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Quaternary delta systems under the Holocene transgression 

Previous hydrogeological investigations have been conducted in worldwide 
Quaternary deltas which were impacted during the Holocene transgression and 
regression. The paleo-saltwater from Holocene transgression can be enriched or 
diluted due to the buffering and filtering effects of deltaic aquifer systems and the 
fluctuant paleo precipitation. Results show that the intrusion distance of paleo 
saltwater ranges from several kilometers to hundreds of kilometers and most of which 
are below two hundred kilometers, and the groundwater salinity varies from brackish 
to brine. 

Yu, S., et al., 2023, Evolutionary history of the groundwater system in the Pearl River Delta (China) 
during the Holocene: Geology, https://doi.org/10.1130/G50888.1



 

 

Figure S1. Locations of the 50 deltas with information on saltwater intrusion distance 
and salinity, whose detailed data can be found in Table S1. 

 

 

Table S1. Quaternary delta systems in which paleo-saltwater has been reported. 

Delta Continent 
Distance 
km 

Max 
salinity g/L 

Reference 

Amazon South America 100 23 Bernardino et al., 2022 
Bangkok Asia 30 22 Das, 1985 
Bengal Asia 40 21 Sherin et al., 2020 
Burdekin Oceania 5 35 Narayan et al., 2007 
Caen Europe 10 1.2 Barbecot et al., 2000 
Chao Phraya Asia 25 17.5 Eslami et al., 2021 
Colorado North America 30 39 Smith et al., 1999 
Danube Europe 60 0.4 Oosterberg et al., 2000 

Dniepr Asia 120 35 
Naudts et al., 2006; Stovba and 
Stephenson, 2000 

Donana Europe 18 30 Manzano et al., 2001 
Ebro Europe 25 14.5 Albert and Jorge,1998 
Ferrara Europe 14 200 Giambastiani et al., 2013 
Fraser North America 7 43 Simpson and Hutcheon, 2013 
Godavari Asia 40 12 Bobba, 2002 

Grijalva North America 46 33 
Alcérreca-Huerta et al., 2019; 
Cardoso-Mohedano et al., 2022 

Red Asia 75 39 Tran et al., 2012 
Indus Asia 60 2 Eslami et al., 2021 
Irrawaddy Asia 280 35 Rodolfo, 1975 
Kelantan Asia 6 7.2 Samsudin et al., 2008 
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Krishna Asia 360 18 Kannan et al., 2022 
Lena Asia 250 17.5 Bolshiyanov et al., 2015 
Llobregat Europe 12 39 Manzano et al., 2001 
Mackenzie North America 200 0.15 Kipp et al., 2020 
Magdalena South America 6 30 Restrepo et al., 2016 

Mahakam Oceania 100 6 
Storms et al., 2005; Collins et al., 
2020 

Mahanadi Asia 17 11.4 Radhakrishna, 2001 
Mekong Asia 80 2 Eslami et al., 2021 

Mississippi North America 60 30 
Shiller and Boyle, 1991; Törnqvist 
etal., 2020 

Moulouya Africa 40 1 Shaghude, 2005 
Niger Africa 40 30 Kashef, 1983 
Nile Africa 60 26 Geriesh et al., 2015 
Orinoco South America 100 9 Echezuría et al., 2022 
Parana South America 300 10 Baigún et al., 2008 

Po Europe 10 30 
Cencini, 1998; Pellizzari et al., 
2009 

Rhine Europe 120 39 Post et al., 2003 
Rhone Europe 23 38 De Montety et al., 2008 
Rio Grande North America 1200 3 Witcher et al., 2004 
Sao Francisco South America 20 2 Andrews et al., 2017 
Sebou Africa 35 0.5 Haddout et al., 2007 
Senegal Africa 300 85 Barbiero et al., 2001 

Shatt el Arab Asia 92 8 
Abdullah et al., 2016; Al-Jawad et 
al., 2018 

Suriname South America 57 24 Groen et al., 2000 

Tana Africa 250 32 
Bouillon et al., 2007; Mutia et al., 
2021 

Tista Asia 300 1 Afroza et al., 2009 
Togo Africa 25 0.4 Akouvi et al., 2008 
Volta Europe 33 2 Addo et al., 2018 
Yangtze Asia 640 3 Dai et al., 2011 
Yellow Asia 100 48 Yu et al., 2014; Zhang et al., 2017 
Yukon North America 32 40 Harris, 1990; Terenzi et al., 2014 
Zhujiang Asia 60 28 Wang and Jiao, 2012 

 

The geology and hydrogeology of the PRD 

There was a rapid sea-level rise between 10000 and 7000 years before the 
present (yr BP) and then the rate slowed down, and the sedimentation switched from 



 

transgressive to regressive with rapid shoreline advancing (Zong et al., 2006, 2009a, 
2009b). Given the importance of historically changing surface boundaries in shaping 
the current distribution of groundwater salinity, the stratigraphic accumulation and 
shoreline migration induced by the sea-level change were implemented by successive 
time slices, in order to reconstruct the evolution of the aquifer-aquitard system in the 
Holocene. The 13C data from cores in the PRD suggested a strong freshwater flux in 
the middle Holocene, and from 6000 to 1000 yr BP the weather was relatively wet but 
became progressively drier in the last 1000 years (Zong, 2004; Zong et al., 2006). 
Evidence revealed that precipitation had reduced progressively in the late Holocene 
(Zong et al., 2006), indicating that if current precipitation was used for the simulation 
in the entire Holocene the freshwater flux by rainfall recharge would be significantly 
underestimated. The salinity of the paleo seawater near the PRD was lower than the 
current seawater during most of the Holocene probably due to higher precipitation 
based on the information of diatom assemblages from borehole cores as water salinity 
indicators for coastal environments (Zong et al., 2010a, 2010b). A borehole with the 
most salinity data over the longest period shows that overall the salinity was 30‰ at 
~8550 yr BP, decreased to the lowest salinity of ~20‰ around 5000 yr BP, and 
increased gradually to ~30‰ in the last 1000 years (Zong et al., 2010b). 

Fieldwork and laboratory analysis 

Six geological boreholes in three representative field sites were drilled along the 
northwest-southeast transect in Pearl River Delta. The borehole cores were delivered 
to Sun Yat-Sen University to study stratigraphy, and some samples were delivered to 
the State Key Laboratory of Estuarine and Coastal Research, East China Normal 
University for AMS 14C dating. The geological and dating information can be found 
in Fig. S2 and Table S2. After the borehole was drilled, both permanent multilevel 
groundwater sampling system and groundwater level monitoring system at each site 
were installed. Then the flushing of sampling and monitoring systems was 
immediately performed to avoid the blockage of the sampling points. Groundwater 
was sampled regularly using a peristaltic pump (Solinst, Co). The in-situ sampling 
from this multilevel groundwater sampling system, in contrast to porewater squeezing 
from borehole cores or surface geophysical measurement, provides the most direct 
and active information for groundwater salinity distribution in the Quaternary delta 
system. 

Monthly sampling was conducted between July 2021 and June 2022. A volume 
of 50 mL porewater was filtered through 0.45 µm filters and collected in Nalgene 
tubes for major ion and stable isotope analyses. The portable multi-parameter water 



 

quality analyzer (HI9829T, HANA) was used to measure the chemical and physical 
parameters such as temperature, pH, oxidation-reduction potential (ORP), dissolved 
oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS), and salinity. 
The cations (Na+, K+, Ca2+, Mg2+) and anions (CI-, SO4

2-) were analyzed using Ionic 
Chromatography (Thermo Scientific Dionex ICS-1100) and Inductively Coupled 
Plasma Optical Emission Spectrometer respectively in the Hydrogeology Lab of 
Department of Earth Sciences, The University of Hong Kong. Concentrations of 
dissolved ammonium, nitrate and nitrate, and orthophosphate were measured using 
Flow Injection Analyzer (Lachat Instruments Quickchem 8000) within one week of 
sampling at the Southern University of Science and Technology. Errors of nutrient 
analysis are <10% for NH4

+, <3% for NO3
- and NO2

-, and <5% for PO4
3+. The total 

alkalinity was in-situ measured by titrating the groundwater samples (~100 mL) with 
0.16 N or 1.6 N H2SO4 solution (Boyd, 2015). The dissolved inorganic carbon, 
HCO3

-, and CO3
2- were calculated based on the total alkalinity, pH, salinity, and 

temperature data using the CO2SYS program (Cao et al., 2011; Lewis and Wallace, 
1998). Stable isotopes were measured by Isotope Ratio Mass Spectrometry (Thermo 
Scientific 253 Plus, Germany) at the Southern University of Science and Technology. 
The δ2H and δ18O values were reported relative to the Vienna Standard Mean Ocean 
Water (VSMOW). The measurement uncertainties of δ2H and δ18O were 0.6% and 
0.1%, respectively. 

Geological information from boreholes 

The geological information of drilled boreholes was shown in Fig. S2. The 
representative boreholes in the Pearl River Delta used to build the numerical model 
were shown in Table. S2. The aquifer-aquitard system can be constructed based on the 
geologic description and 14C dating results. Twenty-layer samplers were arranged in 
each permanent multilevel groundwater sampling system and the sampling depths can 
be seen in Table. S3. Whether the groundwater samples can be collected was decided 
by the hydraulic conductivity, porosity and specific storage in different layers, and 
there are 8, 10, and 14 desirable samples in sampling systems SD, HP and MZ, 
respectively (Fig. S2). 



 

 

Figure S2. Geological profiles of Cores HP (a) and MZ (b) respectively. The left 
number means the 14C dating result and the right means the depth boundary between 
the aquifer-aquitard system.  
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Table S2. Description of the 6 representative sediment cores. The two terrestrial 
sequences in the Pearl River deltaic basin were named the T1 and T2 units, and the 
two marine sequences, the M1 and M2 units. 

Depth (m) Altitude (m. MSL) Description Unit 

Core K4 (Alt. 3.0 m of mean sea level, N23°11’44”, E112°36’12”) 

14C dating: calibrated age of 40.6–37.9 ka BP at depth of 9.3 m 

0.0-0.9 +3.0 ~ +2.1 Soil M1 

0.9-6.5 +2.0 ~ -3.5 Yellowish grey silt and fine sands T1 

6.5-9.1 -3.5 ~ -6.1 Yellowish red silt and clay (weathered layer) M2 

9.1-12.5 -6.1 ~ -9.5 Yellowish grey fine sands  

12.5-18.3 -9.5 ~ -15.3 Coarse sands and gravel T2 

18.3-  Bedrock  

Core HJ1 (Alt. 1.0 m of mean sea level, N23°05’18”, E113°55’13”) 

0.0-0.5 +1.0 ~ +0.5 Soil M1 

0.5-5.5 +0.5 ~ -4.5 Yellowish grey fine sands and silt  

5.5-9.8 -4.5 ~ -8.8 Dark grey silt and clay  

9.8-20.1 -8.8 ~ -19.1 Yellowish grey coarse sands T1 

20.1-24.5 -19.1 ~ -23.5 Grey silt and clay M2 

24.5-26.8 -23.5 ~ -25.8 Yellowish fine sands T2 

26.8-30.6 -25.8 ~ -29.6 Coarse sands and gravel  

30.6-  Bedrock  

Core PK25 (Alt. 1.0 m of mean sea level, N22°57’13”, E113°03’48”) 

14C dating: calibrated age of 8.8-8.4 ka BP at depth of 12.6 m 

0.0-0.4 +1.0 ~ +0.6 Soil M1 

0.4-2.7 +0.6 ~ -1.7 Yellowish grey fine sands and silt  

2.7-12.6 -1.7 ~ -11.6 Dark grey silt and clay  

12.6-17.4 -11.6 ~ -16.4 Yellowish grey coarse sands T1 

17.4-20.9 -16.4 ~ -19.9 Yellowish red silt and clay (weathered layer)  

20.9-33.8 -19.9 ~ -32.8 Grey silt and clay M2 

33.8-36.9 -32.8 ~ -35.9 Coarse sands and gravel T2 

36.9-  Bedrock  

Core ZK83 (Alt. 1.0 m of mean sea level, N22°55’00”, E113°12’39”) 

14C dating: calibrated age of 7.7-7.4 ka BP at depth of 13 m 

0.0-0.4 +1.0 ~ +0.6 Soil M1 

0.4-2.3 +0.6 ~ -1.3 Yellowish fine sands  

2.3-11.8 -1.3 ~ -10.8 Dark grey silt and clay  

11.8-15.8 -10.8 ~ -14.8 Grey silt and clay  

15.8-21.2 -14.8 ~ -20.2 Yellow coarse sands T1 



 

21.2-34.1 -20.2 ~ -33.1 Grey silt and clay M2 

34.1-35.8 -33.1 ~ -34.8 Yellowish grey fine sands T2 

35.8-39.8 -34.8 ~ -38.8 Coarse sands and gravel  

39.8-  Bedrock  

Core HP (Alt. 1.0 m of mean sea level, N22°44’04”, E113°25’50”) 

14C dating: calibrated age of 3.9-3.5 ka BP at depth of 13.5 m 

14C dating: calibrated age of 7.9-7.5 ka BP at depth of 16.9 m 

14C dating: calibrated age of 9.0-8.6 ka BP at depth of 17.5 m 

0.0-5.1 +1.0 ~ -4.1 Grey silt M1 

5.1-11.2 -4.1 ~ -10.2 Grey silt and clay  

11.2-11.8 -10.2 ~ -10.8 Grey silt and clay  

11.8-14.1 -10.8 ~ -13.1 Grey silt  

14.1-16.4 -13.1 ~ -15.4 Grey silt  

16.4-17.7 -15.4 ~ -16.7 Grey silt and clay  

17.7-33.2 -16.7 ~ -32.2 Yellow coarse sands T1 

33.2-39.0 -32.2 ~ -38.0 Grey silt and clay M2 

39.0-43.6 -38.0 ~ -42.6 Yellowish grey fine sands T2 

43.6-  Bedrock  

Core MZ (Alt. -0.5 m of mean sea level, N22°38’21”, E113°32’06”) 

14C dating: calibrated age of 2.9-2.5 ka BP at depth of 18.4 m 

14C dating: calibrated age of 5.8-5.5 ka BP at depth of 21.7 m 

14C dating: calibrated age of 9.9-9.6 ka BP at depth of 30.1 m 

14C dating: calibrated age of 13.0-12.8 ka BP at depth of 42.7 m 

14C dating: calibrated age of 13.2-11.1 ka BP at depth of 44.2 m 

0.0-7.0 -0.47 ~ -7.5 Grey silt M1 

7.0-11.0 -7.5 ~ -11.5 Grey silt and clay  

11.0-18.2 -11.5 ~ -18.7 Grey silt  

18.2-30.1 -18.7 ~ -30.6 Grey silt  

30.1-44.3 -30.6 ~ -44.8 Grey silt and clay M2 

44.3-63.6 -44.8 ~ -64.1 Yellow coarse sands T2 

63.6-  Bedrock  

Table S3. The sampling depths of twenty-layer samplers in each permanent multilevel 
groundwater sampling system. 

Layer No. Sampling field SD Sampling field HP Sampling field MZ 

1 -0.4 -3.1 -2.3 

2 -1.5 -6.2 -4.2 

3 -3.1 -9.3 6.3 

4 -4.7 -12.4 -9.4 



 

5 -6.3 -14.5 -12.5 

6 -7.9 -18.6 -15.6 

7 -9.0 -20.7 -18.7 

8 -10.1 -22.8 -22.8 

9 -11.2 -24.9 -26.9 

10 -11.8 -27.0 -31.0 

11 -12.4 -29.1 -35.3 

12 -14.5 -31.2 -39.4 

13 -15.6 -33.3 -43.5 

14 -16.7 -37.4 -47.6 

15 -18.8 -39.5 -51.7 

16 -20.9 -42.6 -55.8 

17 -23.0 -44.7 -59.9 

18 -25.1 -47.8 -64.0 

19 -28.2 -50.9 -68.1 

20 -37.3 -54.0 -78.2 

Groundwater flow and solute transport modeling 

The governing equations for groundwater flow, solute transport, and 
groundwater age in the two-dimensional vertical cross-section perpendicular to the 
coastline can be written as (Bethke and Johnson, 2002, 2008; Geng and Boufadel, 
2015; Jiang et al., 2012; Mao et al., 2023; Xie et al., 2022): 

0 zr x r z
S S S S k K k K
t t t x x z

ψ β ψ ψβφ β φ βδ βδ β∂ ∂ ∂ ∂ ∂ ∂  ∂    + + = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 (S1) 

( )cS c c
t

φ β∂
= ∇⋅ ∇ − ⋅∇

∂
D q  (S2) 

 (  ) 1S S S
t
τφ φ τ τ φ∂
= ∇ ⋅ ∇ − ⋅∇ + ⋅

∂
D q  (S3) 

where β is the density ratio [-], ε is a fitting parameter and equals 7.143×10–4 m3/kg, c 
is the groundwater salinity [ML–3]; S0 is the specific storage [L–1], ψ is the 

groundwater pressure head [L], t is time [T], ф is the porosity of the porous medium 

[-], x and z are the horizontal and vertical spatial coordinates [L] of the two-
dimensional cross-section domain, with the positive direction of z being upward and 



 

the positive direction of x being seaward; the parameter δ is the dynamic viscosity 
ratio [-], Kx and Kz are the horizontal and vertical hydraulic conductivity for saturated 
freshwater [LT–1], D represents the hydrodynamic dispersion tensor, q is the Darcy 
velocity [LT–1], τ is the groundwater age, S is water saturation.  

The 182 km long transect is extended to the inland watershed boundary to 
include a complete groundwater system. The thickness of the aquifer-aquitard system 
above the bedrock ranges from 4 m to almost 60 m. The model domain was divided 
into 38 layers and represented by 911 columns. Each column was 200 m wide. The 
thicknesses of the layers increase from 0.02 m in the surface layer to 2.76 m in the 
basal aquifer with the maximum depth. The small thickness near the surface was 
chosen to accommodate the small sedimentation rate of deposition at the top 
boundary. 

We assumed the no-flow boundaries (groundwater divides and hydrogeological 
base) on the inland and bottom sides. On the seaward boundary, the Dirichlet 
boundary condition was applied. The pressure head was determined by the changing 
sea level and the salt boundary condition here was determined by the flow direction. 
When the water flowed into the aquifer a Dirichlet boundary condition was applied at 
the constant seawater salinity. On the contrary, when water was leaving the aquifer a 
zero dispersive flux boundary condition was employed. Since the paleo-precipitation 
has reduced progressively in the late Holocene, the changing recharge from the top 
boundary and changing infiltration area due to rapid shoreline advancing were 
applied. In order to conduct the self-regulating setup for rainfall infiltration, the 
seepage face boundary condition was applied on the top boundary. The upper 
boundary moved as the sea level changed but was fixed during each time slice, while 
the boundary conditions changed at each time step, such as the precipitation recharge, 
sea level and salinity in seawater (Fig. S3).  

The pre-Holocene sea level was far below the present level as well as the bottom 
Quaternary strata in the model, and this relation lasted for tens of thousands of years 
(Waelbroeck et al., 2002). Hence, it was assumed that the groundwater system in the 
modeled area was entirely fresh at the beginning of the simulation, so the initial 
salinity in Pleistocene units was set as zero. The simulated results (head and solute 
concentration) at the end of each time slice were used as the initial conditions for the 
next time slice (Delsman et al., 2014), and the elements were added to the model to 
represent the sedimentation or expansion of the model as a result of transgression at a 
time slice. The newly added elements at that time were given a concentration of 
seawater in the seaward direction and given a concentration of freshwater in the 
inland, respectively. The change of the Quaternary delta system during the Holocene 



 

was implemented using six sequential time slices as shown in Table S4. 

 

Figure S3. Model setup and boundary conditions. 

Table S4. Description of model time slices. 

Time slice Description 

10 ka BP~8 ka BP Sea level rose linearly from -52 to -25 m; initial transgression; 

sedimentation rate ranged from 1.83~2.52 mm/yr. 

8 ka BP~6 ka BP Sea level rose linearly from -25 to -2 m; maximum transgression extent 

occurred; sedimentation rate ranged from 1.83~2.52 mm/yr; an increase 

in freshwater flux; salinity decreased from 30‰ with a rate of 0.003‰/yr. 

6 ka BP~5 ka BP Sea level fluctuated at -3.17 m; first regression development with 

freshening of hinterland; sedimentation rate ranged from 1.40~2.52 

mm/yr; relatively wet weather but progressively drier; salinity decreased 

at a rate of 0.003‰/yr. 

5 ka BP~3 ka BP Sea level fluctuated at -2.98 m; regression development accelerated, 

deltaic progradation rate at 17 m per year; sedimentation rate ranged from 

1.11~2.26 mm/yr; relatively wet weather but progressively drier; salinity 

increased from 20‰ with a rate of 0.001‰/yr. 

3 ka BP~0.3 ka BP Sea level fluctuated at -2.01 m; regression development with 15 m per 

year deltaic progradation rate; sedimentation rate ranged from 1.82~5.31 

mm/yr; progressively reduced precipitation; salinity increased at a rate of 

0.001‰/yr. 

0.3 ka BP~ current Sea level fluctuated at -2.01 m; maximal regression development; current 

precipitation; salinity increased at a rate of 0.001‰/yr. 

We supposed the initial conditions of groundwater age would have no impact on 
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the final results after Holocene transgression and regression, and hence the initial 
conditions of age in the model domain were set as zero. On the top boundary, the 
recharge from rainfall can be regarded the freshwater with the age boundary condition 
set as zero. The age boundary condition in the seaward direction was determined by 
the flow-direction. When the water flowed into the aquifer a Dirichlet boundary 
condition was applied with the zero age of inflow seawater. On the contrary, when 
water was leaving the aquifer a zero dispersive flux boundary condition ( / 0tτ∂ ∂ = ) 
was employed. 

The nutrient boundary was set as the interaction between anoxic groundwater 
and oxic seawater. Infiltrating seawater provided salinity, dissolved oxygen, dissolved 
organic matter, bicarbonate and ammonium, and the landward groundwater was 
assigned as the source of nitrate and metal element. The modelling of biogeochemical 
processes in the coastal deltaic system was conducted by using the reaction network 
comprised of kinetic reactions, including heterotrophic/autotrophic denitrification, 
nitrification, anaerobic ammonium oxidation, redox of iron, and decomposition of 
dissolved organic carbon due to aerobic respiration, as shown in Table S5. The 
boundary concentrations at the different endmembers for each species are given in 
Table S6. The bottom seawater in the Pearl River Estuary was selected as the seawater 
endmember. The salinity has experienced some changes during the Holocene, and 
hence the variations of other solutes in the seawater endmember during the Holocene 
can be decided based on their ratios to salinity. The synchronous changes of salinity 
and nutrient level can be supported by carbon isotopic records of corals (Su et al., 
2014), and dynamics of primary productivity in the South China Sea (Devendra et al., 
2019; Zhang et al., 2016). The boundary concentrations at the freshwater endmember 
were determined as the lowest ones in our observed groundwater samples and were 
treated as constants during the Holocene. The precipitation was assumed to provide 
the freshwater with zero solute concentration.  



 

Table S5. Reaction network used in the model. Reaction parameter values used in the model was referred to Spiteri et al. (2008a, 2008b; 2008c). 
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Model parameters and their values used in simulations can be seen in Table S7. 
The first half of the parameters were calibrated when simulating the groundwater flow 
and salt distribution. After that, their values were fixed, and the second half of the 
parameters, i.e. the reaction parameter values, were calibrated again when simulating 
the nutrient transport and reaction. During these processes, the effect of flow rate on 
kinetic reaction and the determination of the endmembers were major sources of 
uncertainty for the solute species analysis (Michael et al., 2011; Spiteri et al., 2008b). 
To consider how this uncertainty may affect the results, we performed the sensitivity 
analyses (Table S6) around the base case parameter set to assess the effects of 
freshwater flux by precipitation and solute concentrations for each species in different 
endmembers on nutrient distributions and fluxes across the sediment-water interface. 
The base case selected the averaged solute concentrations of the seawater endmember 
and the lowest ones at the freshwater endmember, then the lowest and highest solute 
concentrations of the seawater endmember and the averaged and highest solute 
concentrations of the freshwater endmember were used for sensitivity analyses. 

Table S6. Sensitivity analyses of freshwater flux and solute concentrations for each 
species in different endmembers. * denotes as the base case. 

Variables Values 

Rainfall infiltration (m/day) 9.68×10-7*, 1.14×10-6, 8.36×10-7 

CI- (mM) 535* 

DOC (mM) 6.8*, 4.25, 9.25 

HCO3- (mM) 29.2*, 21.0, 32.0 

NH4+ (mM) 10.1*, 7.0, 11.6 

O2 (mM) 0.27*, 0.25, 0.28 

Fe2+ (mM) 0.04*, 0.05, 0.09 

NO3- (mM) 0.10*, 0.11, 0.14 

Table S7. Model parameters and their values used in simulations. Reaction parameter 
values used in the model were referred to Spiteri et al. (2008a, 2008b; 2008c). 

Parameter  Description  Value 

Kx1, m day-1 horizontal hydraulic conductivity of aquitards 0.001 

Kx2, m day-1 horizontal hydraulic conductivity of aquifers 3 

Kz1, m day-1 vertical hydraulic conductivity of aquitards 0.0003 

Kz2, m day-1 vertical hydraulic conductivity of aquifers 1 

φ1, - porosity of aquitards 0.3 

φ2, - porosity of aquifers 0.4 

Ss, m-1 specific storage 1.0×10-5 

Sr, - residual soil saturation 0.05 



 

α, m-1 capillary fringe parameter 5 

n, - sand grain size distribution 4 

αL, m longitudinal dispersivity 50.5 

αT, m transverse dispersivity 5.05 

kfox, s-1 rate constant for DOC decomposition 3.0×10-9 

kpydenit, s-1 rate constant for denitrification 2.2×10-8 

knitri, mM-1 s-1 rate constant for nitrification 4.8×10-4 

kanammox, mM-1 s-1 rate constant for anaerobic ammonium oxidation 6.8×10-7 

kfeox, mM-1 s-1 rate constant for Fe2+ oxidation 6.4×10-2 

kmo2, mM limiting concentration of O2 0.008 

kmno3, mM limiting concentration of NO3- 0.001 

kmfe, mM limiting concentration of Fe(OH)3 18.95 

Model calibration 

Cores HP and MZ have been picked to construct our simulation model. Hence, 
the observed salinity and other chemical concentrations of groundwater samples 
collected in the permanent multilevel groundwater sampling systems HP and MZ can 
be applied to calibrate our model. The calibration results can be seen in Figs. S4 and 
S5. Results showed that our model, after the calibrations of groundwater flow 
dynamic and solute transport, produced the reliable distribution of age tracers (Fig. 
S6), showing a good correlation between simulated groundwater age and measured 
groundwater age. We have measured the ages of groundwater samples in this area 
based on radiocarbon dating (Wang and Jiao, 2012), and the observed data was used 
here. All of the groundwater in the deltaic aquifer-aquitard system had been refreshed 
during the Holocene transgression and regression with the groundwater age less than 
10,000 years, also showing that the initial conditions of groundwater age had no 
impact on the final results in our Holocene-scale model. 

 

Figure S4. (a) Observed salinity profiles during various seasons and simulated salinity 
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profiles in sampling systems HP and MZ. (b) Correlations between the observed and 
simulated salinities. 

 

Figure S5. Observed and simulated profiles of chloride, ammonium, bicarbonate and 
dissolved organic carbon in site MZ. 

 

Figure S6. The comparison between simulated groundwater age and measured 
groundwater age based on radiocarbon dating. 

Results 

Fig. S7 shows the evolutionary history of groundwater salinity and transit time in 
the Quaternary delta system during the Holocene. Under the lower sea level in the late 
Pleistocene, the inland fresh groundwater flowed across the entire delta system and 
the whole of deltaic aquifer systems was full of fresh groundwater. During the early 
Holocene transgression about 8000 yr BP when the sea level started to rise at the right 
boundary, the saltwater intruded laterally near the bottom of the aquifer. The fresh 
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groundwater flowed through the basal aquifer with a short transit time due to the 
topographic gradient (Figs. S7a and S7g), and then came across the intruded saltwater. 
Due to the fast groundwater exchange here, the saltwater flowed upward into the 
shallow aquifer and aquitard and eventually flowed back to the sea. When the sea 
level dramatically rose in the severe Holocene transgression, the seawater directly 
inundated the Quaternary delta system and thereby the typical aquifer-aquitard system 
emerged in the submerged deltaic sediment. That is, the groundwater transit time in 
the shallow and basal aquifers was less than that in the aquitards (Fig. S7h). After that, 
the typical deltaic aquifer-aquitard system gradually developed in the inland direction 
with a rapid shoreline advancing (Figs. S7i-S7l).  

In Fig. S7a, the sea level was very low and the top aquifer was largely 
unsaturated so the flow was dominated by vertical infiltration, and the topography-
controlled lateral flow only presented in the freshwater areas of the basal aquifer. With 
time going by, the development of the surficial aquitard would enlarge the discharge 
limb (Zhang et al., 2022), and the lateral flow in the shallow aquifer gradually 
emerged, as shown in Figs. S7b to S7f. At the end of Holocene (Fig. S7f), there were 
two layers of typical lateral flow in the freshwater areas of shallow and basal aquifers 
after the surficial aquitard was completely formed. The flow in the saltwater areas of 
shallow and basal aquifers was primarily controlled by Haline convection. 

 

Figure S7. Evolutionary history of groundwater salinity distribution (a-f) and transit 
time distribution (g-l) in the Quaternary delta system during the Holocene. The 
velocity direction is denoted by the streamlines with velocity magnitude expressed in 
color bands. The salinity value is normalized as the salinity ratio of groundwater to 



 

seawater and the units of velocity and time are m/s and s, respectively. 

During the Holocene, the δ18O of the seawater, ranging from -0.8‰ to 2‰, was 
enriched by roughly 1‰ in comparison to the modern seawater (Morrissey et al., 
2010; Sue, 2000). The isotope content of precipitation during the Holocene was very 
likely heavier than the modern record (-8~-4‰) along the subtropical coasts 
(Jasechko et al., 2015; Wang and Jiao, 2012). The groundwater in MZ near the sea 
had heavy δ18O starting from the middle of the Holocene aquitard to the basal aquifer 
(Fig. S8c), suggesting that the enrichment can be attributed to the influence of 
Holocene seawater, which is also supported by the high TDS (Fig. S8j). A similar 
phenomenon occurred in HP from the middle of the shallow aquifer to the basal 
aquifer as well (Figs. S8b and S8i). The isotopic evidence supported the simulated 
results in the Quaternary delta system, which showed that the saline groundwater had 
been trapped in these areas such as HP and MZ for thousands of years (Figs. S7i-S7l). 
The stable isotope values of shallow groundwater samples in HP and MZ were close 
to the isotope content of modern rainfall (Wang and Jiao, 2012), indicating that 
modern precipitation serves as a freshwater recharge source in these areas. The trend 
towards δ2H and δ18O enrichment in freshwater samples in SD can be attributed to 
Holocene precipitation recharge and Holocene freshwater from inland sources. Based 
on the δ18O and TDS values, the probable freshwater source is Holocene groundwater 
and precipitation (Figs. S8k and S8l). 

 

Figure S8. Stable isotope and total dissolved solid compositions of groundwater 
collected in multilevel sampling systems. 

We calculated the total amount of salt mass in the delta system (Fig. S9a) to 
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describe the evolution of the groundwater system during the Holocene. The seawater 
intrusion during transgression was the dominant input of salt. In the regressive period, 
the salt accumulation rates of different layers were both negative with low values 
(Fig. S9b), indicating that the continuous decline in salt mass happened but at a very 
slow speed. Although the salt amount experienced a decrease in the subsequent 
regression due to the flush of intruded saltwater, the newly developed marine 
sedimentary layer contained saltwater as well during the regressive phase. As a result, 
the total amount of salt changed little throughout the past 6000 years (Figs. S9a). The 
salt accumulation mainly occurred in the basal aquifer at the beginning of 
transgression and then moved to the Holocene aquitard. The shallow aquifer, 
meanwhile, possessed the least salt but with an apparent changing rate due to the 
rapid groundwater flow and short groundwater transit time (Figs. S7h-S7l). Although 
there was a gradual decline in the last three time slices (Fig. S9a), the percentage of 
salt in different layers only showed a slight change in the past 3000 years (Fig. S9c). 

 

Figure S9. Changes of salt mass (a), salt accumulation rate (b), and salt proportion (c) 
in the Quaternary delta system. 

The paleo groundwater discharge was dominated by the salt groundwater 
discharge which is also defined as the recirculated submarine groundwater discharge 
(Fig. S10). The paleo fresh groundwater discharge was impacted by the changing 



 

paleo precipitation, and its amount was nearly two orders of magnitude less than the 
total groundwater discharge or the salt groundwater discharge (Fig. S10), but it could 
be a potential source of existing offshore groundwater in the present-day sea (Post et 
al., 2013; Micallef et al., 2021). 

 

Figure S10. Groundwater discharge from the Quaternary delta system to the sea 
during the Holocene. 

As far as the coastal deltaic aquifer system is concerned, precipitation provided 
fresh water to the system while seawater intrusion provided salt. The salinity 
inventory in the delta is mainly controlled by these two processes. The three 
indicators of water recharge, salt supply and mean annual change in salinity in the 
delta were employed to depict the dynamic process in the deltaic aquifer system, and 
their relationships can be seen in Fig. S11. The salinity inventory is positively 
correlated to both water recharge and salt supply. The sea level rise firstly caused a 
large volume of seawater into the delta, accompanied by the supply of salt (Fig. 
S11d). That is, the salinity inventory increased with the groundwater inventory when 
seawater intrusion was significant during the Holocene transgression (Figs. S11f-
S11g). In the regressive period, the precipitation dominated the recharge and drove a 
small amount of groundwater to flow seaward (Figs. 3C-3F). The salinity inventory 
decreased as well because of the buffering effect of the deltaic aquifer system (Fig. 
3I). 
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Figure S11. The relationships between water recharge, salt supply and salinity 
inventory in the delta. 

Limitations and future perspectives 

In the PRD, surface water is mainly used for water supply due to extensive river 
network and abundant rainfall (Liu et al., 2018; Wang et al., 2016). Groundwater may 
be occasionally used by famers but overall its impact on groundwater flow system is 
very limited. As we mentioned before, the model covered the Holocene period of 
10,000 years and we believe that the pumping from domestic wells in the past tens of 
years can be ignored in the model. Previous studies in the river-aquifer system of 
India and Nepal where the agricultural water demand is huge showed that the great 
pumping-induced reduction in dry-season baseflow would potentially affect 
downstream water users (Khan et al., 2022). In the circumstances, the lower course of 
a river will become salty when the discharge of the river is relatively small, and then 
the influence of salt tide on the regional groundwater flow systems should be 
considered. 

Onshore saltwater and offshore freshwater, as two opposite geologic 
environments, have been observed in previous studies (Larsen et al., 2017; Micallef et 
al., 2020). We certainly found the offshore freshwater groundwater under the South 
China Sea, and results show that the observed offshore freshwater groundwater here 
was buried during the rapid transgressive period in the Holocene, while not formed 
due to the continuous flow of inland freshwater in the adjacent continental shelf. The 



 

reason why the model domain limited to the coast was that the coastal aquifers near 
the current sea level were full of seawater, and the density difference between inland 
freshwater and saltwater here stopped the freshwater from discharging into the 
seabed. We presumed that the thick Quaternary aquifer systems with leaching effect 
presented in the basal aquifer can be used to explore the link between onshore 
saltwater and offshore freshwater, e.g. the Red River delta plain (Larsen et al., 2017). 
In order to better calibrate our model using the limited inland borehole data and 
accurately describe the evolutionary history of the groundwater system in the PRD 
during the Holocene, we selected the current model domain cut off near the coast. 
Indeed, there is a lack of studies exploring the link between the hydrogeological 
models and sediment transport models especially around the active reaction zone of 
sediment-seawater interface. There are two main processes accounting for the changes 
in sediment pathways, including sediment transported along the coast by ocean 
currents and surge storms during high sea-level period, and fluvial transport into the 
basin by tributaries during low sea-level period (Steckler et al., 2007). Integrating 
these processes of sediment supply as a function of sea level can provide a realistic 
stratigraphic architecture both laterally and vertically, which is an interesting future 
direction for the hydrogeological model considering both groundwater flow and 
sediment accumulation. 
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