Zhao, 1980). Hundreds of bird, theropod, stegosaur, pterosaur, and turtle tracks also occur in upper layers of this formation.

47 The Shengjinkou Formation conformably overlies the Hutubihe Formation and 48 conformably underlies the Lianmuqin Formation. It consists of a series of thick, grey-49 green, grey-yellow sandstones interbedded with mudstone and reaching a cumulative 50 thickness of ca. 250 m. The lowermost Shengjinkou Formation includes a yellow 51 conglomerate that grades into an uppermost white tuffaceous siltstone (0.2 m thick). 52 Vertebrate fossils occur in the grey-green mudstone. These belong to the pterosaurs 53 Dsungaripterus weii and Noripterus complicidens and the dinosaur Camarasauridae 54 indet. (Young, 1973; Zhao, 1980; Wings et al., 2010).

55 The Lianmugin Formation unconformably underlies the Upper Cretaceous Ailike 56 Formation. The Lianmuqin Formation consists primarily of grey-green sandstone, grey-57 yellow sandy mudstone, and red-brown mudstone reaching a cumulative thickness of ca. 58 430 m. Vertebrate fossils in the sandstone and mudstone include the pterosaurs 59 Noripterus complicidens, Dsungaripterus weii. the plesiosaur Sinopliosaurus 60 weiyuanensis, turtles Xinjiangchelys sp., Ordosemys brinkmania, and cf. Pantrionychia, 61 the crocodylomorph *Edentosuchus tienshanensis*, and the dinosaurs *Tugulusaurus faciles*, 62 Phaedrolosaurus ilikensis, Xinjiangovenator parvus, Kelmayisaurus petrolicus, cf. 63 Asiatosaurus mongoliensis, Psittacosaurus xinjiangensis, and Wuerhosaurus homheni 64 (Young, 1964, 1973; Dong, 1973; Li, 1985; Brinkman et al., 2001; Pol et al., 2004; 65 Rauhut and Xu, 2005; Danilov and Parham, 2007; Wings et al., 2010).

At the Jiamuhe section an isolated, white, tuffaceous horizon occurs at the boundary between the Shengjinkou and Lianmuqin formations (Figs. 2C, 3 and 5). The tuffaceous marker bed is approximately 20 cm thick, is laterally continuous in the outcrop and exhibits sharp contacts with the enclosing sandstones and siltstones. It locally diverges into separate, closely spaced tuffaceous layers interbedded with the latter lithologies (Fig. 3). The tuffaceous siltstone is soft, clay-rich and friable when dry.

72

73 U-Pb geochronology by LA-MC-ICP-MS

The tuffaceous sample W-1 from the Jiamuhe section was mechanically crushed and underwent mineral separation using standard sieving, magnetic, and high-density liquid techniques. Zircons were then manually selected using a binocular microscope. One hundred small, inclusion-free, zircon grains (40–70 µm in length) from the sample 78 were mounted in epoxy resin. Hardened mounts were polished to expose zircon grain 79 midsections to about one-half of their width. Cathodoluminescence (CL) imaging was 80 used to document grain morphologies and internal structure for *in situ* analysis (fig. S2). 81 U-Pb isotopic data on zircons were measured at the Department of Earth Sciences, 82 University of Hong Kong, using a Nu Instruments Multi-Collector (MC) ICP-MS with a 83 Resonetics RESOlution M-50-HR Excimer Laser Ablation System. The analyses used a beam diameter of 30 µm, repetition rate of 4 Hz, and energy density of 5 J/cm² on the 84 85 sample surface. The average ablation time was approximately 25 s, and pit depths 86 reached about 20 to 30 µm. The standard zircons 91500 (Wiedenbeck, 1995) and GJ-1 87 (Jackson et al., 2004) were used for data validation. The zircon 91500 was used as an 88 external calibration standard to evaluate the magnitude of mass bias and inter-elemental 89 fractionation. The zircon GJ-1 was used to evaluate the accuracy and reproducibility of 90 the laser ablation results. The software ICPMSDataCal Version 8.0 (Liu et al., 2010) was 91 used to process the off-line signal selection, quantitative calibration, and time-drift 92 correction. We used a function given in Anderson (Anderson, 2002) to correct for 93 common Pb in Microsoft Excel. Concordant and rank order plots were created using 94 ISOPLOT/Excel version 3.0 (Ludwig, 2003).

In this study, 20 zircon grains were randomly selected from the sample so that the results would capture the overall character of the age populations. $^{206}Pb/^{238}U$ ages were interpreted for zircon grains younger than 1000 Ma, and $^{207}Pb/^{206}Pb$ ages were interpreted for older grains. Ages were retained only for analyses exhibiting concordance of 95% or more and after excluding distinguishably older (detrital) analyses. Table S1 lists U-Pb data results. Average 2 σ analytical uncertainty was \pm 1.6 myr for the analyzed zircons of

Cretaceous age. The sample age is derived from the weighted mean ²⁰⁶Pb/²³⁸U date of 101 102 nine youngest analyses with its 95% confidence level uncertainty reported using $\pm \alpha/\beta$ 103 Ma notation, where α is the internal (analytical) uncertainty in the absence of all external 104 errors, and β incorporates α as well as the external reproducibility (age bias). β must be 105 taken into account when comparing U-Pb ages measured by different analytical 106 techniques (e.g., in situ dating versus ID-TIMS). Analysis of the 6 secondary standard 107 GJ-1 in the present study provides an age of 601.6 ± 1.9 Ma. Considering that the 108 accepted age for GJ-1 (Hortswood et al. 2016) is 601.95 ± 0.40 Ma, our analyses are off 109 target by 0.25%. 0.25% of 135.2 Ma is 0.34 m.y. Then we can calculate the β error: 110 SQRT $((0.5^2) + (0.34^2)) = 0.6$ m.y.

111

112 U-Pb geochronology by CA-ID-TIMS

113 A set of zircons from sample W-1 were analyzed by the high-precision CA-ID-114 TIMS method following the procedures described in Ramezani et al. (2022). Zircons 115 were pre-treated using a chemical abrasion technique modified after Mattinson (2005). 116 This involved thermal annealing in a furnace at 900°C for 60 hours, followed by partial 117 dissolution in 29 M HF at 210°C in high-pressure vessels for 12 hours. This procedure 118 mitigates the effects of radiation-induced Pb loss in zircon and thus improves the 119 accuracy of U-Pb dates. (Removal of Pb-loss areas is not possible with in situ dating 120 techniques.) The chemically abraded grains were successively fluxed in several hundred 121 microliters of dilute HNO₃ and 6M HCl on a hot plate and in an ultrasonic bath (1 hour 122 each). Material was rinsed with several volumes of Millipore water in between fluxes to 123 remove the leachates.

Pretreated zircon grains were spiked with a mixed ²⁰⁵Pb-²³³U-²³⁵U isotopic tracer 124 125 (ET535; Condon et al., 2015; McLean et al., 2015) prior to complete dissolution in 29 M 126 HF at 210°C for 48 hours and subsequent Pb and U purification via an HCl-based anion-127 exchange column chemistry (Krogh, 1973). Purified Pb and U were loaded together onto 128 single outgassed Re filaments along with a silica-gel emitter solution. Their isotopic 129 ratios were measured using an Isotopx X62 multi-collector thermal ionization mass 130 spectrometer equipped with a Daly photomultiplier ion-counting system at the 131 Massachusetts Institute of Technology Isotope Laboratory. Pb isotopes were measured as 132 mono-atomic ions in peak-hopping mode on the ion-counter and were corrected for a 133 mass-dependent isotope fractionation of $0.18\% \pm 0.05\%$ per atomic mass unit (2 σ). U 134 isotopes were measured as dioxide ions in static mode using three Faraday collectors. 135 Ratios were subjected to an oxide correction using an independently determined ${}^{18}O/{}^{16}O$ 136 ratio of 0.00205 ± 0.00005 . Within-run U mass fractionation corrections were made using the ${}^{233}\text{U}/{}^{235}\text{U}$ ratio of the tracer and a predicted sample ${}^{238}\text{U}/{}^{235}\text{U}$ ratio of 137.818 ± 0.045 137 138 (Hiess et al., 2012).

A total of 5 zircons from sample W-1 were analysed by the CA-ID-TIMS method. Table S2 lists complete Pb and U isotopic data and Figure 3b shows age results as ranked age plots. Data reduction, calculation of dates, and propagation of uncertainties used the Tripoli and ET_Redux applications and algorithms (Bowring et al., 2011; McLean et al., 2011). The individual 206 Pb/ 238 U dates were corrected for initial 230 Th disequilibrium based on an assumed magma Th/U ratio of 2.8 ± 1.0 (2 σ). The 2 σ analytical uncertainty of individual zircon dates ranged from ± 0.34 myr to ± 0.92 myr. The relatively high

146	uncertainty of the CA-ID-TIMS method here is due to the small zircon size and thus
147	small amounts of measured radiogenic Pb (<2.5 pg) and U (<100 pg).
148	
149	References cited
150	Augustin, F.J., Matzke, A.T., Maisch, M.W., and Pfretzschner, HU., 2021, New
151	information on Lonchognathosaurus (Pterosauria: Dsungaripteridae) from the
152	Lower Cretaceous of the southern Junggar Basin (NW China): Cretaceous
153	Research, v. 124, p.104808, https://doi.org/10.1016/j.cretres.2021.104808.
154	Augustin, F.J., Matzke, A.T., Maisch, M.W., and Csiki-Sava, Z., 2022a, Pterosaur remains
155	from the Lower Cretaceous Lianmuxin Formation (upper Tugulu Group) of the
156	southern Junggar Basin (NW China): Historical Biology, v. 34, p. 312-321, DOI:
157	10.1080/08912963.2021.1910819.
158	Augustin, F.J., Matzke, A.T., Maisch, M.W., Kampouridis, P., and Csiki-Sava, Z., 2022b,
159	The first record of pterosaurs from the Lower Cretaceous Hutubei Formation
160	(lower Tugulu Group) of the southern Junggar Basin (NW China)-A glimpse into
161	an unusual ecosystem: Cretaceous Research, v. 130, p. 105066,
162	https://doi.org/10.1016/j.cretres.2021.105066.
163	Anderson, T., 2002, Correction of common lead in U-Pb analyses that do not report
164	²⁰⁴ Pb: Chemical Geology, v. 192, p. 59-79, https://doi.org/10.1016/S0009-
165	2541(02)00195-X.
166	Bowring, J.F., McLean, N.M., Bowring, S.A., 2011. Engineering cyber infrastructure for
167	U-Pb geochronology: Tripoli and U-Pb_Redux. Geochem. Geophy. Geosy. 12,
168	Q0AA19. DOI:10.1029/2010GC003478.

169	Brinkman, D.B., Eberth, D.A., Ryan, M.J., and Chen, P., 2001, The occurrence of
170	Psittacosaurus xinjiangensis Sereno and Chow, 1988 in the Urho area, Junggar
171	Basin, Xinjiang, People's Republic of China, in Currie, P., ed., The Sino-Canadian
172	Dinosaur Project 3: Canadian Journal of Earth Sciences, v. 38, p. 1781–1786.
173	Condon, D.J., Schoene, B., McLean, N.M., Bowring, S.A., Parrish, R.R., 2015.
174	Metrology and traceability of U-Pb isotope dilution geochronology
175	(EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Ac. 164, 464-
176	480. https://doi.org/10.1016/j.gca.2015.05.026.
177	Danilov, I.G., and Parham, J.F., 2007, The type series of 'Sinemys' wuerhoensis, a
178	problematic turtle from the Lower Cretaceous of China, includes at least three
179	taxa: Palaeontology, v. 50, p. 431–444, doi:10.1111/j.1475-4983.2006.00632.x.
180	Dong, Z., 1973, Dinosaurs from Wuerho: Memoirs of the Institute of Vertebrate
181	Paleontology and Paleoanthropolgy, Academia Sinica, v. 11, p. 45-52.
182	He, Q., Xing, L., Zhang, J., Lockley, M.G., Klein, H., Persons IV, W.S., Qi, L., and Jia,
183	C., 2013, New Early Cretaceous pterosaur-bird track assemblage from Xinjiang,
184	China: palaeoethology and paleoenvironment: Acta Geologica Sinica, v. 87, p.
185	1477–1485, https://doi.org/10.1111/1755-6724.12151.
186	Hiess, J., Condon, D.J., McLean, N., Noble, S.R., 2012. ²³⁸ U/ ²³⁵ U Systematics in
187	Terrestrial Uranium-Bearing Minerals. Science 335, 1610–1614. DOI:
188	10.1126/science.1215507.
189	Hone, D.W.E., Jiang, S., Xu, X., 2018. A taxonomic revision of Noripterus complicidens
190	and Asian members of the Dsungaripteridae. Geol. Soc. Spec. Publ. 455, 149-
191	157. https://doi.org/10.1144/SP455.8.

192	Horstwood, M.S.A., et al., 2016. Community-derived standards for LA-ICP-MS U-(Th-)
193	Pb geochronology - uncertainty propagation, age Interpretation and data
194	reporting. Geostand. Geoanal. Res. 40, 311-332. https://doi.org/10.1111/j.1751-
195	908X.2016.00379.x.
196	Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of
197	laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb
198	zircon geochronology: Chemical Geology, v. 211, p. 47-69,
199	https://doi.org/10.1016/j.chemgeo.2004.06.017.
200	Khosatzky, L.I., 1996, New turtle from the Early Cretaceous of Central Asia: Russian
201	Journal of Herpetology, v. 3, p. 89–94.
202	Krogh, T.E., 1973. Low-Contamination Method for Hydrothermal Decomposition of
203	Zircon and Extraction of U and Pb for Isotopic Age Determinations. Geochim.
204	Cosmochim. Ac. 37, 485–494. https://doi.org/10.1016/0016-7037(73)90213-5.
205	Li, D., and Ji, S., 2010, New Material of the Early Cretaceous pterosaur Dsungaripterus
206	Weii from northern Xinjiang, Northwest China: Acta Geoscientica Sinica, v. 31, p.
207	38–39.
208	Li, J., 1985, A revision of Edentosuchus tienshanensis Young from the Tugulu Group of
209	Xingjiang Autonomous Region: Vertebrata Palasiatica, v. 23, p. 196–206
210	Li, Y., Jiang, S., Wang, X., 2020. The largest species of Asianopodus footprints from
211	Junggar Basin, Xinjiang, China (in Chinese). Chin. Sci. Bull. 65, 1875-1887.
212	DOI: 10.1360/TB-2019-0513.
213	Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D., 2010. Continental and oceanic

214 crust recycling-induced melt-peridotite interactions in the trans-north China

- 215 orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle
 216 xenoliths. J. Petrol. 51, 537–571.
- Ludwig, K.R., 2003, Isoplot v. 3.0: A geochronological toolkit for Microsoft excel:
 Special Publication, No. 4. Berkeley Geochronology Center, 70 p.
- Maisch, M., Matzke, A., and Sun, G., 2003, A new sinemydid turtle (Reptilia: Testudines)
 from the Lower Cretaceous of the Junggar Basin (NW China): Neues Jahrbuch für
 Geologie und Paläontologie Monatshefte, v. 12, p. 705–722.
- Maisch, M.W., Matzke, A.T., and Sun, G., 2004, A new dsungaripteroid pterosaur from
 the Lower Cretaceous of the southern Junggar Basin, north-west China:
 Cretaceous Research, v. 25, p. 625–634, doi:10.1007/s12549-010-0031-3.
- Mattinson, J.M., 2005. Zircon U/Pb chemical abrasion (CA-TIMS) method; combined
 annealing and multi-step partial dissolution analysis for improved precision and
 accuracy of zircon ages. Chem. Geol. 220, 47–66.
 https://doi.org/10.1016/j.chemgeo.2005.03.011.
- Matzke, A.T., and Maisch, M.W., 2004, New information and specimens of *Wuguia hutubeiensis* (Reptilia: Testudines) from the Lower Cretaceous Tugulu Group of
 the southern Junggar Basin (NW China): Neues Jahrbuch für Geologie und
 Paläontologie Monatshefte, v. 8, p. 473–495.
- McLean, N.M., Bowring, J.F., Bowring, S.A., 2011. An algorithm for U-Pb isotope
 dilution data reduction and uncertainty propagation. Geochem. Geophy. Geosy.
 12, Q0AA18. DOI:10.1029/2010GC003479.
- McLean, N.M., Condon, D.J., Schoene, B., Bowring, S.A., 2015. Evaluating uncertainties
 in the calibration of isotopic reference materials and multi-element isotopic

- tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Ac. 164,
 481–501. https://doi.org/10.1016/j.gca.2015.02.040.
- Pol, D., Ji, S., Clark, J.M., and Chiappe, L.M., 2004, Basal crocodyliforms from the
 Lower Cretaceous Tugulu Group (Xinjiang, China), and the phylogenetic position
 of Edentosuchus: Cretaceous Research, v. 25, p. 603–622,
 https://doi.org/10.1016/j.cretres.2004.05.002.
- Ramezani, J., Beveridge, T. L., Rogers, R. R., Eberth, D. A., and Roberts, E. M., 2022,
 Calibrating the zenith of dinosaur diversity in the Campanian of the Western
 Interior Basin by CA-ID-TIMS U–Pb geochronology: Scientific Reports, v. 12,
 no. 1, p. 16026, https://doi.org/ 10.1038/s41598-022-19896-w.
- 248
- Rauhut, O.W.M., and Xu, X., 2005, The small theropod dinosaurs Tugulusaurus and
 Phaedrolosaurus from the Early Cretaceous of Xinjiang, China: Journal of
 Vertebrate Paleontology, v. 25, p. 107–118, https://doi.org/10.1671/02724634(2005)025[0107:TSTDTA]2.0.CO;2.
- Sereno, P.C., and Chao, S., 1988, *Psittacosaurus xinjiangensis* (Ornithischia: Ceratopsia),
 a new psittacosaur from the Lower Cretaceous of northwestern China: Journal of
 Vertebrate Paleontology, v. 8, p. 353–365,
 https://doi.org/10.1080/02724634.1988.10011724.
- Su, D., 1980, On late Mesozoic fish fauna from Sinjiang, China: Vertebrata PalAsiatica,
 v. 18, p. 76–80.
- Su, D., 1985, On late Mesozoic fish fauna from Xinjiang (Sinkiang), China: Memoirs of
 Institute of Vertebrate Palaeontology and Palaeoanthropology, Academia Sinica, v.

261 17, p. 61–136.

- Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.,
 Roddick, J.C., and Spiegel, W., 1995, Three natural zircon standards for U–Th–
 Pb, Lu–Hf, trace element and REE analyses: Geostandards and Geoanalytical
 Research, v. 19, p. 1–23, https://doi.org/10.1111/j.1751-908X.1995.tb00147.x.
- Wings, O., Schwarz-Wings, D., Pfretzschner, H.U., and Martin, T., 2010, Overview of
 Mesozoic crocodylomorphs from the Junggar Basin, Xinjiang, northwest China
 and description of isolated crocodyliform teeth from the Late Jurassic
 Liuhuanggou locality, *in* Martin, T., Sun, G., Mosbrugger, V., eds., Triassic–
 Jurassic Biodiversity, Ecosystems, and Climate in the Junggar Basin, Xinjiang,
 northwest China: Palaeobiodiversity and Palaeoenvironments, v. 90, p. 283–294,
 doi:10.1007/s12549-010-0033-1.
- Xing, L., Avanzini, M., Lockley, M.G., Miyashita, T., Klein, H., Zhang, J., He, Q., QI,
 L., Divay, J.D., and Jia, C., 2014, Early Cretaceous turtle tracks and skeletons
 from the Junggar Basin, Xinjiang, China: PALAIOS, v. 29, p. 137–144,
 https://doi.org/10.2110/palo.2014.012.
- Xing, L., Harris, J.D., Jia, C., Luo, Z., Wang, S., and An, J., 2011, Early Cretaceous birddominated and dinosaur footprint assemblages from the northwestern margin of
 the Junggar Basin, Xinjiang, China: Palaeoworld, v. 20, p. 308–321,
 https://doi.org/10.1016/j.palwor.2011.01.001.
- Xing, L., Lockley, M.G., Klein, H., Zhang, J., He, Q., Divay, J.D., Qi, L., and Jia, C.,
 2013a, Dinosaur, bird and pterosaur footprints from the Lower Cretaceous of
 Wuerhe asphaltite area, Xinjiang, China, with notes on overlapping track

284	relationships:	Palaeoworld,	v.	22,	p.	42–51,										
285	https://doi.org/10.1016/j.palwor.2013.03.001.															
286	Xing, L., Lockley, M.G., Mccrea, R.T., Gierliński, G.D., Buckley, L.G., Zhang, J., Qi, L.,															
287	and Jia, C., 2013b, Fi	rst record of Delta	<i>apodus</i> tra	cks from the	e Early C	retaceous of										
288	China: Cretaced	China: Cretaceous Research, v. 42, p. 55–6														
289	https://doi.org/10.101	6/j.cretres.2013.0	1.006.													
290	Yeh, XK., 1973, Chelonia fossils from Wuerho: Memoir of the Institute of Vertebrate															
291	Palaeontology and Paleoanthropology, Academia Sinica, v. 11, p. 8–12.															
292	Young, CC., 1964, On a new pterosaurian from Sinkiang: Vertebrate PalAsiatica, v. 8,															
293	p. 221–225.															
294	Young, CC., 1973, Pterosaurian Fauna from Wuerho, Sinkiang: Memoir of the Institute															
295	of Vertebrate Palaeon	ntology and Paleo	anthropol	ogy, Acade	mia Sinic	ca, v. 11, p.										
296	18–35.															
297	Zhao, X., 1980, The Mesozo	oic vertebrate Fos	sils and S	tratigraphy i	n norther	m Xinjiang:										
298	Science Press, Beijing	g, 120 p.														
299																
300																
301																
302																
303																
304																
305																
306																

307 Figure S1. Cathodoluminescent images of zircons from sample W-1 with youngest

308 ages analyzed by LA-MC-ICP-MS U-Pb dating. Age uncertainties are given at the 1σ

309 level.

- 312 Figure S2. Rank order plot of LA-MC-ICP-MS U-Pb ages for youngest zircon
- 313 subpopulations from sample W-1. Horizontal lines in rank order plot signify calculated
- 314 sample dates. The width of the shaded band represents internal uncertainty in the
- 315 weighted mean age at a 95% confidence level. Age uncertainties are given at the 2σ level.

316 MSWD—mean square of weighted deviates.

317

318

319

320	Table S1. Vertebrate and trace fossils from the Tugulu Group of the Junggar Basin.
321	Numbers correspond references: ¹ Young (1964); ² Young (1973); ³ Yeh (1973), Danilov
322	and Parham (2007); ⁴ Dong (1973); ⁵ Sereno and Chao (1988); ⁶ Young (1973), Li
323	(1985), Pol et al. (2004), Wings et al. (2004); ⁷ Zhao (1980); ⁸ Xing et al. (2011); ⁹ Xing
324	et al. (2013a), He et al. (2013); ¹⁰ Xing et al. (2014); ¹¹ Xing et al. (2011), Xing et al.
325	(2013a); ¹² Xing et al. (2013b); ¹³ Maisch et al. (2004), Augustin et al. (2021); ¹⁴ Augustin
326	et al. (2022a); ¹⁵ Brinkman (2001); ¹⁶ Maisch et al. (2003), Danilov and Sukhanov
327	(2006); ¹⁷ Su (1980, 1985); ¹⁸ Augustin et al. (2022b); ¹⁹ Matzke and Maisch (2004); ²⁰

328 Khosatzky (1996).

		NW Junggar Basin	Southern Junggar Basin
Tugulu Group	Lianmuqin Fm.	NW Junggar Basin pterosaur: Dsungaripterus weii ¹ Noripterus complicidens ² turtle: Xinjiangchelys sp. ³ Ordosemys brinkmania ³ cf. Pantrionychia indet. ³ dinosaur: Tugulusaurus faciles ⁴ Xinjiangovenator parvus ⁵ Kelmayisaurus petrolicus ⁴ cf. Asiatosaurus mongoliensis ⁴ Psittacosaurus xinjiangensis ⁵ Wuerhosaurus homheni ⁴ plesiosaur Sinopliosaurus weiyuanensis ²	Southern Junggar Basin pterosaur: Lonchognathosaurus acutirostris ¹³ Dsungaripteridae indet. ¹⁴ turtle: Dracochelys bicuspis ¹⁵ Wuguia efremovi ¹⁶
		crurotarsan: Edentosuchus tienshanensis ⁶	

pterosaur: <i>Dsungaripterus weii</i> ⁷ <i>Noripterus complicidens</i> ⁷ dinosaur: Camarasauridae indet. ⁷	fish: Uighuroniscus sinkiangensi ¹⁷ Manasichthys tuguluensis ¹⁷ Dsungarichthys bilineatus ¹⁷ Manasichthys elongates ¹⁷ Bogdaichthys fukangensis ¹⁷ Bogdaichthys serratus ¹⁷
bird tracks: <i>Koreanaornis dodsoni</i> ⁸ <i>Goseongornipes</i> isp. ⁸ <i>Aquatilavipes</i> isp. ⁸ <i>Moguiornipes robusta</i> ⁸ pterosaur tracks: <i>Pteraichnus</i> isp. ⁹ turtle tracks: <i>Chelonipus</i> isp. ¹⁰ <i>Emydhipus</i> isp. ¹⁰ Non-avian theropod tracks: cf. <i>Jialingpus</i> isp. ¹¹ <i>Asianopodus</i> isp. ⁸ <i>Kayentapus</i> isp. ⁸ <i>Deltapodus curriei</i> ¹²	pterosaur: Dsungaripteridae indet. ¹⁸ turtle: <i>Wuguia efremovi</i> ¹⁹ <i>Wuguia hutubeiensis</i> ²⁰
	pterosaur: Dsungaripterus weii ⁷ Noripterus complicidens ⁷ dinosaur: Camarasauridae indet. ⁷ bird tracks: Koreanaornis dodsoni ⁸ Goseongornipes isp. ⁸ Aquatilavipes isp. ⁸ Moguiornipes robusta ⁸ pterosaur tracks: Pteraichnus isp. ⁹ turtle tracks: Chelonipus isp. ¹⁰ Emydhipus isp. ¹⁰ Non-avian theropod tracks: cf. Jialingpus isp. ¹¹ Asianopodus isp. ⁸ Kayentapus isp. ⁸ Deltapodus curriei ¹²

Samples				Isotopic	ratios		rho				discor.				
Samples	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	$\pm 1\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 1\sigma$	mo	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	$\pm 1\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 1\sigma$	discor.
Standard	samples														
91500std	0.345	0.07463	0.00046	1.8446	0.01306	0.1793	0.00083	0.6526	1059	7	1061	5	1063	5	0
91500std	0.345	0.07463	0.00046	1.8446	0.01306	0.1793	0.00083	0.6526	1059	7	1061	5	1063	5	0
91500std	0.35	0.07513	0.00059	1.8558	0.01647	0.1791	0.00079	0.498	1072	11	1065	6	1062	4	0
91500std	0.356	0.07509	0.00043	1.8551	0.0117	0.1791	0.00084	0.7465	1071	6	1065	4	1062	5	0
91500std	0.338	0.07467	0.00044	1.8453	0.01347	0.1792	0.00094	0.7183	1060	7	1062	5	1063	5	0
91500std	0.35	0.07488	0.00048	1.8525	0.014	0.1793	0.00076	0.5638	1065	9	1064	5	1063	4	0
91500std	0.345	0.07488	0.00047	1.848	0.01202	0.179	0.00077	0.6637	1065	7	1063	4	1062	4	0
GJ-1	0.028	0.06023	0.00035	0.8123	0.00548	0.0978	0.00039	0.5857	612	8	604	3	601	2	0
GJ-1	0.028	0.0604	0.00033	0.8151	0.00556	0.0978	0.00042	0.6275	618	8	605	3	602	2	0
GJ-1	0.028	0.05995	0.00029	0.8087	0.00546	0.0978	0.00051	0.7791	602	7	602	3	601	3	0
GJ-1	0.028	0.06022	0.00025	0.8124	0.00476	0.0978	0.00048	0.8314	612	6	604	3	601	3	0
GJ-1	0.027	0.06046	0.00028	0.8169	0.00463	0.098	0.00038	0.6818	620	6	606	3	602	2	1
GJ-1	0.028	0.06042	0.00033	0.8151	0.00475	0.0978	0.00045	0.7884	619	6	605	3	602	3	0
W-01	0.592	0.05651	0.00024	0.6035	0.00569	0.0774	0.00067	0.9238	472	9	479	4	481	4	0
W-02	1.163	0.05238	0.00041	0.373	0.00498	0.0516	0.00052	0.7574	302	14	322	4	324	3	1
W-03	0.704	0.05209	0.0006	0.1519	0.00234	0.0211	0.00011	0.3421	289	25	144	2	134.9	0.7	7
W-04	0.862	0.0652	0.0004	1.1285	0.008	0.1255	0.00053	0.5946	781	8	767	4	762	3	1
W-05	0.68	0.05053	0.00049	0.1479	0.00172	0.0212	0.00015	0.6215	220	14	140	2	135.3	1	3
W-06	0.901	0.05513	0.00528	0.162	0.01548	0.0213	0.00015	0.2749	418	219	152	14	135.9	1	12
W-07	1.266	0.05442	0.00047	0.3317	0.00452	0.0441	0.0003	0.5065	388	18	291	3	278	2	5
W-08	0.99	0.05055	0.00125	0.1472	0.00355	0.0211	0.00011	0.6625	220	58	139	3	134.7	0.7	3
W-09	0.84	0.04914	0.00054	0.1441	0.00176	0.0213	0.00014	0.5547	155	16	137	2	135.5	0.9	1
W-10	0.446	0.04974	0.00149	0.1445	0.0042	0.0211	0.00015	0.4875	183	71	137	4	134.4	0.9	2
W-11	0.595	0.05311	0.00097	0.164	0.00289	0.0224	0.00011	0.6799	333	42	154	3	142.8	0.7	8
W-12	0.415	0.05126	0.00187	0.1489	0.00534	0.0211	0.00015	0.3858	252	86	141	5	134.4	0.9	5
W-13	0.571	0.05184	0.00078	0.1658	0.00223	0.0232	0.00015	0.859	278	35	156	2	147.8	1	6
W-14	1.042	0.05803	0.00073	0.552	0.00612	0.069	0.0004	0.9846	531	28	446	4	430	2	4
W-15	0.337	0.05067	0.0008	0.1482	0.00231	0.0212	0.00009	0.2609	226	28	140	2	135.3	0.5	3

 Table S2. LA-MC-ICP-MS U-Pb analytical results for standard zircons and sample W-1.

W-16	1.205	0.05023	0.00053	0.1473	0.00151	0.0213	0.00007	0.3375	206	17	140	1	135.7	0.5	3
W-17	0.962	0.05233	0.00044	0.1527	0.00141	0.0212	0.00011	0.5771	300	12	144	1	135	0.7	7
W-18	0.562	0.05363	0.00446	0.1531	0.01266	0.0207	0.00018	0.1703	356	191	145	11	132	1	10
W-19	0.84	0.04924	0.00061	0.144	0.00206	0.0212	0.00015	0.4955	159	20	137	2	135.2	0.9	1
W-20	0.87	0.05046	0.00043	0.1478	0.00179	0.0212	0.00018	0.6822	216	14	140	2	135	1	4

		Ratios Ages (Ma)												_					
Sample Fractions	Pb(c) (pg)	<u>Pb*</u> Pb _c	U (pg)	<u>Th</u> U	²⁰⁶ Pb ²⁰⁴ Pb	²⁰⁸ Pb ²⁰⁶ Pb	²⁰⁶ Pb ²³⁸ U	err	$\frac{207}{235}$ Pb	err	²⁰⁷ Pb ²⁰⁶ Pb	err	$\frac{206}{238} Pb$	err	$\frac{^{207}\text{Pb}}{^{235}\text{U}}$	err	$\frac{^{207}\text{Pb}}{^{206}\text{Pb}}$	err	corr. coef.
(a)	(b)		(c)		(d)	(e)	(f)	(2\sigma%)	(f)	(2 0 %)	(f)	(2\sigma%)		(2 0)		(2 0)		(2σ)	
z3	0.27	3.3	32	1.17	184.9	0.371	0.022194	(.62)	0.15659	(7.40)	0.05119	(7.20)	141.51	0.87	148	10	248	166	0.35
z4	0.47	3.4	71	0.45	224.1	0.143	0.021722	(.48)	0.15231	(5.79)	0.05088	(5.65)	138.53	0.66	143.9	7.8	234	130	0.34
z5	0.45	2.7	51	0.77	170.2	0.243	0.021535	(.64)	0.15509	(7.64)	0.05226	(7.45)	137.35	0.88	146	10	296	170	0.35
z1	0.29	7.9	94	0.90	445.4	0.285	0.021395	(.25)	0.14625	(2.98)	0.04960	(2.90)	136.47	0.34	138.6	3.9	175	68	0.35
z2	0.37	3.1	48	0.83	190.1	0.264	0.021196	(.69)	0.14622	(8.24)	0.05006	(7.95)	135.21	0.92	139	11	197	185	0.47

Table S3. CA-ID-TIMS U-Pb analytical results for sample W-1. Zircon number in bold indicates analysis providing maximum depositional age.

Notes:

(a) Thermally annealed and pre-treated single zircon.

(b) Total common-Pb in analyses.

(c) Total sample U content.

(d) Measured ratio corrected for spike and fractionation only.

(e) Radiogenic Pb ratio.

(f) Corrected for fractionation, spike, and blank. Also corrected for initial Th/U disequilibrium using radiogenic ²⁰⁸Pb and Th/U_{magma} = 2.8. Mass fractionation correction of 0.18% amu⁻¹ \pm 0.04% amu⁻¹ (atomic mass unit) was applied to single-collector Daly analyses.

All common Pb assumed to be laboratory blank. Total procedural blank less than 0.1 pg for U.

Blank isotopic composition: ${}^{206}Pb/{}^{204}Pb = 18.15 \pm 0.47$, ${}^{207}Pb/{}^{204}Pb = 15.30 \pm 0.30$, ${}^{208}Pb/{}^{204}Pb = 37.11 \pm 0.87$.

Corr. coef. = correlation coefficient.

Ages calculated using the decay constants $\lambda_{238} = 1.55125E-10$ and $\lambda_{235} = 9.8485E-10$.