Supplementary information for

Recurrent tectonic activity in NE Brazil during Pangea breakup: constraints from U-Pb carbonate dating

Carlos E. Ganade⁽¹⁾; Caue R. Cioffi⁽¹⁾; João Pacífico Machado⁽¹⁾; Tiago Miranda⁽²⁾; Leonardo B. Lopes⁽¹⁾; Roberto Weinberg ⁽³⁾; Maria Alcione Celestino⁽²⁾; Bruno Carvalho⁽⁴⁾; Marcel Guillong⁽⁵⁾; Nick M. W. Roberts⁽⁶⁾

⁽¹⁾Geological Survey of Brazil, Rio de Janeiro, Brazil
⁽²⁾Federal University of Pernambuco, Recife, Brazil
⁽³⁾Monash University, Clayton, Australia
⁽⁴⁾CENPES-PETROBRAS, Rio de Janeiro, Brazil
⁽⁵⁾ETH, Zurich, Switzerland
⁽⁶⁾Geochronology and Tracers Facility, British Geological Survey, Nottingham, United Kingdom

U-Pb carbonate analytical method

U-Pb analyses were conducted by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in two facilities with slightly distinct approaches. Sample AR-1 was analyzed at the Geochronology and Tracers Facility, British Geological Survey, UK, while the remaining samples (AR-2, RP-1, RP-2, JB-1, JB-2, JB-3 and JB-4) were analyzed at the Department of Earth Sciences, ETH Zürich, CH. The specific parameters and procedures of each laboratory are tabulated below. Further information, including single spot data, samples and reference materials information, and Tera-Wasserburg plots are available within the U-Pb data tables in the Supplementary Material.

Laboratory & Sample	Laboratory & Sample Preparation		
Laboratory name	Geochronology & Tracers Facility, NERC Isotope Geosciences Laboratory		
Sample type/mineral	Carbonate		
Sample preparation	Sample blocks mounted in epoxy resin		
Imaging	Optical only		
Laser ablation system			
Make, Model & type	ESI/New Wave Research, UP193UC		
Ablation cell & volume	NWR TV2		
Laser wavelength (nm)	193nm		
Pulse width (ns)	4ns		
Fluence (J.cm ⁻²)	~7 J/cm ⁻²		
Repetition rate (Hz)	10 Hz		
Spot size(m)	100 μm		
Sampling mode / pattern	Static spot		
Carrier gas	100% He, Ar make-up gas from DSN-100 combined using a Y-piece 50% along sample line.		
Ablation duration (secs)	30 secs		
Cell carrier gas flow (I/min)	0.7 l/min		
ICP-MS Instrument	ICP-MS Instrument		
Make, Model & type	Nu Instruments, Attom, SC-ICP-MS		
Sample introduction	Ablation aerosol		
RF power (W)	1300 W		
Make-up gas flow	0.7 l/min Ar		
Detection system	Single Mascom SEM		

Masses measured	202, 204, 206, 207, 208, 232, 238
Integration time per peak (ms)	Dwell times of 200 μs to 1000 μs per peak, 100 sweeps per integration.
Total integration	0.35 sec
time per reading (secs)	(should represent the time resolution of the data)
Sensitvity / Efficiency (%, element)	~0.2% ∪
IC Dead time (ns)	15 ns
Data Processing	
Gas blank	30 second on-peak zero subtracted
Calibration strategy	NIST614 glass standard as primary reference material for drift and 207Pb/206Pb ratios (see Roberts et al., 2017); WC-1 carbonate reference material for matrix matching of 206Pb/238U (anchored to initial Pb composition of 0.85, see Roberts et al., 2017).
Reference Material info	Concentrations use WC1 (Roberts et al., 2017) 207Pb/206Pb: NIST614 (Woodhead and Hergt, 2001) 206Pb/238U: WC1 (Roberts et al., 2017) Validation with ASH15D (Nuriel et al., 2021)
Data processing package used / Correction for LIEF	In-house spreadsheet data processing after initial signal integration using Nu Instruments TRA software. No LIEF correction (mean of uncorrected ratios used). IsoplotR (Vermeesch, 2018) for isochrons, intercept ages, and initial Pb compositions.
Mass discrimination	Standard sample bracketing
Common-Pb correction, composition and uncertainty	None applied. Ages calculated from regressions used in Tera- Wasserburg plots.
Uncertainty level & propagation	Ages are quoted at 2σ absolute, propagation is by quadratic addition. Excess variance of reference material propagated into sample data. Systematic uncertainties include age uncertainty of reference material.
Quality control / Validation	ASH15D: 3.086 ± 0.087 Ma (n=30; MSWD = 1.6) (without systematic uncertainties propagated)

Laboratory & Sample	Laboratory & Sample Preparation		
Laboratory name	Department of Earth Sciences, ETH Zürich		
Sample type/mineral	Carbonate		
Sample preparation	Polished thick sections and chips mounted in epoxy		
Imaging	CL8200 Mk5-2 Optical Cathodoluminescence System		
Laser ablation system			
Make, Model & type	ASI (Resonetics) RESOlution S155		
Ablation cell & volume	Laurin Technic, two-volume cell, effective volume ~1 cm3		
Laser wavelength (nm)	193nm		
Pulse width (ns)	25ns		
Fluence (J.cm ⁻²)	~1.8 J/cm ⁻²		
Repetition rate (Hz)	5.0 (for 110 μm spot diameter) or 7.4 Hz (for 163 μm spot diameter)		
Spot size(m)	110 μm or 163 μm		
Sampling mode / pattern	Static spot		
Carrier gas	100% He in the cell, Ar make-up gas combined in cell above, ablation in funnel.		
Ablation duration (secs)	40 secs		
Cell carrier gas flow (l/min)	0.5 l/min		
ICP-MS Instrument			
Make, Model & type	Thermo Element XR, sector-field single collector ICP-MS with high capacity interface pump		
Sample introduction	Ablation aerosol		
RF power (W)	1350-1550 W (optimized daily)		
Make-up gas flow	0.90 - 1.05 l/min Ar (optimized daily), 2 ml/min N2		
Detection system	Triple (pulse counting, analog, Faraday), cross-calibrated daily		

	with 238U, fixed analogue counting factor (ACF) value, all isotopes usually in pulse-counting only (<5 Mcps)
Masses measured	202, 204, 206, 207, 208, 232, 235, 238
Integration time per peak (ms)	11 ms for all masses except 206, 207 (50 ms)
Total integration time per reading (secs)	0.174 sec
Sensitvity / Efficiency (%, element)	~1% U
IC Dead time (ns)	25 ns
Data Processing	
Gas blank	20 s
Calibration strategy	NIST614 glass standard as primary reference material for drift and 207Pb/206Pb ratios (see Roberts et al., 2017); WC-1 carbonate reference material for matrix matching of 206Pb/238U (anchored to initial Pb composition of 0.85, see Roberts et al., 2017); ASH-15D (Nuriel et al., 2021) and JT (Guillong et al., 2020) calcite validation reference materials for assessing accuracy and repeatability.
Reference Material info	NIST614 (concentration data of Jochum et al., 2011, Pb isotopes of Baker et al., 2004); WC-1 (Roberts et al., 2017); ASH-15-D (Nuriel et al., 2021); JT (Guillong et al., 2020) ; B6 (Pagel et al., 2018).
Data processing package used / Correction for LIEF	Iolite 2.5, VisualAge for integration, interval selection, and gas blank correction only. In-house spreadsheet data processing. IsoplotR (Vermeesch, 2018) for isochrons, intercept ages, and initial Pb compositions. No separate LIEF correction. 238U/206Pb corrected to primary. RM assumed to have similar LIEF as samples.
Mass discrimination	Normalized to reference material (sample-standard bracketing)
Common-Pb correction, composition and uncertainty	Not applied. Ages calculated by linear regressions in Tera- Wasserburg concordia plots.
Uncertainty level & propagation	Lower intercept ages are quoted at 2s absolute, propagation is by quadratic addition. Counting statistics uncertainties are propagated to the 207Pb/206Pb ratios, together with the

	uncertainty of the primary RM value and the uncertainty of repeated measurements. The uncertainty value for lower intercept isochron ages includes uncertainties from the primary RM and unsystematic uncertainties, estimated in this work to be 2.5%.
Quality control /	ASH-15-D:
Validation	Tera-Wasserburg intercept age: 2.86 ± 0.153 Ma (2s, MSWD = 2, n = 22 including internal and 2.5% total external uncertainty) without 230Th disequilibrium correction. JT:
	Tera-Wasserburg intercept age: 13.07 ± 0.49 Ma (2s, MSWD = 1.5, n = 22 including internal and 2.5% total external uncertainty) B6:
	Tera-Wasserburg intercept age: 40.7 ± 1.25 Ma (2s, MSWD = 1.5, n = 22 including internal and 2.5% total external uncertainty)
	Systematic uncertainty for propagation is 2.5 % (2s)

References

Baker, J., Peate, D., Waight, T., Meyzen, C., 2004. Pb isotopic analysis of standards and samples using a ²⁰⁷Pb-²⁰⁴Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chemical Geology 211, 275-303.

Guillong, M., Wotzlaw, J-F., Looser, N., Laurent, O., 2020. Evaluating the reliability of U-Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material. Geochronology 2, 155-167.

Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D., Enzweiler, J., 2011. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35, 397-429.

Nuriel, P., Wotzlaw, J-F., Ovtcharova, M., Vaks, A., Stremtan, C., Sala, M., Roberts, N.M.W., Kylander-Clark, A.R.C., 2021. The use of ASH-15 flowstone as matrix-matched reference material for laser-ablation U-Pb geochronology of calcite. Geochronology 3, 35-47.

Pagel, M., Bonifacie, M., Schneider, D., Gautheron, C., Brigaud, B., Calmels, D., Cros, A., Saint-Bezar, B., Landrein, P., Sutcliffe, C., Davis, D., Chaduteau, C., 2018. Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a

sedimentary basin by combining Δ_{47} temperature, $\delta^{18}O_{water}$ and U-Pb age. Chemical Geology 481, 1-17.

Roberts, N.M.W., Rasbury, E.T., Parrish, R.R., Smith, C.J., Horstwood, M.S.A., Condon, D.J., 2017. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry, Geophysics, Geosystems 18, 2807-2814.

Vermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers 9, 1479-1493.

Woodhead, J.D., Hergt, J.M., 2001. Strontium, neodymium and lead analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostandards Newsletter 25, 261-266.