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This supplement is intended to show our multispectral setup in more detail and explain1

how we mitigate chromatic aberration. We include a figure with annotated computer-aided2

design renderings of our transmitted and reflected light setups, and details for our light3

emission spectra. The text begins with background on the problem of chromatic aberration,4

details our experimental setup and blur modeling calculations, and discusses our final results.5

1. The challenge of chromatic aberration in macro imaging6

A major limiting factor when increasing spatial resolution and moving to smaller scales7

for multispectral imaging setups is chromatic aberration, also referred to as chromatic dis-8

tortion (Jacobson et al., 2013). Because the refractive index of lens elements is wavelength-9

dependent, it is impossible to design a lens that focuses all wavelengths of light at a single10

focal distance. This problem becomes especially apparent in macrophotography, where the11

refractive differences between wavelengths are relatively large compared to the size of the12

pixels. The resulting depth of field for any given wavelength is narrower than the focal offset13

between wavelengths (Figure 2B). In traditional red-green-blue (RGB) photography, lens14

manufactures mitigate this problem by designing apochromatic lenses with two-node aber-15

ration curves that focus red, green, and blue light at the same approximate focal distance16

(Figure 2A). Designing a lens with a seven-node aberration curve is not practical, and would17

reduce flexibility of the imaging setup.18

To execute multispectral macro imaging in the VNIR range with a standard apochro-19

matic lens, workers are left with two options: (1) move the subject in order to image each20

wavelength at its respective optimal focal distance, or (2) image all wavelengths at a single21

focal distance and use image processing post-correction to restore the blurry images. For22

our setup, as part of the Grinding Imaging and Reconstruction Instrument (GIRI), we have23

the possibility of moving the subject in increments less than 1 µm to capture sharp images24
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Figure 1: Setups for multispectral petrographic imaging with both reflected and transmitted light. (a)
A 150MP achromatic sensor is the basis for capturing multispectral imagery with color provided by either
reflected illumination from narrow-band LEDs or thin section transmitted light from a custom light table.
(b) The setup for reflected light is integrated with the serial grinding and imaging protocols of GIRI (Mehra
and Maloof, 2018), introducing three-dimensional multispectral imagery for sample analysis. (c) Automated
multispectral light table with rotating cross-polarizers for sample illumination in transmitted light. (d)
Emission spectra for LED lights used in reflected light setup and sensitivity spectrum of the achromatic
camera back, adjusted for the 400 nm cut-on filter placed in front of the lens. Of the ten LEDs shown, any 8
can be arranged as in (b) for automated imaging. Preliminary tests to maximize contrast can help select the
lights used for any given sample. Note the UV (365 nm) spectrum is outside the camera sensitivity because
it is the fluorescence signal of minerals in the visible range of the spectrum that is imaged.

for each wavelength; however, this solution introduces geometric distortions that leave all25

channels misaligned and slows the image capture protocol. Additionally, we wanted to de-26

sign a solution that could be reproduced without the need for expensive computer numerical27

control (CNC) equipment. For this application, we choose to capture all images at a single28

focal distance where only one wavelength is optimally sharp, and use blur-modeling and29

image post-correction to restore the other wavelengths. The fine-scale vertical movements30

possible with our setup are useful in optimization and tuning of this deblurring pipeline.31
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Figure 2: The problem of chromatic aberration in macrophotography. (a) Due to the differences in diffraction
angles for each wavelength of light after passing through lens elements, the optimal focal distance is offset
between wavelengths by several hundred microns. To produce this chromatic aberration curve, we acquire
images for each wavelength at ∼12 µm intervals over a vertical range of 2540 µm and estimate sharpness
using the total gradient magnitude for each image. The focal distance that produces the largest gradient
is the sharpest. The third order polynomial shape of the curve stems from the apochromatic lens used for
imaging, which attempts to bring sharp images for red, green, and blue as close as possible to the same focal
distance. (b) The range of focal distances at which each wavelength is sharpest do not overlap.

2. Blur modeling and channel sharpening32

2.1. Experimental setup33

To calibrate our setup, the subject is an Edmund Optics 50 mm x 50 mm white ivory34

distortion target, consisting of a grid of 125 µm dots with even 250 µm spacing between35

dot centers. The reported uncertainty is 1 µm for the dot spacing and 2 µm for the dot36

diameters.37

We calibrate this setup for multispectral imaging at a single focal length by modeling38

the blur kernels that convolve the optimally-sharp channel to produce the blurring effects39

in all other channels. To adequately constrain these blur kernels, we first image the target40

illuminated by each light at a range of focal distances. We start the experiment with the41

green (470 nm) channel and adjust the imaging stage until the focus metric built into the42

Capture One software reaches its maximum and set that table height as the relative zero-43
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position for the experiment. After setting the zero-position, we move the table 1270 µm44

above that position, which is the minimum focal distance tested. We then step the stage45

down in 12.7 µm increments (increasing focal distance), acquiring an image at every step46

until the stage is 1270 µm below the zero-position. We repeat this image capture protocol for47

all wavelengths without resetting the zero-position. We selected the range of table heights48

based upon previous experimentation to estimate the range of optimal focal distances for all49

channels, and the increments as the smallest steps at which there were discernible changes50

in sharpness. Throughout this study, we assess sharpness by taking the sum of the image51

gradient magnitudes. Because the target used in calibration does not have any activation52

from UV illumination, we do not include the 365 nm light in the calibration process.53

The IQ4 back captures images as IIQ raw files—a proprietary file format unique to Phase54

One products. For all blur modeling, as well as deconvolution, we export 16-bit TIFF files55

from the Capture One software without any sharpening or denoising applied. Working with56

TIFF files that are a strict translation of the sensor values is necessary to model the blur57

kernels between channels without spurious effects stemming from image processing. In the58

set of exported images for each channel at each table height, we assess sharpness, and find59

the table position corresponding to the sharpest image for each channel (sharpest image60

points in Figure 2a). The final set of images we work with for blur modeling and calibration61

comprises 49 images with an image from the full set of seven VNIR wavelength channels at62

all seven optimized table heights.63

Blur modeling64

Computational methods to deblur images require us to quantify the point spread function65

of our particular imaging setup—the blur kernel of how a point source of light spreads out66

when the captured image is not in focus (Zheng et al., 2018). Mansouri et al. (2005) present67

one way to obtain sharp images from a multispectral image in which only one wavelength is68

captured in focus. Assuming the blur kernel is small relative to the pixel size, we approximate69

the blur kernel as a circle of uniform intensity (Mansouri et al., 2005). We adapt the iterative70

method of Mansouri et al. (2005) to optimize the radius of this circle for each wavelength.71

For each multispectral image, there is one sharp image corresponding to the wavelength in72

focus, six blurry images for the other wavelengths, and one image measuring UV activation.73

Because the calibration target for this experiment is non-fluorescent, it cannot be used to74

model the blur for UV activation, but we can apply the same technique for fluorescent75

samples as needed (the wavelength of fluorescence, and therefore blur kernel will be sample-76

dependent). For the other six blurry wavelengths, we optimize the blur kernel radius by77

comparing a computationally-blurred image of the focused wavelength to each image of the78
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blurred wavelengths by the following process. First, to minimize computational time, we79

crop our focused-wavelength image to a center 20% window. We contrast stretch all of the80

cropped 16-bit images by scaling the pixel values to be between 0 and 216 − 1 (the maxmum81

16-bit value) to minimize variations in exposure levels between images. To increase precision82

in our optimized kernel radius, we upscale this cropped image by a factor of 4 using nearest83

neighbor interpolation. Given a certain radius, we compute a circular blur kernel with each84

pixel value in the kernel being initialized to the fraction of the square pixel enclosed within85

the circle. Next, we normalize the blur kernel such that the sum of all pixel values is one.86

Because the artificial blurring process with the simulated kernels smooths out noise that87

may exist in the actual blurry image, we must be able to estimate and add back any noise88

present in our images to best represent the blurry wavelengths. We estimate the imaging89

noise using MATLAB’s built-in pretrained image denoising convolutional neural network,90

DnCNN, by measuring the variance in pixel values between the upscaled sharp image and91

its denoised counterpart. Next, we convolve the upscaled sharp image using our calculated92

blur kernel, and then add back simulated Gaussian noise into our artificially-blurred image.93

The Gaussian noise is parametrized by a mean of 0 and the variance of denoised and noisy94

pixel values measured earlier. We quantify the error between the artificially-blurred image95

and the captured blurred image as the mean squared error (MSE) of all pixel values. We96

iterate this process through a range of radii between 0.1 px and 7 px. Figure 3 illustrates the97

optimized results for the table height in which green (530 nm) is the focused wavelength. We98

repeat this process through every table height in which any wavelength is in focus, effectively99

iterating through all possible combinations of focused and blurry images.100

Having optimized the blur kernel for each blurry wavelength at every table height, we101

restore sharpness in the blurry images using MATLAB’s iterative Lucy-Richardson deconvo-102

lution method. We optimize the number of iterations to deconvolve each image by minimizing103

the MSE between the edge spread function of sharp target dots and the deconvolved target104

dots. This metric rewards restoring contrast within edges of an image and simultaneously105

penalizes artifacts arising from oversharpening.106

Deblurring results107

Deconvolving blurry images of our calibration target results in images that are qualita-108

tively and quantitatively closer to the focused wavelength (Fig. 4a-c). The deconvolution109

pipeline significantly sharpens the target dots when measured by the increase in the sum110

of gradients over the entire image—a metric that quantifies the increase in edge defini-111

tion—while ensuring no visible oversharpening artifacts. As seen in Figure 4e, a closer look112

at the edge spread functions (ESF) of the calibration target dots reveals how the ESF of the113
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Figure 3: The process of optimizing blur kernel radii for each wavelength by comparing an artificially-blurred
image (taken at 530 nm at its respective focus height) to the actual blurry image for a given wavelength.
The radii that minimizes this difference are the optimal blur kernel radii to use for deconvolving blurry
images. The radii are reported relative to the 4x upscaled images, meaning most kernel radii are sub-pixel
(3.76 µm) on the original images. Wavelengths further away from the focal distance of 530 nm in Figure 2a
require larger blur kernels. The mean squared error (MSE) for 940 nm is relatively higher than the other
wavelengths because it has the largest disparity in focal distance (and therefore largest blur kernel), as well
as having the lowest signal-to-noise ratio on our sensor.

deconvolved image at 625 nm shifts closer towards the ESF of the focus image at 530 nm.114

Furthermore, the deconvolved image recovers the contrast within the edge (Fig. 4f) by115

reducing the width of the blurry ESF (Fig. 4e). It is important to note that the blur ob-116

served in Figures 4b and 4h is the blur in a regular RGB image. Thus, all enhancements in117

sharpness and contrast by deconvolving these multi-spectral images corrects the error due to118

chromatic aberration in individual pixel values and is an improvement even over traditional119

RGB images.120

With our calibration data set of 49 images (an image of 7 wavelengths at all 7 focused121

table heights), we choose our imaging table height to be the one that results in the largest122

overall improvement in sharpness across the entire image set. Since the focal distance for123

530 nm lies near the middle of the range of focal distances (Fig. 2A), imaging at this table124

height results in the smallest blur kernels and the sharpest images across all wavelengths125

(Fig. 4D).126

Having determined an optimal table height for imaging, we find that the sharpness and127
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Figure 4: Visual and quantitative comparison of image deblurring between focussed images taken at 530 nm
and blurry images at 625 nm. (a)-(c) The deconvolved target image in (c) is visually sharper than the blurry
target image in (b), where (a) is a reference for what a focussed image of the target looks like. The sharpness
metric in (c), (f), and (i) measures the increase in the sum of gradients over the deconvolved image relative
to the blurry image. (d) Focusing at green (530 nm) is optimal for maximizing the average sharpness—as
measured by the mean squared error (MSE) between the edge spread functions of the target image—across
all wavelengths. (e) The deconvolved edge spread function of a blurry image at 625 nm moves closer to the
sharp edge spread function at 530 nm, reducing the MSE by 70.8% over a traditional RGB image. (f) The
deconvolved image recovers all of the contrast of the sharp image, as measured by the range of pixel values
over the image.

contrast enhancements after deblurring that are observed when imaging the target also carry128

over to geological samples. For example, deblurring a carbonate sample results in visually129

better resolving ability and a quantitative increase in edge contrast (Fig. 4g-i). Further-130

more, prior to deblurring, information about certain features encoded in the blurry imaging131

channels, such as the secondary crystals, is spread out into the surrounding pixels. As a132

result, information in the edges of these features across several wavelengths is lost. Our de-133

blurring pipeline recovers this information by enabling features observed in one wavelength134

to overlap with other wavelengths. Thus, these deblurred multi-spectral images can be com-135

bined to form a vector of quantitative spectral information that can then be used to improve136

measurements of object size, shape, and density among many other geological features.137
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