
Answering Geosciences Research Questions at a Global Scale via a Hybrid Machine-Human Learning

Approach: A Case Study of the Link between Climate and Volcanism

Seongjin Park, Barbara Carrapa, University of Arizona, Tucson, Arizona 85721, USA; Mihai N. Ducea,

University of Arizona, Tucson, Arizona 85721, USA, and Faculty of Geology and Geophysics, University of

Bucharest, 010041, Bucharest, Romania; Mihai Surdeanu, Robert Hayes, Dan Collins, University of Arizona,

Tucson, Arizona 85721, USA

Supplemental Document 1

Temporal Expression Normalization

To convert mentions of temporal expressions (i.e., names of geological eras or epochs) to
temporal intervals, we created a spreadsheet that contains the relations between date intervals
and these temporal expressions. The file contains the name of the geological time era (e.g.,
Jurassic) and the time period (e.g., from 201.3 million years ago to 145 million years ago). The
following table shows a subset of this spreadsheet:

Era/Epoch From To
Eoarchean 4,000,000,000 3,400,000,000

Paleoarchean 3,400,000,000 3,200,000,000
… … …

Jurassic 201,300,000 145,000,000
… … …

Table 1. A subset of the spreadsheet file that map names of geological eras/epochs to actual
time intervals.

We extracted temporal expressions from text using two Odin rules, listed in Algorithm 3. The
first rule (time-period-1) captures names of known geological epochs and eras. Note that, since
the publications mined were automatically converted from PDF files to text files using Science-
Parser1, the result text files often had spelling mistakes. This rule captures the most common
ones. The second rule (time-period-2) captures numeric temporal expressions such as 500 mya,
using common temporal abbreviations in geoscience papers.

1 https://github.com/allenai/science-parse

After capturing temporal expressions using the two rules summarized above, we used an
additional script to convert and normalize the actual times to the corresponding geological
times. The process is listed in Algorithm 4. For example, when one sentence contained a phrase
150 million years ago or 150 m.y.r, the script first converts the temporal expression to the time
(in years) 150,000,000, and then normalizes it to Jurassic using the spreadsheet listed in Table
1. After that, we counted the occurrence of geological eras/epochs in the document for later
use, in the visualization. The following output shows an example of the statistics acquired from
one paper, where lines 3 – 4 show the frequency of geological eras that occurred in the target
paper.

Answering Geosciences Research Questions at a Global Scale via a Hybrid Machine-Human Learning

Approach: A Case Study of the Link between Climate and Volcanism

Seongjin Park, Barbara Carrapa, University of Arizona, Tucson, Arizona 85721, USA; Mihai N. Ducea,

University of Arizona, Tucson, Arizona 85721, USA, and Faculty of Geology and Geophysics, University of

Bucharest, 010041, Bucharest, Romania; Mihai Surdeanu, Robert Hayes, Dan Collins, University of Arizona,

Tucson, Arizona 85721, USA

Supplemental Document 2

Spatial expression normalization

The second critical component necessary for the contextualization of geoscience results (in addition of
the recognition of temporal expressions) handles the identification and normalization of location
expressions. Similar to the recognition of temporal expressions, there are domain-specific spatial
expressions that are not captured by existing Named Entity Recognition (NER) tools (e.g., Stanford
CoreNLP). Further, some of these expressions (i.e., all IODP sites) do not contain direct information
about the actual locations that they indicate. Thus, we wrote scripts to extract spatial expressions,
disambiguate geoscience-specific spatial expressions (e.g., IODP Site U1360), and normalize those
expressions. In this section, we will provide the algorithms used for site identification and normalization.

Recognition of location expressions
First, we applied the named entity recognizer in Stanford CoreNLP to check how many spatial
expressions it recognizes. CoreNLP captures most of the well-known locations, such as Bering Sea or
Aleutian Islands, but it does not recognize geoscience-specific locations (e.g., IODP Site U1360 or
Deccan Traps). To quantify these errors, we analyzed the annotation results from 100 sample documents
using CoreNLP.

For this analysis, we used Algorithm 5 to deploy Stanford's CoreNLP to recognize named entities in a
given sequence of words. In particular, the document was tokenized into sentences, and then, each
sentence was split into words using the word-tokenizer in the CoreNLP package. Next, the recognizer
processes each sentence, and returns named entity categories (Location, Person, Organization, Number,
Date, Miscellaneous) when the input word is (part of) a named entity, or O otherwise.

Our analysis indicated that CoreNLP does recognize: (1) specific geological locations (e.g., DSDP Site,

IODP Site), (2) Traps1, and (3) other specific locations that do not usually appear in general, open-
domain texts. In addition, since the data were text files converted from PDF files, there were some
misspelled words which made them unrecognizable.

To compensate for these limitations, we wrote a series of custom Odin rules to capture the above
geological locations that are missed by this general-purpose tool. These rules are listed in Algorithm 6.

Disambiguation of location names
As a result of the previous step, our location recognizer identifies both generic locations and locations
specific to geoscience discourse. While the former can be disambiguated using existing resources, the
latter cannot. For example, there is no resource to indicate the actual location for IODP Site U1360. To
remedy this limitation, we implemented a data-driven algorithm that infers the actual location of those
recognized terms. Our algorithm disambiguates these locations based on their collocation with other,
known location names in the same document. In particular, we calculate the frequency of co-occurrence
between a geological location (e.g., IODP Site U1360) and an actual location (e.g., South Atlantic).

1 Here, Trap means a structural trap, which is a type of geological trap that forms as a result
of changes in the structure of the subsurface, due to tectonic, diapiric, gravitational and
compactional processes.

Then, we extract the distance between the two names based as the number of words between the names.
Each geological location is disambiguated to the location with each it co-occurs the most in a collection
of geoscience publications. In case of ties, we used distance information for disambiguation, i.e., we
chose the actual location that tends to be closest in text. This algorithm is summarized in Algorithm 7.
Table 2 shows some sample output for this disambiguation algorithm.

Site Location
Site 397 Africa

IODP Site U1341 Bering Sea
DSDP Site 216 Kerguelen

… …
Table 2. Example results from the site inference component. The first column lists the unidentified sites;
the second lists the most frequent co-occurring location.

The next step for the site identification is location normalization. Since there are multiple ways to
describe the same location (e.g., China vs. People's Republic of China, or Seoul and the capital city of
South Korea), the locations extracted from papers must be normalized. We used an external natural

language processing tool, geonorm2, for this purpose.

Lastly, Algorithm 8 summarizes our process to calculate the frequency of location expressions in a given
document. If a given word was recognized as Location with CoreNLP, then we fed the recognized word
into the location normalizer, and added one to the frequency of the normalized location. When the given
word was in the result of site inference, then we converted the recognized word into the actual location
using the result from site disambiguation, and fed the converted word into the location normalizer. We
compute the frequencies of all normalized locations. Figure 1 shows an example output of this process
for one paper.

Figure 1. The result of the site normalization for one sample publication.

2 https://github.com/clulab/geonorm/

https://github.com/clulab/geonorm/

Answering Geosciences Research Questions at a Global Scale via a Hybrid Machine-Human Learning

Approach: A Case Study of the Link between Climate and Volcanism

Seongjin Park, Barbara Carrapa, University of Arizona, Tucson, Arizona 85721, USA; Mihai N. Ducea,

University of Arizona, Tucson, Arizona 85721, USA, and Faculty of Geology and Geophysics, University of

Bucharest, 010041, Bucharest, Romania; Mihai Surdeanu, Robert Hayes, Dan Collins, University of Arizona,

Tucson, Arizona 85721, USA

Supplemental Document 3

Document classification
To determine whether a given geoscience paper supports (or not) the hypothesis investigated, i.e., that
volcanism affects climate change, we built multiple document classifiers to automatically label a
collection of papers with this information. To have the ability to investigate the details of the model
such as the contribution of features to a prediction, we used two classifiers that provide this functionality:
a linear support vector machines (SVM) classifier, and a Naïve-Bayes SVM (NB-SVM), using unigram
and bigram features for both. In this section, we describe how the training documents were annotated,
and how we trained and tested the two different SVM classifiers.

Paper Annotations
To have training and test data to build the proposed classifiers, 200 papers out of the 1,164 downloaded
papers were presented to annotators, and they annotated whether the given paper supports or negates
the hypothesis that volcanism impacts climate change, or are unrelated to the hypothesis. Two of the
authors served as annotators. From each paper to be annotated we automatically extracted the title,
abstract, introduction, and conclusion1. We used the crowd-sourcing platform FindingFive2 to collect
annotations. As a result, there were 400 responses (200 papers × 2 annotators), from which we
constructed separate training and test partitions through cross-validation.

 During the annotation, we allowed the annotators to choose more than one label per paper to
encode more complex discourse. For example, the same paper could be annotated with SUPPORT and
NEGATE labels, when a part of the given text supports the investigated hypothesis, but another negates
it. However, this ambiguity tends to confuse machine learning methods, so we simplified multi-label
annotations into a single label as follows:

1. We prioritized SUPPORT and NEGATE labels over UNRELATED. That is, when the annotator
chose SUPPORT and UNRELATED, then the document would be labeled as SUPPORT. When the
annotator chose NEGATE and UNRELATED, then the document would be labeled as NEGATE.

2. When SUPPORT and NEGATE were chosen at the same time (i.e., when the part of the given
paper supports the idea and the other part does not), both labels would be kept as joint label
NEGATE&SUPPORT.

1 Since the papers were originally PDF files and converted to text files, some of the papers did not
have correct section headings, or even any section heading in some situations. When the converted
file did not have proper section headings, we extracted the first 300 words from the content to be
presented to the annotators.

2 https://www.findingfive.com

https://www.findingfive.com/

3. When the annotator chose all possible labels (SUPPORT, NEGATE, and UNRELATED),
UNRELATED is ignored, and the two remaining labels are merged into NEGATE&SUPPORT.

As a result, the responses from the annotators were normalized into four labels: SUPPORT, NEGATE,
NEGATE&SUPPORT, and UNRELATED. The distribution of 400 labels are as described in Table 1.

Label Number
Negation 2
Negation & Support 6
Support 85
Unrelated 307

Table 1. The number of labels for 400 annotations

Evaluation Measures

To evaluate the classifiers discussed below, we used three evaluation measures commonly used to

evaluate the performance of text classification algorithms:

• Precision: measures the proportion of predicted positives that are truly positive for a given

class. For example, precision for the Support class computes the percentage of correct

predictions among the predictions labeled by the machine as Support. Micro precision

generalizes this formula to all classes in the dataset. That is, the formula for micro precision

is:

o Micro P = TP / (TP + FP), where TP indicates the number of true positives (i.e.,

correct predictions) for each class, and FP indicates the number of false positives

(i.e., incorrect predictions) for each class.

• Recall: measures the proportion of actual positives in the test partition that are correctly

predicted as true for a given class. For example, recall for the Support class computes the

percentage of correct predictions among instances of the Support class in the evaluation

data. Micro recall generalizes this formula to all classes in the dataset. More formally, the

formula for micro recall is:

o Micro R = TP / (TP + FN), where FN indicates the number of false negatives (i.e.,

labels in the evaluation data that are missed in the prediction) for each class.

• F1: harmonic mean of precision and recall for each class. Micro F1 is the harmonic of micro

precision and micro recall:

o Micro F1 = 2PR(P + R), where P and R stand for micro precision and micro recall,

respectively.

Linear SVM Classifier
With the annotated data, we created a linear SVM classifier using the scikit-learn3 package in the
Python programming language. First, we extracted unigram and bigram features (e.g., from the sentence
“The dog chased the cat”, the unigram features are the individual words in the sentence, [the, dog,
chased, cat], and the bigram features are consecutive sequences of two words, i.e., [start-the, the-dog,
dog-chased, chased-the, the-cat, cat-end]). After extracting features, training and test data were
converted to feature matrices, which contains the frequency of each feature (unigram and bigram) in
the given document.

Table 1 shows an example of such a feature matrix. The first column shows the generated labels
(e.g., UNREL. (UNRELATED) and SUP. (SUPPORT)), and the other columns show the frequency of each
feature (e.g., geology (unigram) and volcanic-eruption (bigram)). For example, Table 2 shows that the
first document is labeled as UNRELATED; the document does not contain the word geology, nor the
sequence of volcanic and eruption. The second document is labeled as SUPPORT; in this document the
word geology occurrs once, and the sequence of volcanic followed by eruption occurrs three times.

label geology ... volcanic-eruption ...
UNREL. 0 ... 0 ...
SUP. 1 ... 3 ...

...
Table 2. Formatted response data for the classification task.

With the coded data, we evaluated the performance of the model using 10-fold cross-validation. In
other words, we first split the data into 10 partitions, and trained the model with 9 partitions and
evaluated it with the remaining partition. This process was repeated 10 times such that each partition
serves as a testing partition once. Algorithm 1 summarizes this process.

The performance of this classifier is summarized in Table 3, using standard precision, recall, and
F1 (i.e., the harmonic mean of precision and recall) measures, on all the 400 annotated papers. All in
all, the F1 score was 82.4%, which we consider an encouraging result, especially considering the small
size of the annotated dataset.

label precision recall F1 N
NEG. 0.000 0.000 0.000 2

NEG.&SUP 0.333 0.333 0.333 6
SUP. 0.707 0.680 0.695 85

UNREL. 0.907 0.919 0.913 307
Overall 0.851 0.854 0.853 400

Table 3. Performance of the linear SVM classifier. N indicates the number of papers in each class.

With the linear SVM classifier, one can inspect the feature weights for each label to be predicted
(i.e., the relative importance of each feature on each label). Table 4 shows the top 10 features for each
label in the trained model. Even though not all top 10 features are strongly related with volcanism or

3 https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

climate change, we find that some features were related with either volcanism (e.g., volcanic CO) or
climate change (e.g., cooling trend, fire regime, of flood).

Ranking NEGATE NEGATE&SUPPORT SUPPORT UNRELATED

1 We found may be nannoplankton montane
2 after tephras both that lacustine
3 and increases little tree Sweden
4 and that The authors Our study
5 and vegetation best correlation 10 oceanic
6 consistent statistically efficiency biological history Received
7 conspicuous extinctions the the atmosphere driven
8 cooling trend of flood from 2012 Accepted
9 deposition of volcanic CO anoxia Ordovician

10 fire regime 1999 detection 12 December
Table 4. Top 10 feature weights for each label extracted by the linear SVM classifier.

NB-SVM Classifier
The linear SVM classifier uses the frequency of unigrams/bigrams as the feature values. However,
Wang & Manning (2012) showed that using instead the log-count ratios produced by a Naïve Bayes
(NB) model performs better for a binary classification task. Here we adapt this idea to multi-class
classification, as detailed below.

Log-count ratio

Let 𝑓𝑓(𝑖𝑖) ∈ 𝑅𝑅||𝑉𝑉|| be the feature count vector for training example i with label 𝑦𝑦(𝑖𝑖) ∈
 {𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏&𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒏𝒏, 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒏𝒏,𝒔𝒔𝒏𝒏𝒔𝒔𝒏𝒏𝒖𝒖𝒏𝒏𝒏𝒏𝒏𝒏𝒖𝒖}. V is the set of features, and 𝑓𝑓𝑗𝑗

(𝑖𝑖) represents

the number of occurrences of feature 𝑉𝑉𝑗𝑗 in training case i. For example, define the count vectors as

𝒔𝒔 = 𝛼𝛼 + ∑ 𝑓𝑓(𝑖𝑖)
𝑖𝑖:𝑦𝑦(𝑖𝑖)=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝒒𝒒 = 𝛼𝛼 + ∑ 𝑓𝑓(𝑖𝑖)

𝑖𝑖:𝑦𝑦(𝑖𝑖)=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛&𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛,𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢 for
smoothing parameter ∝. For example, the log-count ratio for the label negate is:

As a result, we have four different r ratios for NEGATE, NEGATE&SUPPO RT, SUPPORT, and UNRELATED.

SVM with NB features

This classifier, henceforth referred to as NB-SVM, is similar to the previous linear SVM, with the
exception that we use 𝒙𝒙(𝑘𝑘) = 𝒇𝒇�(𝑘𝑘) where 𝒇𝒇�(𝑘𝑘) = �̂�𝑟𝑖𝑖 ∘ 𝑓𝑓(𝑘𝑘) is the element-wise product and 𝑖𝑖 ∈
{𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛&𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑛𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑛𝑛,𝑠𝑠𝑛𝑛𝑟𝑟𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢} (e.g., the element-wise product of the ratio
𝒔𝒔𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝒇𝒇(𝑘𝑘)).

With the given parameters, four different SVMs (NEGATE vs. rest, NEGATE&SUPPORT vs. rest,
SUPPORT vs. rest, and UNRELATED vs. rest) were trained using different ratios. As a result, for
𝑆𝑆𝑉𝑉𝑆𝑆𝑖𝑖 𝑤𝑤ℎ𝑛𝑛𝑟𝑟𝑛𝑛 𝑖𝑖 ∈ {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛&𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑛𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑛𝑛,𝑠𝑠𝑛𝑛𝑟𝑟𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢}, 𝑥𝑥(𝑘𝑘) = 𝑓𝑓(𝑘𝑘) = �̂�𝑟𝑖𝑖 ∘ 𝑓𝑓(𝑘𝑘) and
𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖 could be obtained using the linearSVC module in scikit-learn package.

The original paper suggested the model 𝒘𝒘′ = (1 − 𝛽𝛽)𝑤𝑤 + 𝛽𝛽𝒘𝒘 where 𝑤𝑤 = �|𝒘𝒘|�1/|𝑉𝑉| is the
mean magnitude of 𝒘𝒘 𝑛𝑛𝑛𝑛𝑢𝑢 𝛽𝛽 ∈ [0, 1] is the interpolation parameter. In the current model, 𝒘𝒘𝑖𝑖

′ could be
obtained by using 𝒘𝒘𝑖𝑖

′ of 𝑺𝑺𝑺𝑺𝑴𝑴𝑖𝑖 where 𝑖𝑖 ∈ {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛&𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑛𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑛𝑛,𝑠𝑠𝑛𝑛𝑟𝑟𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢}.

For the prediction, each 𝑺𝑺𝑺𝑺𝑴𝑴𝑖𝑖 classifier makes a prediction 𝑦𝑦𝑖𝑖
(𝑘𝑘) ∈ {−1, 1} . For example,

𝑺𝑺𝑺𝑺𝑴𝑴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 returns 1 if the prediction is true (in this case, the classifier would return 1 if prediction for
the test k is NEGATE) and -1 elsewhere. For 𝑺𝑺𝑺𝑺𝑴𝑴𝑖𝑖, the prediction for the test case k is

𝑦𝑦𝑖𝑖
(𝑘𝑘) = 𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛(𝒘𝒘𝑖𝑖

𝑇𝑇𝒙𝒙(𝑘𝑘) + 𝑏𝑏)

where 𝑖𝑖 ∈ {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛&𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑛𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑛𝑛,𝑠𝑠𝑛𝑛𝑟𝑟𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢},𝒘𝒘𝑖𝑖 𝑖𝑖𝑠𝑠 𝒘𝒘𝑖𝑖
′,𝑛𝑛𝑛𝑛𝑢𝑢 𝒙𝒙(𝑘𝑘) 𝑖𝑖𝑠𝑠 𝒔𝒔𝑖𝑖 ∘ 𝒇𝒇�(𝑘𝑘) . After

that, argmax is applied to the result of the SVMs to obtain a prediction with the highest score. Thus,
𝑖𝑖 = 𝑛𝑛𝑟𝑟𝑛𝑛𝑎𝑎𝑛𝑛𝑥𝑥 𝑦𝑦𝑖𝑖

(𝑘𝑘) will be the prediction for the test case k.

As in the evaluation of the previous linear SVM classifier, we also evaluated the performance of
the NB-SVM classifier using 10-fold cross-validation. The difference here is that we tried four different
NB-SVMs (i.e., four one-vs-rest NB-SVM classifiers) for each label, and we applied argmax over the
4 predictions at the end to select the best one, i.e., the one with the highest score (see Algorithm 2).

Table 5 lists the results of the NB-SVM classifier. Similar to the observations of Wang & Manning
(2012), we observed that this classifier performs better than the “vanilla” SVM, but, in our case, the
improvement was not large. For example, the F1 score of the NB-SVM classifier was 83.75%, while
the linear SVM’s F1 score was 82.4%.

label precision recall F1 N
NEG. 0.000 0.000 0.000 2

NEG.&SUP 0.250 0.167 0.200 6
SUP. 0.705 0.647 0.675 85

UNREL. 0.903 0.909 0.906 307
Overall 0.846 0.837 0.842 400

Table 5. Performance of NB-SVM classifier.

Multi-Layer Perceptron Classifier

This classifier uses a feed-forward neural network, or multi-layer perceptron (henceforth, MLP) that
operates on the same features as the previous classifiers, i.e., unigrams and bigrams with values set to
their frequency in the corresponding document.

With the coded data as shown in Table 2, we evaluated the performance of MLP model using
10-fold cross-validation. In other words, we first split the data into 10 partitions, and trained the model
with 9 partitions and evaluated it with the remaining partition. This process was repeated 10 times such
that each partition serves as a testing partition once. To build the MLP model, we used the Keras package
in the Python programming language. The MLP model had two hidden layers with 256 hidden units,
and predicted one of the four classes (support, negate, support and negate, unrelated). The Adam
optimizer was used with a learning rate of 0.0001.
Table 6 shows the confusion matrix of MLP model prediction, and Table 7 lists the results of the MLP
classifier. As the table indicates, the MLP classifier showed the better overall performance,
outperforming both the SVM and NB-SVM classifiers. For example, the F1 score of the NB-SVM
classifier was 83.75%, while the linear SVM’s F1 score was 82.4%. However, as the confusion matrix
in Table 6 indicates, this classifier does not perform well on underrepresented classes such as NEG. and
NEG.&SUP. Handling underrepresented classes remains an open research issues in machine learning.

True \ Prediction NEG NEG.&SUP. SUP. UNREL.
NEG. 0 0 1 1

NEG.&SUP 0 2 2 2
SUP. 0 0 58 27

UNREL. 0 2 21 284
Table 6. Confusion matrix of true and predicted labels.

label precision recall F1 N
NEG. 0.000 0.000 0.000 2

NEG.&SUP 0.500 0.333 0.404 6
SUP. 0.707 0.682 0.695 85

UNREL. 0.904 0.925 0.915 307
Overall 0.853 0.863 0.856 400

Table 7. Performance of Multi-Layer Perceptron (MLP) classifier.

Ensemble Model
Lastly, we build an ensemble model that combines the predictions of these three individual classifiers.
Our ensemble method uses a simple voting scheme:

1. When the predictions of three models are the same (e.g., NEGATE, NEGATE, NEGATE), then that
label (e.g., NEGATE) becomes the final output.

2. When the predictions from the three models are different, and one of the predictions is
UNRELATED (e.g., SUPPORT and UNRELATED), then the prediction which is not UNRELATED
becomes the final output (e.g., SUPPORT).

3. When the predictions from the three models are different and neither of them is UNRELATED,
then choose the prediction from MLP.

4. When the predictions from the three models are different and any of them is UNRELATED, then
choose the first prediction that is not UNRELATED, inspecting the classifiers in the following
order: MLP, NB-SVM, and, lastly, SVM.

Note that the above ensembling heuristics may bias the model against predicting the

UNRELATED label. However, this potential bias has no practical effect as it cannot override the

heavy bias towards the UNRELATED class in the training data.

Table 8 lists the performance of this ensemble model. The ensemble performs better than NB-
SVM models, but it performs slightly worse than the vanilla SVM and MLP models. For example, the
micro-F1 score of the ensemble model was 85.2% and that of MLP model was 85.6%. Further,
the performance of the ensemble model, vanilla SVM, and NB-SVM are all lower than the performance
of the MLP model. Because the MLP method was the best overall, we used the MLP model output to
classify the 957 remaining papers in our dataset, and generate the visualizations discussed in the main
body of the paper.

label precision recall F1 N
NEG. 0.000 0.000 0.000 2

NEG.&SUP 0.333 0.333 0.333 6
SUP. 0.713 0.671 0.691 85

UNREL. 0.900 0.912 0.906 307
Overall 0.850 0.855 0.852 400

Table 8. Performance of the ensemble model that combines the SVM, NB-SVM, and MLP classifiers.

	Supplemental Document 1
	Supplemental Document 1
	Temporal Expression Normalization

	Supplemental Document 2
	Supplemental Document 2
	Spatial expression normalization
	Recognition of location expressions
	Disambiguation of location names

	Supplemental Document 3_REVISED
	Supplemental Document 3
	Document classification
	Paper Annotations
	Evaluation Measures
	Linear SVM Classifier
	NB-SVM Classifier
	Multi-Layer Perceptron Classifier
	This classifier uses a feed-forward neural network, or multi-layer perceptron (henceforth, MLP) that operates on the same features as the previous classifiers, i.e., unigrams and bigrams with values set to their frequency in the corresponding document.
	With the coded data as shown in Table 2, we evaluated the performance of MLP model using 10-fold cross-validation. In other words, we first split the data into 10 partitions, and trained the model with 9 partitions and evaluated it with the remaining ...
	Ensemble Model

