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Fig. S1. Computed tomography (CT) imagery from a single vertical slice of (A) core SLM18-4 

01UW-A with deformation of lake sediments that likely occurred during or after retrieval and 5 

(B) core SLM18-01UW-C with preserved lake sediment laminations.6 
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 8 

Fig. S2. Kernel density estimate of lamination frequency (in cycles mm-1) estimated using a 9 

robust red noise multi-taper method (Meyers, 2012); this kernel density estimate is shown as a 10 

violin plot in Fig. 2A. Vertical red lines show all peaks identified in the kernel density estimate, 11 

with dotted red line indicating the 90% significance level based on f-test statistics. Although the 12 

dominant frequencies are at 0.08184 and 0.2438 cycles mm-1, all 12 frequencies that exceeded 13 

the 90% significance threshold (Table S1) were included in our average spectral misfit analysis.  14 

  15 
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 16 

Fig. S3. Computed tomography (CT) imagery used in laminated lake sediment statistical 17 

analysis. (A) Unfiltered CT image of all 640 traces from the five CT slices with minimal 18 

deformation in core SLM-1801-01UW-C. (B) 484 traces from five CT slices (panel A) filtered 19 

for clasts (identified as brightness values >800). (C) 226 traces from five CT slices (panel A) 20 

filtered for voids (identified as brightness values <0). (D) Final dataset of 164 traces from five 21 

CT slices (panel A) filtered for both clasts and voids. 22 
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Fig. S4. Average misfit values calculated for all 164 traces over an extended range of 23 

sedimentation rates. The majority of optimal sedimentation rates are less than the upper bound of 24 

250 cm ka-1 (2.5 mm yr-1). 25 

  26 
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Supplemental Table 27 

 28 

Table S1. Lamination frequencies and corresponding periods that exceeded the 90% significance 29 

threshold based on our application of a robust red-noise multi-taper method (Meyers, 2012).   30 
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Supplemental Methods 31 

Surface height processing 32 

We processed Global Positioning System (GPS) and multi-mission altimetry to generate an 33 

extended time series of height at the Mercer Subglacial Lake (SLM) borehole access location 34 

(84.640287° S, 149.501340° W) from September 2003 to April 2021 (Fig. 1B). We selected the 35 

SLM access site to be at the orbital crossover of Ice, Cloud, and land Elevation Satellite (ICESat) 36 

ground tracks 0369 and 1288 in order to provide the most detailed context back to 2003. We 37 

interpolated bespoke satellite altimetry-derived digital elevation models (DEMs) to this SLM 38 

access location. Processing for each satellite altimetry mission is described below, followed by a 39 

description of GPS processing. Each dataset was processed to an ice-surface height estimate with 40 

no additional corrections applied. 41 

ICESat Data and Processing: The ICESat mission was a NASA laser altimetry mission that 42 

collected data to 86° S from September 2003 to October 2009. Due to laser energy 43 

considerations, data collection occurred during 19 laser operational periods that were 12- to 55-44 

days long, spaced at 4–6 months. We downloaded orbital ground tracks 0369 and 1288 of the 45 

ICESat GLAH12 data product (GLAS/ICESat L2 Global Antarctic and Greenland Ice Sheet 46 

Altimetry Data (HDF5), version 34) from the National Snow and Ice Data Center (Zwally et al., 47 

2014). We subset the data to a box centered on the SLM access site with dimensions 250 m x 48 

250 m [approximately the size the orbital crossover region due to variability in pointing control 49 

that resulted in sub-parallel ground tracks with a root mean squared cross-track separation from 50 

the reference ground track of up to 111 m (Siegfried et al., 2011)] and applied the detector 51 

saturation (Sun et al., 2017) and Gaussian-centroid (Borsa et al., 2014) corrections provided on 52 

the data product. We followed Smith et al. (2009) to generate a time series of dynamic height 53 
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change over a small (<1 km by <1 km) patch of the ice-sheet surface by solving a system of 54 

linear equations that accounts for cross-track slope using all available ICESat data. Whereas 55 

Smith et al. (2009) used the least squares solution to interpolate data to a reference ground track, 56 

we instead used the solution to solve for the height at the SLM access site for each ICESat 57 

footprint within the box (N=61). We aggregated height estimates by track for each campaign, 58 

resulting in 20 individual height estimates between October 2003 and September 2009, with an 59 

uncertainty of 0.2 m to 0.5 m (calculated as the range of 1 values for height estimates in each 60 

aggregation). 61 

CryoSat-2 Data and Processing: The CryoSat-2 mission has collected radar altimetry data 62 

with a 369-day near-repeat orbit to 88° S since July 2010. At the time of writing, data were 63 

available through the end of May 2021. Our CryoSat-2 processing followed previous methods 64 

for interpolating Level 2 CryoSat-2 synthetic aperture radar interferometric (SARIn) mode data  65 

(Baseline D) to a point location (Siegfried et al., 2014), with updates based on more recent 66 

CryoSat-2 analysis (Siegfried and Fricker, 2018, 2021). In short, we subset CryoSat-2 SARIn 67 

data to the SLM region, performed an iterative three-sigma filter over 10 km sub-regions to 68 

remove outliers, and generated a monthly 500 m resolution DEM of the ice surface using three 69 

months of CryoSat-2 data (nominally one orbital sub-cycle) and continuous curvature splines in 70 

tension (T = 0.7) as our gridding method (Smith and Wessel, 1990). There were between 1141 71 

and 2838 individual CyroSat-2 SARIn height retrievals per time window after filtering. We 72 

applied a Gaussian filter with a 6-sigma width of 5000 m to each DEM and interpolated to the 73 

SLM access coordinate with bicubic splines. The interpolation step is the largest source of error 74 

(Siegfried et al., 2014), with accuracy and precision dependent on the local topography and the 75 

specific distribution of CryoSat-2 footprints. We used a Monte Carlo approach to estimate 76 
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uncertainty for the interpolation method at each time step (i.e., each distribution of CryoSat-2 77 

footprints), in which we repeatedly (N=100) sampled 95% of the CryoSat-2 data for each three-78 

month window to generate a DEM and validated the DEM interpolation at the remaining 5% of 79 

data points. Across the 129 timesteps (August 2010 to April 2021), we found that interpolation 80 

bias ranged from -0.05 to 0.27 m and interpolation precision (1) ranged from 2.55 to 2.94 m. 81 

However, this approach neglected that the interferometric processing of CryoSat-2 SARIn data 82 

explicitly samples the point-of-closest-approach (i.e., topographic highs) within the large [~1.7 83 

km (McMillan et al., 2013)] cross-track radar footprint. When a subglacial lake drains, the ice 84 

surface can form a narrow, local depression (e.g., Siegfried and Fricker, 2021), and so there is 85 

likely an additional, significant (1+ m) bias for interpolating to the SLM access site (which is 86 

located in the central portion of SLM) near low-stand: this issue can readily be identified by the 87 

separation between GPS and CryoSat-2 in early 2012 (Fig. 1B). We therefore do not use 88 

interpolated CryoSat-2 data to assess the total amplitude of height change at the SLM access site 89 

between low stand and time of subglacial access as it likely underestimates the magnitude by 90 

O(1) m.  91 

ICESat-2 Data and Processing: NASA’s ICESat-2 mission is its satellite laser altimetry 92 

follow-on to the ICESat mission. ICESat-2 data has collected data to 88° S with 91-day repeat 93 

coverage since 14 October 2018. Unlike the single ground-track design of the ICESat mission, 94 

the ICESat-2 mission instrument uses an innovative six-track design to increase data density and 95 

capture cross-track slopes, wherein one laser beam is split with diffractive optics into three pairs 96 

of ground tracks, with ~3.3 km separation between pairs and ~90 m separate within a pair. We 97 

used the ICESat-2 Level 3a ATL06 (Land Ice Height), version 004 data product (Smith et al., 98 

2021, p. 06) and followed a similar processing pipeline for interpolating values to the SLM 99 
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access site as used for CryoSat-2 processing. We subset the ICESat-2 ATL06 data to the SLM 100 

region, filtered data based on the ATL06 summary quality flag (atl06_qual_summary == 0), and 101 

generated monthly DEMs posted at the same monthly interval using three months of ICESat-2 102 

data and continuous curvature splines in tension followed by a Gaussian filter for gridding 103 

(Smith and Wessel, 1990). There were between 31,167 to 206,121 ATL06 footprints in each 104 

processing window, or one to two orders of magnitude greater density compared to CryoSat-2 105 

SARIn-mode data. We used a finer spatial resolution (250 m) and finer Gaussian filter (6-sigma 106 

width of 1750 m) given this increased data density of the ICESat-2 mission compared to that of 107 

the CryoSat-2 mission. Interpolation uncertainty is more difficult to quantify given the exact-108 

repeat design of the ICESat-2 mission.  However, it is less dependent on footprint distribution as 109 

each 90-day time window has approximately the same footprint geometry due to the exact-repeat 110 

mission design; a similar Monte Carlo approach at Academy Glacier, East Antarctica, suggested 111 

that the single-point interpolation uncertainty is 0.19 m (Siegfried and Fricker, 2021).  112 

GPS Data and Processing: Continuous GPS stations were installed on lower Mercer and 113 

Whillans ice streams soon after the initial discovery of interconnected subglacial lakes in the 114 

region (Fricker et al., 2007). The array operated through the Whillans Ice Stream Subglacial 115 

Access Research Drilling (Tulaczyk et al., 2014) and Subglacial Antarctic Lakes Scientific 116 

Access (Priscu et al., 2021) projects as an evolving experiment of up-to 23 stations that operated 117 

until the final stations were removed on 26 November 2019. We used data from three GPS 118 

stations that were deployed on SLM: (1) LA09, located on SLM 8.1 km downstream of the SLM 119 

access site and operated from 25 January 2008 to 26 November 2019; (2) LA12, deployed about 120 

22 m from the SLM access site and operated from 4 January 2012 to 7 January 2014; and (3) 121 

LA17, located about 420 m downstream from the SLM access site at time of breakthrough and 122 
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operated from 12 December 2016 to 26 November 2019. These stations consisted of a Trimble 123 

NetRS or NetR9 receiver, a Trimble Zephyr Geodetic or Zephyr Geodetic II antenna mounted on 124 

a metal pole with the antenna 0.5 to 3 m above the snow surface, and a large enough power 125 

station (1–2 solar panels, 0–2 wind turbines, 4–10 batteries) to collect data through polar night. 126 

Battery degradation and instrument failures caused data interruptions ranging from hours to two 127 

years (in the case of a storage card failure at LA09).  128 

We processed our 15 s or 30 s rate GPS data kinematically using a precise point 129 

positioning (PPP) technique implemented by Natural Resource Canada’s online tool Canadian 130 

Spatial Reference System-PPP to estimate the epoch-by-epoch geodetic coordinate of the 131 

antenna. In order to generate an ice-surface height time series that is consistent with satellite 132 

altimetry, we had to correct our geodetic antenna coordinate for the height of the antenna above 133 

the snow surface. Therefore, we also processed the GPS data using interferometric reflectometry 134 

(e.g., Larson et al., 2009; Siegfried et al., 2017; Shean et al., 2017), which is a method that uses 135 

reflected GPS signals to estimate height of the antenna above the snow surface at daily resolution 136 

with 0.02 m accuracy and 0.06 m precision (Siegfried et al., 2017). We aggregated our 137 

conventionally processed GPS positions into daily height estimates, filtering days that had less 138 

than 120 epochs (i.e., 30 minutes of data at 15 s recording). We calculated daily positions as the 139 

median to reduce the impact of large outliers that can be caused by power fluctuations during 140 

polar winter. Each daily position estimate included between 129 and 5760 individual epochs in 141 

the calculation (suggesting sub-mm precision given a typical individual-epoch vertical precision 142 

of 0.1 m). We then subtracted daily GPS reflectometry reflector height estimates from the daily 143 

position estimates to generate a time series of ice-surface height at the SLM access site (LA12, 144 

LA17).  145 
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To compare surface-height change to observed lake water column thickness, we needed 146 

to estimate the ice-surface height change at the SLM access site between low stand and time of 147 

access; although we did have a GPS station recording at the SLM access site during SLM 148 

borehole operations, we did not occupy this site with a GPS station when SLM was at low stand. 149 

We therefore used the longer, more continuous ice-surface height time series from LA09 and 150 

scaled it based on the ratio of height change between LA09 and LA12/LA17 [i.e., (h2
LA12/LA17 – 151 

h1
LA12/LA17) / (h2

LA09 – h1
LA09)]. To maximize our signal-to-noise ratio, we only calculated height-152 

change ratios when height-change at an individual GPS station (e.g., h2
LA09 – h1

LA09) exceeded 11 153 

m, which resulted in 1567 scaling ratios with a mean of 1.19 ± 0.02 (1). Ice-surface height at 154 

LA09 increased from 102.46 m at SLM low stand on 21 Jul. 2014 to 115.02 m on 26 Dec. 2018, 155 

when we broke through to SLM, suggesting a scaled height-change at the SLM access site of 156 

14.9 ± 0.3 m.  157 

 158 

Lake-averaged time series generation 159 

To generate lake-averaged height-anomaly time series at SLM, Conway Subglacial Lake, and 160 

Upper Conway Subglacial Lake (Fig. 1C), we applied the method presented in Siegfried et al.  161 

(Siegfried and Fricker, 2021) with no adjustments except inclusion of additional data released 162 

(through May 2021, resulting in a final time series data point for April 2021).  163 

 164 

SLM access and sediment core operations and analysis 165 

During the 2018–2019 Antarctic field season, the SALSA science team employed a clean access, 166 

hot-water drill (Priscu et al., 2013; Michaud et al., 2020) to melt a 0.4 m diameter borehole 167 

through 1087 m of Mercer Ice Stream to access SLM (Priscu et al., 2021). We determined that 168 
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the SLM water column was 15 m deep at the time of access, and over the 8.6 days of scientific 169 

operations we deployed a multicoring device (UWITEC, Austria) modified for use in a 0.3 m 170 

diameter borehole (Tulaczyk et al., 2014; Michaud et al., 2016; Priscu et al., 2021). This device 171 

consists of three, 0.6 m long, 0.06 m diameter core barrels designed to collect an intact sediment-172 

water interface (see Hodgson et al. (2016) for images of the coring device); we deployed the 173 

UWITEC device at the maximum winch payout speed (50 m min-1) for the final 10 to 15 m 174 

before contacting the sediment. We chose two multicores from our first deployment of the 175 

UWITEC coring device (Priscu et al., 2021), SLM-1801-01UW-A (0.49 m; Fig. S1A) and SLM-176 

1801-01UW-C (0.46 m; Fig S1B), to represent the pristine sediment-water interface and shallow 177 

sedimentary sequence unobstructed by subsequent sampling efforts. We plugged each of these 178 

cores with a rubber stopper at the base and placed them upright for 24 hours in refrigerated (4 179 

°C) storage covered with a loosely fitting cap. Following the settling period, we removed excess 180 

water from the core tops using a pipette in an effort to avoid disturbing core top sediments. We 181 

secured each core with a foam plug and cap to avoid sediment disturbance during shipment. 182 

Because we also used organic carbon in these cores to assess natural-levels of radiocarbon in the 183 

SLM system, no additional measures were taken to preserve core-top structures (Venturelli et al., 184 

2021). 185 

Once multicores arrived at OSU-MGR, we measured whole round sediment cores at 1 cm 186 

intervals using a GEOTEK Multi-sensor Core Logger, and we used the Toshiba Aquillon 64 187 

Slice at the OSU College of Veterinary Medicine to obtain computed tomography (CT) scans as 188 

a first-order, non-destructive core analysis. We captured 35 Digital Imagine and 189 

Communications in Medicine (DICOM) files through the 0.06 m core tube in coronal slices with 190 

0.351 mm by 0.351 mm voxels. We processed DICOM files to create high quality, calibrated 191 



 13 

core slice- and three-dimensional images using the software package pydicom (Mason et al., 192 

2020). Due to the fine-grained, high-water-content nature of the lake sediments, sampling of 193 

individual layers with a toothpick (e.g., Leventer et al., 2002) or resin slabbing (e.g., Lamoureux, 194 

1994) was not considered possible without extreme disturbance to the laminations. Given that 195 

fragile laminations can now be expected in cores recovered from Antarctic subglacial lakes, we 196 

suggest future projects consider additional coring methods (e.g., Veerschuren, 2000), 197 

impregnation of sediments with polymers to more easily prepare thin sections (e.g., Lamoureux, 198 

1994; Boës and Fagel, 2005), and/or securing core tops with Zorbitrol gel to avoid disturbance of 199 

the sediment-water interface (e.g., Tomkins et al., 2008) in an effort to maximize the potential of 200 

preserving these key sedimentological features for higher fidelity analysis. These methods should 201 

be implemented in coordination with best practices for limiting carbon contamination (Venturelli 202 

et al., 2021) to ensure other cores can be used for paleoglaciological reconstruction (Venturelli et 203 

al., 2020). 204 

 205 

Statistical core analysis 206 

To investigate the potential range of statistically significant sedimentation rates, we employed 207 

techniques that have been specifically developed for rhythmically deposited geological records 208 

that do not contain well-resolved radiometric age data (Meyers and Sageman, 2007). More 209 

specifically, we performed a series of Monte Carlo simulations on core image data to constrain 210 

variability in the spatial and temporal heterogeneity of sedimentation when applying robust red-211 

noise multi-taper (Mann and Lees, 1996) and average spectral misfit (ASM) (Meyers, 2012) 212 

analyses to identify significant sedimentation rates and to improve confidence in our estimates of 213 
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subglacial lake sedimentation patterns. We then used a multi-Gaussian model to estimate the 214 

uncertainty of the most frequently identified significant sedimentation rates. 215 

For our analysis, we first extracted vertical traces of CT calibrated brightness values (in 216 

dimensionless Hounsfield units [HU], a standardized linear scale that is referenced to air, -1000 217 

HU, and water, 0 HU) through the undeformed portion of the laminated lake sediment package 218 

in core SLM-1801-01UW-C. We did not perform analysis on SLM-1801-01UW-A (Fig. S1A) as 219 

the contact between diamict and lake sediments was not horizontal, indicating non-vertical 220 

penetration, undulation of the modern lakebed surface, or deformation after collection. We 221 

automatically segmented all CT slices using a k-means clustering approach (Achanta et al., 2012) 222 

implemented in scikit-image (van der Walt et al., 2014) and masked non-laminated areas of the 223 

core. We selected five slices from the middle of the core (at -13 mm (Fig. S1B), -11 mm, -9 mm, 224 

-7 mm, and -5 mm) that appeared have the least sidewall deformation as a result of the core 225 

retrieval process (see Fig. S3A to see all slices we used side-by-side). We cropped each slice to 226 

the middle 45 mm to exclude any remaining smearing against the core tube and traced the 227 

boundary between the upper ~45 mm of laminated sediments that were deformed (likely as a 228 

result of core handling in the field) and the intact ~75 mm of laminated lake sediments; we 229 

masked the sediment above the traced boundary. After masking, there were 640 vertical CT 230 

brightness traces available (Fig. S3A). We filtered 156 traces that contained >2% clasts 231 

(identified as brightness values >800; Fig. S3B) and 414 traces that contained >2% voids 232 

(identified as brightness values <0; Fig. S3C). After filtering for both clasts and voids, we had 233 

164 brightness traces (Fig. S3D), which we used for our statistical analysis.  234 

We randomly subsampled our 164 vertical traces at 90% using 1000 Monte-Carlo 235 

simulations in order to increase confidence around significant signal generation. We conducted 236 
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sensitivity testing of different numbers of Monte Carlo simulations with a series of stepped 237 

simulations per transect (500, 1000, 10,000) in order to determine a threshold above which 238 

results were convergent and reproducible. We carried out all time-series analysis in Astrochron 239 

(Meyers, 2014). Prior to analysis all data sets were interpolated to a median sampling resolution. 240 

We used a robust red noise multi-taper method (Meyers, 2012) to estimate power spectra of 241 

laminae thickness (Fig 3A) and to test for the presence of coherent harmonic components in the 242 

data series for each subsampled transect. We extracted laminae thickness frequencies (in cycles 243 

mm-1) that satisfied f-test statistics at 90% significance for further ASM analysis (Fig. S2).  244 

We applied ASM analysis (Meyers and Sageman, 2007) to statistically determine 245 

plausible sedimentation rates using target values based on statistically significant laminae 246 

thickness frequencies and subglacial lake cyclicity (with fill/drain cycles of 4-, 5-, or 6-years; 247 

Fig. 1B). We applied ASM analysis across 200 sedimentation rates from 0 to 2.5 mm a-1 (at 248 

0.0125 mm a-1 increments) with significance levels for rejection of the null hypothesis (i.e., 249 

sedimentation rate not related to fill-drain cycles) determined using 1000 Monte Carlo 250 

simulations. We set this range of sedimentation rates based on previously published paleo 251 

subglacial lake and sub-ice-shelf environments (e.g., McKay et al., 2009; Smith et al., 2018). We 252 

determined statistically significant optimal sedimentation rates using the critical significance 253 

level (the inverse of the number of sedimentation rates) (Meyers and Sageman, 2007). As an 254 

additional experiment to assess the validity of this assumption, we performed the same ASM 255 

analysis using MTM power spectra of each of the 164 parent traces using a large range of 256 

sedimentation rates, from 0 mm yr-1 to 120 mm yr-1 (0 to 12,000 cm kyr-1) (Fig. S4). For each 257 

parent trace, we retrieved statistically significant frequencies from a Mann and Lees (1996) 258 

MTM analysis, and then we performed ASM analysis using this extended range of sedimentation 259 
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rates. These ASM analysis for the extended range resulted in the optimal sedimentation rates all 260 

between 32 and 314 cm ka-1, and the majority of these sedimentation rates were less than the 261 

upper bound of 250 cm ka-1 (2.5 mm yr-1) that we used in our final analysis. Above the local 262 

minimum at 225 cm ka-1, ASM increased roughly linearly. 263 

Finally, we used a five-Gaussian model to quantify the center and standard deviation of 264 

the most frequently identified optimal sedimentation rates. Our analysis resulted in a distribution 265 

of significant sedimentation rates, with values that converged at 0.49 ± 0.12 mm a-1, 0.68 ± 0.08 266 

mm a-1, 0.83 ± 0.07 mm a-1, 1.04 ± 0.08 mm a-1, and 2.28 ± 0.17 mm a-1 (Fig. 3B). A 267 

sedimentation rate of 0.68 mm a-1 was the most densely identified rate of average sedimentation, 268 

which we used as the sedimentation rate for considering the relationship between subglacial lake 269 

initiation and regional ice dynamics.  270 

Calculation of SLM age 271 

We estimated the age of SLM as a depositional lake by determining the amount of time required 272 

for our optimal sedimentation rate to deposit the observed thickness of lake sediments and 273 

estimated the uncertainty of our age using a bootstrapping technique that sampled a distribution 274 

of lake-sediment thicknesses and sedimentation rates. We generated a lake-sediment package 275 

thickness distribution by calculating the thickness in each of the 625 traces we used from the 5 276 

undeformed CT slices. We defined thickness as the distance between the uppermost and 277 

lowermost pixel identified as lake sediments using our unsupervised classification scheme. This 278 

resulted in an average lake-sediment thickness of 120 ± 2 mm. We then sampled randomly (with 279 

replacement) from the distribution of lake-sediment thicknesses (N = 625) and a Gaussian 280 

distribution of sedimentation rates ( = 0.68 mm a-1;  = 0.08 mm a-1) to generate 106 estimates 281 

for the age of SLM. Our resulting age was 180 ± 20 years.  282 
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 283 

SLM surface and borehole geophysics 284 

Our borehole science operations at SLM provided only a snapshot of the physical lake system. 285 

To understand the physical setting over a longer time period, we deployed additional geophysical 286 

instrumentation: a vertical fiber-optic mooring from the ice surface through the ice and water 287 

columns to the bed below and an autonomous phase-sensitive radio-echo sounder (ApRES). 288 

Deployment, processing, and analysis of each of these instruments is described below. 289 

 Long term fiber-optic mooring: On 5 Jan. 2019, after the conclusion of borehole science 290 

operations, we deployed a distributed temperature sensing (DTS) duplexed, multimode fiber-291 

optic cable from the ice surface to the lakebed. We deployed ~ 1121 m of cable through the 1087 292 

m ice column and 15 m water column, unspooling an additional 19 m of cable onto the lake 293 

floor. We attached a small stainless-steel anchor to the end of the cable and allowed the cable to 294 

freeze into the ice column at the conclusion of our borehole operations. Shipping issues from the 295 

cable manufacturer resulted in UV damage to the coating of the unjacketed end of one of fiber 296 

strands (channel 1). The increased fragility due to UV damage resulted in severing one fiber 297 

channel during field operations; although we successfully spliced the cable in the field, we 298 

elected to collect single-ended measurements (channel 2 only) to ensure long-term data 299 

collection from our subglacial observatory. Due to instrument data storage limitations on our 300 

Sensornet Oryx DTS, we collected 1200 s acquisitions at 29 h intervals from 18 January 2019 301 

until we retrieved the instrument on 26 November 2019. We installed a power station with two 302 

solar panels and 10 100 A h batteries to ensure DTS data collection through polar night. 303 

 Accurate DTS calibrations require a continuously monitored reference section of cable 304 

with a uniform temperature, and we were not able to establish this over the duration of the 305 
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deployment due to logistical constraints. Based on the raw Raman spectra backscattered data 306 

from within the 15 m water column of SLM, however, we estimated differential attenuation rates 307 

() within the fiber (Fig. 1E) (Hausner et al., 2011). In a section of fiber at uniform 308 

temperature, the natural log of the ratio of Raman Stokes to Raman anti-Stokes (hereafter 309 

referred to as R) varies linearly with distance from the instrument at a slope of . For each 1200 310 

s integration period during the deployment, we calculated  based on the slope of R over the 15 311 

m of cable in the water column. Through 30 April, this calculation returned a consistent and 312 

reliable (p < 0.05) value of approximately 7.9±1.3 x 10-5 m-1 (mean ± 1), typical values for DTS 313 

installations (Hausner et al., 2011). Starting May 2019, and coincident with the switch of SLM 314 

from draining to filling, the linear regression became less reliable (i.e., p increased) and the 95% 315 

confidence interval broadened (Fig. 1E), often including zero (indicating that  cannot be 316 

calculated with 95% confidence). It is unlikely that the change in  resulted from sources 317 

related to ice motion, such as inconsistent dragging of the anchor causing transient strain on the 318 

fiber, as these signals would likely not align temporally with the change in lake state, nor would 319 

it be propagated into the loose-tube fiber-optic cable construction (a design that is specifically to 320 

isolate the fiber core from mechanical impingements). Rather, the temperatures in SLM were 321 

likely no longer sufficiently uniform to calculate a reliable . We infer that this non-uniform 322 

temperature profile was a result of the filling of SLM. 323 

 ApRES surveying: We deployed an ApRES collocated with GPS station LA17 (~420 m 324 

from the SLM borehole) to partition surface-height changes between dynamic ice thickness 325 

change from changing basal tractions (e.g., Sergienko et al., 2007) and water-column thickness 326 

change from subglacial lake activity. The ApRES instrument is a frequency-modulated 327 

continuous wave radar with 200 MHz bandwidth and 300 MHz center frequency, originally 328 
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designed for measuring vertical strain and sub-ice-shelf melt rates (Brennan et al., 2014; Nicholls 329 

et al., 2015). ApRES is phase-coherent, and so data from this instrument can be processed with 330 

sub-range-resolution precision by analyzing changes in the phase component of the signal using 331 

a Vernier-like process (Brennan et al., 2014). We installed our ApRES system for long-term 332 

autonomous data collection on 18 Jan. 2019 with a power station that allowed continuous data 333 

until retrieval on 26 Nov. 2019. We processed the ApRES data by determining a coarse ice-334 

thickness based on the range delay and a relative ice permittivity of 3.18, then unwrapped the 335 

phase for fine-scale range estimates (Brennan et al., 2014). The resulting ice thickness estimate 336 

was not corrected for firn effects. 337 

 338 
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