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Text S1. Trace-element garnet transect and map 
Trace element analyses of garnet were analyzed in-situ in thin-section at the Fipke Laboratory for Trace Element 
Research (FiLTER), Department of Earth, Environment and Geographic Sciences, University of British 
Columbia-Okanagan. Analyses were done using a Photon Machines Analyte ArF excimer (l = 193 nm) laser 
ablation (LA) system coupled to an Agilent 8900 triple quadrapole inductively coupled plasma-mass spectrometer 
(ICP-MS) operated in single quad mode. All trace-element garnet data are provided in Supplementary Tables S2-
S3 and trace-element profiles and maps are shown in Supplementary Figures S3-S4. 

 

Text S2. Garnet Lu-Hf geochronology 
S2.1 Methods: 
All sample preparation, chemical procedures, and analyses were done at the Pacific Centre for Isotopic and 
Geochemical Analysis, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia-
Vancouver. Garnet was extracted by wrapping the samples in parafilm prior to being gently crushed between two 
steel plates and using a hammer to apply pressure. Grains or fragments were then handpicked from crushed 
material. Whole-rock powders were prepared using an agate mortar and pestle. Both garnet and whole-rock 
aliquots were weighed into screw-top PFA beakers. Garnet aliquots were rinsed twice with de-ionized water and 
bathed in 1N HCl at room temperature for 1 hr. Prior to dissolution, both garnet and WR aliquots were admixed 
with a 176Lu-180Hf isotope tracer that approximately matched the respective Lu/Hf. Garnet dissolution was done 
by successive addition of a 4:2:1 mixture of concentrated HF-HNO3-HClO4 interspersed with HCl and left on a 
hot-plate at 120 °C for up to 15 hours for each step; solutions were dried down between each acid addition step 
(Lagos et al. 2007). Whole-rock powders were dissolved using two methods: 1) using 4:2 HF-HNO3 in autoclave 
digestion vessels kept at high pressure (HP) and a temperature of 180 °C for 5 days and 2) using the same table-
top (TT) method as garnet aliquots. Isolation of Lu and Hf was done using the cation exchange column chemistry 
procedures of Münker et al. (2001) and these were subsequently purified by re-loading onto the columns using 
ascorbic acid following the methods of Sprung et al. (2010). 

Lu and Hf isotope analyses were done using a Nu Instruments NuPlasma multi-collector inductively 
coupled plasma mass spectrometer. The 176Lu/175Lu of unknowns was determined by constraining the isobaric 
interference of 176Yb on 176Lu using a run-specific empirically calibrated linear correlation between 
ln(176Yb/171Yb)-ln(174Yb/171Yb) as determined by replicate Yb standard measurements on a given day (Blichert-
Toft et al., 2002). Hf mass bias was corrected by assuming exponential-law behaviour (179Hf/177Hf = 0.7325). All 
Hf isotope analyses of unknowns were normalized to ATI-475 Hf, which was developed as an in-house reference 
material from metal ingots that are isotopically identical to the original JMC-475 metal (176Hf/177Hf = 0.282160; 
Vervoort and Blichert-toft 1999). Uncertainty on 176Lu/177Hf was conservatively estimated to be 0.25%, which 
represents the long-term external reproducibility of this ratio as estimated from whole-rock reference material 
analysis. The 176Hf/177Hf external reproducibility of unknowns was estimated based on the external repeatability 
of 176Hf/177Hf of repeated analyses of ATI-475 analysed at concentrations that bracket those of the unknowns 
(Bizzaro et al. 2003). Total procedural blanks during the course of our analytical sessions were 7-11 pg Hf. 
Isochron regressions and age calculations were done using IsoplotR (Vermeesch, 2018) and a λ176Lu of 1.867 ∙ 
10-11 yr-1 (Scherer et al., 2001; Söderlund et al., 2004). The Lu-Hf isotope data are provided in Supplementary 
Table S4.  
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S2.2. Discussion of the influence of inherited Hf-bearing phases on Lu-Hf isotope systematics 
Co-dissolution of inherited Hf-bearing phases represents an important source of contamination and skewing of 
Lu-Hf isotope systematics. The most common phases of interest in this regard are zircon, rutile, and ilmenite 
(Baxter and Scherer, 2013), as they may contain >1 wt% Hf (Rubatto, 2017), are refractory, and resistant to 
thermal resetting. In the case of dissolution of a phase that is in chemical equilibrium with garnet and the whole 
rock (i.e., developed at a similar time), the additional Hf will only serve to draw the aliquot of interest down the 
isochron, resulting in a lower 176Lu/177Hf, less spread on the isochron, and potentially lower precision on the date. 
On the other hand, in the case of dissolution of a phase with inherited Hf, which is thus, not in chemical 
equilibrium with garnet or the whole-rock—most common in the case of zircon—the aliquot of interest will have 
lower 176Hf/177Hf than the rest of the assemblage and most commonly produces excess scatter in the regression 
(Scherer et al. 2000; Baxter and Scherer, 2013).  

This co-dissolution of Hf-bearing inclusions is exemplified in the results for sample C53. Garnet aliquots 
and the low-pressure whole rock are dissolved in such a way to leave behind any refractory phases, such as zircon 
and this has resulted in an isochron with no excess scatter (Lagos et al. 2007). In contrast, the whole rock prepared 
using high-pressure autoclave dissolution has a lower 176Hf/177Hf and plots below the isochron regression of the 
other aliquots and, if included, would result in excess scatter and a geologically meaningless date.  

Counter-intuitively, the low-pressure whole rock contains significantly more Hf than the aliquot prepared 
using high-pressure dissolution; however, this likely reflects the heterogeneous and domainal nature of the pelitic 
sample C53. Evidence for this includes: 

1) The chemically heterogeneous nature of the pelitic protolith has resulted in garnet and zircon mostly 
occurring within a single layer in the matrix.  

2) The sample comprised a 2.5 cm-diameter x 2-3 cm long rock core and this was dominated by a 1 cm-
diameter garnet, which was extracted for the garnet aliquots; the sample contained other smaller garnet as 
well.  

3) The analyzed garnet fragments were Hf-rich, some (e.g., Grt-3) to a similar extent to the whole-rock.  
4) Each whole-rock aliquot comprised ~50 mg of powder that was extracted from a 200-300 mg.  
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Figure S1. Garnet major-element X-Ray maps 
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Figure S2. Phase assemblage diagrams 
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Figure S3-1. Garnet trace-element maps for sample C53 
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Figure S3-1 con’t. Garnet trace-element maps for sample C53 
 



 
 

3 
 

 
. 

Figure S4. Garnet trace-element profiles for sample BD26 
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Figure S5-1. Scanning Electron Microscope Ca and Y maps of monazite 
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Figure S5-2. Scanning Electron Microscope Ca and Y maps of monazite 
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Figure S5-3. Scanning Electron Microscope Ca and Y maps of monazite 
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Figure S6-1. Scanning 

 
Figure S5-4. Scanning Electron Microscope Ca and Y maps of monazite 
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Figure S6-1. U-Pb results for reference materials 
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Figure S6-2. U-Pb results for reference materials 
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Figure S7. U-Pb results for monazite unknowns 
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Figure S7 con’t. Chondrite-normalised REE plots for monazite unknowns 
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Figure S8-1. Scanning Electron Microscope back-scattered electron and cathodoluminescence 
images of zircon 
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Figure S8-2. Scanning Electron Microscope back-scattered electron and cathodoluminescence 
images of zircon 
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Figure S8-3. Scanning Electron Microscope back-scattered electron and cathodoluminescence 
images of zircon 
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Figure S8-4. Scanning Electron Microscope back-scattered electron and cathodoluminescence 
images of zircon 
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Figure S8-5. Scanning Electron Microscope back-scattered electron and cathodoluminescence 
images of zircon 
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Figure S8-6. Scanning Electron Microscope back-scattered electron and cathodoluminescence 
images of zircon 
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Figure S8-7. Scanning Electron Microscope back-scattered electron and cathodoluminescence 
images of zircon 
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Figure S9. U-Pb results for zircon reference material 9100 
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Figure S10. U-Pb results for zircon unknowns 
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Figure S11. Monazite-garnet partitioning after Hacker et al. (2019). Several assumptions required 
to use such a relationship are not met with sample C53, namely that garnet and monazite were the 

only REE-bearing phases growing. Consequently, the results shown here are inconsistent with 
results from petrological modelling, which we posit are likely more accurate, namely: the 

monazite-garnetcore shows equilibrium temperatures of 700-800 C and the monazite-garnetrim 

temperatures of 500-600 C. These temperatures are the reverse to what is predicted by modelling 
results that infer garnet core to have begun growing at 550-600 C and the rim to have grown 

supra-solidus at 750 C. 
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