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DR1 – Geological maps of the study area 
 

 
 

Figure DR1. A) Geological map of the northern Ruby Mountains-East Humboldt Range study 
area. B) Detailed geological map of the Dorsey Creek area. Middle Miocene basalt dikes (Tb) that 
crosscut the mylonitic fabric are truncated by the Ruby Mountains detachment fault. 
  



3 
 

DR2 – EBSD data collection details and grain size analysis 
Electron backscatter diffraction (EBSD) analysis was conducted with 15 samples at the 

University of Nevada, Reno using the JEOL JSM-7100FT field-emission scanning electron 
microscope with an Oxford NordlysMax2 EBSD detector (Table 1, Fig. DR2). Thin sections for 
each sample were polished using a vibratory polisher with 0.05 µm colloidal silica for 6−8 hours. 
EBSD data was collected at a working distance of 25 mm and 70° tilt using a beam energy of 
25−30 kV and probe current of 18. EBSD maps were collected at a step size of 0.2−6 µm depending 
on the estimated size of recrystallized grains. For select samples, maps were collected at a larger 
and smaller step size to capture a large area of the fabric and to resolve small grains, respectively. 
EBSD data was processed using Oxford Instruments Channel 5 software to correct for wild spikes 
and a 7 nearest neighbor zero solutions correction. For select samples wild spikes and zero 
solutions corrections were conducted using the MTEX toolbox (5.7.0; https://mtex-
toolbox.github.io/) (Bachmann et al., 2010) for MATLAB. Quartz crystallographic axes are 
plotted as one-point-per-grain lower-hemisphere pole figures (Fig. DR3). In Fig. DR6, all quartz 
crystallographic axes are plotted in lower-hemisphere pole figures for kinematic vorticity analysis. 
Fabric parameters M and PGR provide a measure of fabric strength (M) and the shape of the CPO 
(P – point; G – girdle; R – random) (Table 2). The M-index is calculated in MTEX using the 
function calcMIndex.m following the code of Mainprice et al. (2015) and the method of Skemer 
et al. (2005). Higher M-index values corresponding to a stronger CPO than lower M-index values. 
PGR values were calculated using the code of Mainprice et al. (2015) following the method 
Vollmer (1990). Values close to 1, e.g., P = 0.9, indicates the CPO is dominated by a point 
geometry. Due to a low proportion of quartz in sample AZ 8-19-19 (2), it has been omitted from 
our grain size and kinematic vorticity analysis. 

Recrystallized grain size analysis was conducted following the protocol of Cross et al. 
(2017) using the RexRelict.m script (https://doi.org/10.1002/2017GL073836) (Table 2, Fig. DR3). 
We do not apply the GOS-threshold to distinguish recrystallized versus relict grains, as we assume 
the quartz in our samples is all recrystallized. Our analysis follows the same data input and initial 
grain calculation scheme, as well as grain size estimation scheme. Grain size is determined by the 
area-equivalent diameter. No stereological correction is used. The mean grain size is given by the 
root mean square of the recrystallized grain population.  Differential stress estimates from mean 
recrystallized grain size estimates were calculated using the paleopiezometric calibration of Cross 
et al. (2017) (Table 2). 

The quartz c-axis fabric opening angle thermometer (e.g., Law, 2014; Faleiros et al., 2016) 
was applied to sample AZ 8-4-18 (3), which displayed a nice c-axis girdle with an opening angle 
of 65° (Fig. DR3). Applying the opening angle thermometer calibration of Faleiros et al. (2016), 
we estimate a deformation temperature of 496 ℃. 

To evaluate strain rate, we apply the wet quartzite flow law of Tokle et al. (2019). The 
form of the flow law is: 

𝜀𝜀̇ = 𝐴𝐴𝜎𝜎𝑛𝑛𝑓𝑓𝐻𝐻2𝑂𝑂𝑟𝑟 𝑒𝑒−
𝑄𝑄
𝑅𝑅𝑅𝑅      (1) 

where A = 1.75 x10-12 (MPa-ns-1), n = 4, r = 1, Q = 1.25 x105 Jmol-1, R = gas constant, T = 
temperature, and fH2O = 50 MPa. Water fugacity was calculated using T. Withers’ fugacity 
calculator (https://publish.uwo.ca/~awither5/fugacity/index.htm). 

https://publish.uwo.ca/%7Eawither5/fugacity/index.htm
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Table 1: Sample locations

Sample Structural 
Position Latitude Longitude Unit

AZ 10-8-19 (1a) 1 40.83177 -115.14803 Mdp
" " " "

AZ 7-1-20 (1) 2 40.93692 -115.23821 Oe
200718-6 3 40.86394 -115.24889 Ocm

AZ8-19-19-(2) 4 40.95774 -115.19940 Tmg
AZ8-19-19-(4) 5 40.95701 -115.17796 CZpm
AZ8-19-19-(5) 6 40.95703 -115.17836 CZpm
AZ 6-30-20 (2) 7 40.94923 -115.21765 CZpm
AZ 8-4-18 (3) 8 40.84163 -115.13982 CZpm

" " " "
AZ 8-4-18 (1) 9 40.84158 -115.13997 CZpm

" " " "
020619-2 10 40.86344 -115.24653 CZpm
200718-4 11 40.86350 -115.24592 CZpm

200718-3a 12 40.86369 -115.24514 CZpm
020619_5 13 40.86400 -115.24389 CZpm
020619-4 14 40.86456 -115.24300 CZpm
020619-3 15 40.86433 -115.24258 CZpm

AZ 7-2-20 (4) 16 40.94657 -115.15773 Zmu

Location

Table 2: Microstructural data

EBSD

Sample Structural 
Position

Step 
size (µm) M P G R

Mean 
recrystallize
d grain size 

(µm)

1SD (µm)
Differentia

l stress 
(MPa)

uncertainty 
(+ / -)

AZ 10-8-19 (1a) 1 0.5 0.03 0.12 0.25 0.63 - - - -
" 0.2 0.03 0.13 0.16 0.71 3.8 1.8 193.5 98.7/42.3

AZ 7-1-20 (1) 2 1 0.90 0.26 0.29 0.44 13.1 8.7 89.2 88.1/24.5
200718-6 3 3 0.05 0.16 0.28 0.56 14.1 6.0 85.4 35.8/17.1

AZ8-19-19-(4) 5 5 0.40 0.68 0.25 0.07 44.6 31.1 41.4 46.6/11.7
AZ8-19-19-(5) 6 5 0.50 0.80 0.16 0.04 55.7 43.1 36.0 55.7/10.9
AZ 6-30-20 (2) 7 3 0.34 0.61 0.38 0.02 44.8 32.1 41.2 49.7/11.9
AZ 8-4-18 (3) 8 5 0.36 0.66 0.26 0.08 - - - -

" 2 0.42 0.72 0.24 0.03 44.0 36.7 41.7 87.4/13.2
AZ 8-4-18 (1) 9 5 0.38 0.61 0.30 0.09 - - - -

" 2 0.32 0.53 0.37 0.09 32.7 24.5 50.3 69.7/14.9
020619-2 10 3 0.38 0.68 0.17 0.15 35.8 17.8 47.5 25.7/10.7
200718-4 11 5 0.30 0.56 0.32 0.12 34.9 20.3 48.3 35.3/12.1

200718-3a 12 2 0.35 0.63 0.31 0.62 55.3 29.3 36.1 21.9/8.5
020619_5 13 5 0.28 0.51 0.39 0.09 38.5 25.2 45.4 43.4/12.3
020619-4 14 2 0.20 0.42 0.37 0.21 37.3 25.2 46.3 48.0/12.9
020619-3 15 2 0.25 0.43 0.49 0.09 45.4 33.4 40.9 53.2/12.0

AZ 7-2-20 (4) 16 6 0.57 0.80 0.14 0.07 115.1 96.5 22.8 49.0/7.3

PaleopiezometryFabric parameters
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Figure DR2. Photomicrographs of each sample analyzed in this study showing characteristic 
microstructures. Photos are oriented left to west. 
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Figure DR3. EBSD maps showing inverse pole figure (IPF) map, misorientation to the mean 
(mis2mean) map, and the grain orientation spread (GOS) map. The mis2mean and GOS map scales 
are in units of degrees. The histogram shows the distribution of grain sizes. The lower-hemisphere 
pole figures display the quartz crystallographic preferred orientation. The pole figure scales are 
multiples of uniform density (M.U.D.). 



7 
 

 
Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 
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Figure DR3. (continued) 

 



22 
 

 
Figure DR3. (continued) 
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Figure DR3. (continued) 
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DR3 – Kinematic Vorticity Calculations 
 To estimate kinematic vorticity of our quartz mylonite samples, we apply the oblique grain 
shape fabric method (Fig. DR4; e.g., Wallis, 1995; see Xypolias (2010) for a review of the 
method). This approach requires an estimate of the angle between the instantaneous stretching axis 
(ISA) and shear plane from the primary foliation, δ and β respectively (Fig. DR4). EBSD grain-
boundary maps were fit by ellipses, and the mean ellipse long axis was assumed to represent ISA 
(Fig. DR7). Shear plane orientations were determined directly from c-axis pole figure plots by 
calculating the angle between a best fit line through the quartz CPO and the vertical axis of the 
pole figure (Fig. DR7).  

 
Figure DR4. Illustration of rock fabric and pole figure showing the geometric relationships 
between the instantaneous stretching axis (ISA), the foliation (S) and the shear plane. 
 
 Vorticity analysis was conducting using the MTEX toolbox (5.7.0; https://mtex-
toolbox.github.io/) (Bachmann et al., 2010). We fit ellipses to all grains to estimate ISA. All grain 
boundaries were smoothed using the smooth.m function. The fitEllipse.m function was used for 
ellipse fitting. Grains with an aspect ratio less than 1.4 were removed from the subset. The mean 
ISA was determined using a kernel density estimate of ellipse axes with the maxima defining the 
mean vector. The best fit vector of quartz c-axes was computed using the all c-axis orientation. 
The best fit vector was estimated as the mean plane orthogonal to c-axis vectors. The angle 
between the best fit vector and the horizontal is the parameter β.  

Ellipse and c-axis fits were inspected visually to validate the results. Where the c-axis best 
fit was visually misaligned with the bulk shape of the CPO or inclined towards the ISA, a best fit 
line was determined manually, or the a-axis fit was used. Quartz a-axes were fit manually to 
provide a second measure of β (e.g., Little et al., 2016). Quartz a-axes commonly form a conjugate 
pattern across the X plane (Fig. DR5). The strength of either conjugate pair may vary depending 
on the components of coaxial and non-coaxial strain (e.g., Law, 1990). In the samples we have 
analyzed, we note fitting the dominant a-axis maxima generates estimates of β much greater than 
the value acquired from fitting the c-axis maxima. If instead the center of the a-axis conjugate pair 
is fit, the β value will match the c-axis maxima derived value well. The quality of a-axis fits was 
checked against the m-pole maxima, which should be orthogonal to the c-axis maxima.  The 
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MTEX c-axis best fit method does a poor job fitting samples with symmetric quartz c-axis girdles. 
The c-axis best fit was determined manually as a line through the center of the girdle. Both manual 
and MTEX β values are listed in Table 3. The kinematic vorticity number is given by: 

 

𝑊𝑊𝑘𝑘 = sin (2 ∗ (𝛽𝛽 + 𝛿𝛿))      (2) 
 

 The best Wk values are calculated as the mean of Wk calculated from MTEX and manually 
determined β values. If either the c- or a-axis best fit lines were uncertain, the fit with higher 
confidence was used. An uncertainty of ±5° was assigned to each Wk estimate. Figure DR7 shows 
the results of the vorticity analysis for each sample. 
 

 
Figure DR5. Cartoon quartz pole figures displaying the relationships between c- and a-axes 
(modified from Law, 1990). The top pole figures show a case where a dominant a-axis maxima 
has developed perpendicular to the asymmetric c-axis single girdle. The bottom pole figures show 
a case where conjugate a-axis maxima are developed across the X plane and perpendicular to the 
c-axis girdle. 
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Figure DR6. Kinematic vorticity analysis results sorted by structural depth. The box and whisker 
plot show 50% of the vorticity number estimates fall between 0.28 and 0.59  (blue box), 
with a median value of 0.52 (red bar). Relationship between vorticity number and pure shear from 
Law et al. (2004). 

Table  3: Kinematic vorticity data

Sample Structural 
Position δ MTEX β MTEX β 

manual b
Wk 

MTEX
Wk 

manual Wk best uncertaintyd Depthf

AZ 10-8-19 (1a) 1 - - - - - - - 188
AZ 7-1-20 (1) 2 0.0 5.5a 3.0 0.19 0.10 0.15c 0.17 229

200718-6 3 - - - - - - - 358
AZ8-19-19-(4) 4 20.8 8.40 9.6e 0.85 - 0.85 0.17 460
AZ8-19-19-(5) 5 7.7 2e 8.6 0.33 0.54 0.54 0.17 460

020619-2 6 1.7 14.8e 4 0.55 0.20 0.2c 0.17 498
200718-4 7 12.3 9.4 0 0.69 0.41 0.41 0.17 498
200718-3a 8 18.5 14.2 1.8 0.91 0.65 0.78c 0.17 498
020619_5 9 15.3 14.0 8.6 0.85 0.74 0.80c 0.17 498
020619-4 10 19.0 3.60 5.6 0.71 0.76 0.73c 0.17 498
020619-3 11 17.3 8.4 7.0 0.78 0.75 0.76c 0.17 498

AZ 6-30-20 (2) 12 4.7 14.5 1.0 0.62 0.20 0.41c 0.17 498
AZ 8-4-18 (3) 13 2.8 3.20 4.4 0.21 0.25 0.23c 0.17 608
AZ 8-4-18 (1) 14 15.0 1.60 0 0.55 0.50 0.52c 0.17 608
AZ 7-2-20 (4) 15 - - - - - - - 852

a - β from girdle axis
b - β from <a> axes
c - average of Wk estimates
d - 5° uncertainty
e - fit uncertain
f - meters

Kinematic vorticity
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Figure DR7. Results of grain ellipse fitting and quartz c-axis fitting to calculate kinematic vorticity 
number. Inverse pole figure maps (IPF) and fitEllipse maps show the orientation of ellipses relative 
to the rock fabric. The shape preferred orientation plot shows the distribution of ellipse axes as a 
polar histogram. The best fit to quartz c-axes is shows as a black line plotted over all c-axis 
orientations. Pole figures plot all orientations and show the orientation of the ISA and shear plane 
derived from c- and a-axes fits. The pole figure scales are multiples of uniform density (M.U.D.). 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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Figure DR7. (continued) 
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DR4 – Secondary Ion Microprobe analytical details 
Seven samples representative of different structural levels of the mylonite zone were 

selected for Ti-in-quartz thermometry (Table 4). Zones displaying representative microstructures 
within the thin section of each sample were cut into ~5x5 mm squares using a slow speed saw. 
EBSD and cathodoluminescence maps were collected for each sample to guide spot placement on 
recrystallized grains. 

Ti concentrations were measured on a Cameca IMS 1280 ion probe at the Northeast 
National Ion Microprobe Facility (Woods Hole Oceanographic Institution). A 250 pA 16O- 
primary beam was accelerated at 12kV and focused to a diameter of 5 µm. Secondary ions of 
30Si+, 40Ca+, 48Ti+, and 49Ti+ were extracted at a 10kV voltage potential. Entrance and exit slit 
widths were set to achieve a mass resolving power >6500, sufficient to separate 48Ti+ from 48Ca+ 
and 49Ti+ from 48Ti1H+ and 48Ca1H+. After 300 seconds of pre-sputtering, each mass was 
measured on an ETP electron multiplier (EM) for count times ranging from 3-10 seconds within 
each measurement cycle, over a total of 5 cycles, and ratios were derived using 30Si as the 
reference mass. Electron multiplier background was determined by measurement at 29.7 within 
each cycle and was ~0.01 CPS. An maximum estimate of 48Ca+ contribution to the 48Ti+ 
measurement (assuming complete peak overlap) was calculated by multiplying the measured 
40Ca/30Si by the naturally occurring 48Ca/40Ca ratio (1.93E-3). However, good agreement 
between concentrations derived by measuring uncorrected 48Ti/30Si and 49Ti/30Si demonstrate 
that a correction for potential 48Ca+ interference was not required. Two linear calibrations for Ti 
concentration, plotting Ti (µg/g) vs. 48Ti/30Si and 49Ti/30Si were obtained by analyzing four 
synthetic quartz crystals with Ti concentrations ranging from 21 to 813 µg/g (Thomas et al. 2010, 
Ashley et al., 2013, Nachlas et al., 2014). Data processing for each measurement utilized in-house 
matlab codes, and included EM deadtime correction, time interpolation within each cycle, and two 
sigma filtering of cycle ratios. 48Ti and 49Ti normalized to 30Si were measured over 10 cycles for 
each analysis, of which the mean and standard deviation were calculated. These data were 
corrected for drift in the standards measurements. The mean and standard deviation of the 
corrected values were used to calculate the 30Si normalized concentrations of 48Ti and 49Ti. The 
concentrations of 48Ti are used for thermometry. 
 Ti concentrations were measured from at least 12 spots in each sample (Table 4, Fig. DR8). 
The mean and standard deviation was calculated for each sample. In some cases, outlier values 
were omitted from the mean and standard deviation calculations. Our mean concentrations were 
then used to calculate temperature estimates using the calibration of Thomas et al. (2010). We 
calculated temperature estimates of the mean Ti concentration, as well as the upper and lower 
standard deviation values ([Ti] + 2 SD, [Ti] – 2 SD). The Thomas et al. (2010) calibration depends 
on aTiO2 and pressure. The aTiO2 is not independently constrained in this study, however a value of 
0.25 is assumed. We consider this a reasonable assumed value for aTiO2 based on the absence of 
Ti-bearing phases (i.e., rutile, titanite, ilmenite), and the estimation of aTiO2 in chemically 
comparable quartz mylonites in previous studies (e.g., Lusk and Platt, 2020). We assume pressures 
between 3 and 4 kbar for our calculations. These values are based on thermobarometry of rocks 
within the Ruby-East Humboldt mylonite zone (e.g., Hurlow et al., 1991). 

Additionally, there is uncertainty associated with the calibration of the Ti-in-quartz 
thermobarometer of Thomas et al. (2010). The uncertainties in the calibration constants are 
incorporated into our results through calculation of total quantified uncertainty, which combines 
uncertainty in individual measurements and the calibration. We do so by calculating temperature 
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as a function of [Ti] + 2SD using calibration constants + error to get Thi. The opposite is done to 
calculate Tlo ([Ti] - 2SD using calibration constants – error). The final total quantified uncertainty 
is calculated as +Total Error = Thi – T and -Total Error = T – Tlo. 

 

 

 
Figure DR8. Photomicrographs showing the locations and concentrations of SIMS Ti-in-quartz 

analyses. 
 

Table 4: SIMS Ti-in-Quartz data

Sample Structural 
Position n [Ti] (ppm) 2 SD aTiO2 P (kbar) Temperature 

(°C) -2SD (°C) +2SD (°C) -TotErr 
(°C)

+TotErr 
(°C)

AZ 10-8-19 (1) 1 16 1.91 1.6 0.25 3 405 93 37 122 73
AZ 7-1-20 (1) 2 23 5.42 3.4 0.25 3 471 63 35 97 74

200718-6 3 14 0.31 0.1 0.1 3 373 23 17 69 32
AZ 6-30-20 (2) 7 16 11.83 3.3 0.25 4 551 26 21 65 62
AZ 8-14-18 (1) 9 9 5.21 3.8 0.25 4 488 83 41 116 80

200718-3 12 12 13.31 6.0 0.25 4 558 46 37 125 121
AZ 7-2-20 (4) 16 20 17.86 6.1 0.25 4 587 36 27 77 71
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Figure DR8. (continued) 

 

 
Figure DR8. (continued) 
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Figure DR8. (continued) 

 
 

 
Figure DR8. (continued) 
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Figure DR8. (continued) 

 

 
Figure DR8. (continued) 
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DR5 – Analytical model of diapir ascent velocity details 
Stokes flow solution 

The steady-state velocity of a spherical diapir can be modeled using the Stokes flow 
solution. In this formulation, velocity is given by: 

𝑈𝑈 = 𝑎𝑎2𝑔𝑔(𝜌𝜌ℎ−𝜌𝜌𝑑𝑑)
3𝜇𝜇ℎ

       (3) 

where U is velocity, a is diapir radius, g is acceleration due to gravity, ρh is host density, ρd is 
diapir density, and µh is host viscosity (Turcotte and Schubert, 2002). Diapir velocity scales with 
density difference. Conceptually, the density difference we model is due to magmatism and partial 
melting, and the accompanying conductive heat loss to the host would lower the host viscosity 
allowing diapir rise. Diapir density is calculated as a function of melt fraction expressed as: 

𝜌𝜌𝑑𝑑 =  𝜌𝜌ℎ − 𝑀𝑀 ∗ (𝜌𝜌ℎ − 𝜌𝜌𝑑𝑑∗)      (4) 
where M is melt fraction, and ρd* is the density of the melt when solid (Gerya, 2010). This 
formulation is the density-driven case. 
 Diapir ascent velocity can also be formulated as a function of thermal expansion and 
temperature (i.e., temperature-driven case) given by: 

𝑈𝑈 = 𝑎𝑎2𝑔𝑔𝜌𝜌ℎ𝛼𝛼(𝑇𝑇𝑑𝑑−𝑇𝑇ℎ)
𝜇𝜇ℎ

              (5) 

and 
(𝜌𝜌ℎ − 𝜌𝜌𝑑𝑑) = 𝜌𝜌ℎ𝛼𝛼(𝑇𝑇𝑑𝑑 − 𝑇𝑇ℎ)     (6) 

where α is the coefficient of thermal expansion, Td is the diapir temperature, and Th is the host 
temperature. The values of Th and Td are estimated based on the mylonite deformation 
temperatures (~500−600 ℃) determined by Ti-in-quartz thermometry (Th) and a near-solidus 
temperature range for Eocene monzogranites of the Harrison Pass pluton in the southern Ruby 
Mountains (~700−800 ℃; Barnes et al., 2001; 𝑇𝑇𝑑𝑑). The full list of parameters and sources are listed 
in Table 5. 

 
 

  For the temperature-driven case, a temperature difference of 200−300℃ at a host-crust 
viscosity of 1019 Pa∙s and 1020 Pa∙s yields ascent rates of 16−25 km/Myr and 1.6−2.5 km/Myr (Fig. 

Table 5. Material properties used for diapir ascent models

Parameter Value Reference
a [m] 10,000 Half width of presently exposed mylonite zone (This study)

ρh [kg m-3] 2,700 Average density of gneiss (Turcotte and Schubert, 2002)
ρd* [kg m-3] 2,500 Density of molten granite/felsic crust (Gerya, 2010)

M 0-0.75 Range of lower crust melt fractions (Rey et al., 2009)
ρd [kg m-3] 2,700-2,550  ρd = ρh - M  * (ρh - ρd*)   (Gerya, 2010)
µh [Pa s] 1018-1020 Range of lower crustal viscosities (Rey et al., 2009)
α [K-1] 3 x10-5 Turcotte and Schubert (2002)
Td [ ] 700-800 Near-solidus temperature of monzogranite (Barnes et al., 2001)
Th [ ] 500-600 Quartz mylonite deformation conditions (This study)
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DR10). For the density-driven case, a melt fraction of 0.1−0.3 at a host-crust viscosity of 1019 Pa∙s 
and 1020 Pa∙s yields ascent rates of 21−62 km/Myr and 2.1−6.2 km/Myr (Fig. DR11). 
 To relate ascent velocities to strain rates derived from microstructural observations, we 
calculate 1D strain rates of pure and simple shear zones (Fig. DR9).  Pure shear strain rates are 
calculated using: 

𝜀𝜀̇ = 𝑈𝑈/𝑤𝑤      (7) 

where U is the ascent velocity and 𝑤𝑤 is the original width of the shear zone. Simple shear strain 
rates are calculated using: 

�̇�𝛾 = 𝑈𝑈/𝑤𝑤       (8) 

where U is the ascent velocity and 𝑤𝑤 is the original width of the shear zone. For a pure shear zone 
shortening parallel to the top of the ascending diapir at 200−300℃ at a host-crust viscosity of 1019 
and 1020 Pa∙s, we calculate strain rates of 1.1−1.6 x10-13 s-1 and 1.1−1.6 x10-14 s-1. For an inclined 
simple shear zone deforming tangential to the edge of the ascending diapir at 200−300℃ at a host-
crust viscosity of 1019 and 1020 Pa∙s , we calculate strain rates of 3.7−5.6 x10-13 s-1 and 3.7−5.6  
x10-14 s-1. For the density driven case with a melt fraction of 0.1−0.3 at a host-crust viscosity of 
1019 Pa∙s and 1020 Pa∙s, the pure shear zone deforms at 1.3−3.9 x10-13 s-1 and 1.3−3.9 x10-14 s-1 and 
4.6−13.9 x10-13 s-1 and 4.6−13.9 x10-14 s-1 for the simple shear case. These results suggest diapir 
ascent at rapid but geologically reasonable ascent rates can drive shear deformation at strain rates 
comparable to the rates derived from our microstructural observations.  
 

 
Figure 9. Geometry of Stokes flow diapir ascent velocity and shear zone orientation for the pure 

shear (A) and simple shear (B) zones. 
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Figure 10. Temperature-driven Stokes flow model results. A) Plot of velocity as a function of ∆T 
for three viscosity cases. B) Plot of pure shear strain rate as a function of ∆T for three viscosity 

cases. C) Plot of simple shear strain rate as a function of ∆T for three viscosity cases. 

 
Figure 11. Density-driven Stokes flow model results. A) Plot of velocity as a function of melt 
fraction for three viscosity cases. B) Plot of pure shear strain rate as a function of melt fraction 

for three viscosity cases. C) Plot of simple shear strain rate as a function of melt fraction for 
three viscosity cases. 
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