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Supplemental Material

Figure S1. Geologic maps of (a) Marl Mountain Quadrangle presented by Wilshire et al. (2002b) and (b).
Indian Springs Quadrangle presented by Wilshire et al. (2002a) with Cima localities superimposed.

Figure S2. Peridotite mantle xenoliths found in Cima-4a and —4b, and DH-1.

Figure S3. Histogram of Fo mol% ( = Xygo/(Xmgo + Xreo) % 100) for Cima-4a. The most Mg-rich olivine
compositions (Table 2), whole-rock MgO wt% (Table 1), and number of analyses (n) are shown. Plotted
for comparison are analyses of olivine from within the Cima-4 mantle xenolith.

Figure S4. Representative BSE images of clinopyroxene phenocrysts from each textural category
including (1) non-spongy/non-vermicular (2) spongy/vermicular and (3) oscillatory/sector-zoned.

Figure S5. Histograms of clinopyroxene Mg# for five Cima hawaiites. Crystals are plotted based on the
assigned textural categories presented in Figure S2. Calculated "™ 2Kp(cpx-melt) values for the most
Mg-rich clinopyroxene crystal paired with the whole-rock composition (Table S.4) are shown in red.

Figure S6. Plots of Na,O, TiO,, and Cr,O3 (Wt%) versus Mg# from analyzed clinopyroxene phenocrysts.
Individual spot analyses are all characterized by texture including (1) non-spongy/non-vermicular
(NS/NV) (2) spongy/vermicular (S/V) and (3) sector- or oscillatory-zoned (OZ/SZ).

Figure S7. Histograms of anorthite content (An mol% = Xc,0/Xcao + Xna2o T Xk20) * 100) for three Cima
basalts. The most calcic plagioclase composition (An mol%), liquid An number, and number of analyses (
=n) are given for each sample.

Table S1. Standards employed for electron microprobe analyses of olivine, clinopyroxene, plagioclase,
and Fe-Ti oxides.

Table S2. Analyzed trace element concentrations for all Cima and Dish Hill samples.
Table S3. Olivine phenocryst analyses for all Cima and Dish Hill samples.

Table S4. (A) Clinopyroxene analyses for five Cima hawaiites (B) Composition of the most Mg-rich
clinopyroxene phenocryst.

Table S5. (A) Microprobe analyses of ilmenite and titanomagnetite from six Cima hawaiites. (B) Fe-Ti
oxide thermometry and oxybarometry (Ghiorso and Evans, 2008) results for all possible pairs of ilmenite
and titanomagnetite. (C) Composition (wt%) of onset ilmenite and titanomagnetite pair that pass the
Bacon and Hirschmann (1988) test for equilibrium.

Table S6. (A) Plagioclase phenocryst analyses for three Cima hawaiites. (B) Analyses of most calcic
plagioclase phenocryst.

Table S7. Olivine-melt thermometry applied to all Cima and Dish Hill samples.
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INTRODUCTION

The supplemental material presented below is intended to support the major results and
interpretations presented in the main body of the paper. The Supplemental Materials below are
divided into three parts. Part 1 provides probe analytical methods and results for all analyzed
plagioclase crystals from this study. Part 1 also discusses the clinopyroxene results in more detail
than provided in the main body of the text. Note that due to abundant evidence of magma mixing
in the Cima hawaiites, it is not possible to apply either clinopyroxene-melt barometry or olivine-
melt thermometry/hygrometry at the liquidus. Part 2 introduces five supplemental figures and
associated figure captions. Part 3 includes a list of all headers for supplementary data files.
Tables can be found in a separate Excel file containing all analyzed and calculated data presented
in this study.

Plagioclase: Analytical Methods and Results

Plagioclase was analyzed using a Cameca-SX 100 electron microprobe at the University
of Michigan. All crystalline standards for all analyses are contained in the University of
Michigan collection and are presented in Table S1. Phenocrysts from three representative
samples (Cima-1, —2, —8) were analyzed using a 15 kV accelerating voltage and a focused beam
with a 4 nA current. Nine elements (Mg, Na, Si, Al, Ti, Fe, Mn, Ca, K) were analyzed with peak
and background counting times of 20 s each. A total of 214 plagioclase phenocrysts (66—76 per
sample) were analyzed yielding 185-291 effective analyses per sample. The 1o error according
to the counting statistics are = 0.24 Na,O, + 0.06 MgO, + 0.70 Al,Os, £ 0.96 SiO,, = 0.10 K,0, £
0.51 Ca0O, £ 0.08 TiO,, = 0.07 MnO, + 0.14 FeOr. Analyses were filtered to exclude those with
analytical totals outside of 98.5-101 wt%.

All individual plagioclase analyses are presented in Table S6A. Histograms of An mol%
for each sample (Figure S7) show a continuous range that spans ~10 mol%, ranging from Anss ¢4
(liquid Ang7) to Ansg ¢s (liquid Angg). Compositions of the most calcic plagioclase analysis in
each sample are presented in Table S6B.

Clinopyroxene Results (see main text for Analytical Methods)

Individual clinopyroxene analyses obtained on five representative Cima hawaiite samples
are presented in Table S4. Individual spot analyses along a transect for each crystal are classified
into three textural categories including: (1) sector- or oscillatory-zoned crystals, (2) spongy
(vermicular), and (3) non-spongy (non-vermicular). BSE images of representative crystals from
each textural category are shown in Figure S4 with some displaying multiple textures within the
same crystal. To illustrate the distribution of textural categories within a given sample, (stacked)
histograms of Mg# ( = XMgO/ (XMgO + XFeOr)) plotted by texture are presented in Figure S5.
In most samples the dominant population of clinopyroxene crystals are classified as spongy
(vermicular). Non-spongy (non-vermicular) crystals are next in abundance, and in most samples
sector- or oscillatory-zoned crystals are relatively sparse to absent (e.g., Cima-5). Cima-1 is the
only case where sector or oscillatory crystals dominate the phenocryst population. Clinopyroxene
phenocrysts span a continuous range in Mg# (Figure S5) with a few exceptions (Cima-8, =2, —5).
The most Mg-rich clinopyroxene composition of the continuous range (< 1 mol% gap) for each
sample is presented in Table S4B. Estimates of "' MK (cpx-melt) values using the most Mg-
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rich clinopyroxene crystal and the whole-rock composition range from 0.21 to 0.30 (Figure S5).
Plots of wt% Na,O, TiO,, and Cr,03 versus Mg# are shown in Figure S6. Two distinct
populations of clinopyroxene, in terms of Na,O content, are only observed in Cima-1 and Cima-
3. Both samples feature a population of non-spongy, dark cores with >1 wt% Na,O, consistent
with growth at lower crustal depths (Neave and Putirka, 2017). Most other clinopyroxene
phenocrysts have lower Na,O contents, consistent with crystallization at shallower depths.

Limitations of Cpx-Liquid Barometry Applied to Cima Hawaiites

Having evaluated numerous hypotheses, the only remaining scenario that cannot be ruled
out is that the Cima hawaiites formed due to rapid magma mixing of a high-MgO basanite and a
low-MgO mugearite during ascent along fractures. This hypothesis not only precludes the
application of olivine-melt thermometry at the liquidus to the Cima hawaiites, but also the
application of cpx-liquid barometry. This differs from the results of Brehm and Lange (2020)
where the most Mg-rich clinopyroxene crystal paired with the whole-rock composition of six
high-MgO Big Pine basalts was used to calculate pressure at the onset of phenocryst growth
using the model of Neave and Putirka (2017). This method was successfully applied to the Big
Pine basalts as there was no evidence of magma mixing during ascent, the most Mg-rich
clinopyroxene composition was preserved based on equilibrium values of "' M&K p(cpx-liquid),
and an independent constraint on temperature at the onset of phenocryst growth using the Ni-
thermometer of Pu et al. (2017) could be made. In the Cima hawaiites, there is clear evidence of
mixing and inheritance of clinopyroxene crystals (and olivine) from a high-MgO basanite,
resulting in "MK (cpx-liquid) values that are too low to be in equilibrium with the whole-rock
composition (Figure S5). Additionally, an independent estimate of temperature at the onset of
phenocryst growth cannot be made for the Cima hawaiites due to inherited high-Mg olivine
phenocrysts, and thus no quantitative estimate of pressure can be made using clinopyroxene.

Brehm and Lange (2020) noted the presence of two distinct populations of clinopyroxene
in six high-MgO Big Pine basalts on the basis of both crystal geochemistry (Na,O wt% and
Mg#) and texture. This includes a population of non-spongy/non-vermicular, Mg-rich, high-
Na,O clinopyroxene, typically occurring as cores, which is consistent with an elevated jadeite
component or crystallization at higher pressures. A second population of sector/oscillatory-zoned
and vermicular/spongy crystals, typically occurring as rims, have relatively lower Na,O content,
which is consistent with rapid crystallization during an effective undercooling at relatively lower
pressures (e.g., Welsch et al., 2016).

Similar textural and compositional populations are observed in the five Cima hawaiites
where clinopyroxene phenocrysts were analyzed (Cima-1, —2, —3, =5, —8). The most dominant
textural population of clinopyroxene are classified as spongy (vermicular) (Figure S4) indicative
of rapid diffusion-limited crystal growth. This is closely followed by non-spongy (non-
vermicular) clinopyroxene phenocrysts (Figure S4). Only one sample (Cima-1) shows a
dominant population of sector or oscillatory zoned crystals.

In plots of Na,O wt% vs vs Mg#, only two Cima samples (Cima-1 and —3) show distinct
populations on the basis of geochemistry (Figure S6). The high-Na,O (> 1 wt%) non-spongy
(dark core) phenocrysts observed are consistent with crystallization at lower crustal depths
(Hammer et al., 2016; Welsch et al., 2016). All other clinopyroxene phenocrysts analyzed in the
Cima hawaiites have Na,O contents and crystal textures consistent with crystallization at
shallower depths. Thus, while a quantitative estimate of pressure at the onset of crystallization
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cannot be made for the Cima hawaiites, it is inferred that the majority of these samples
crystallized at depths shallower than those estimated for the Big Pine basalts. The clear
bimodality in crystal composition and texture observed in Cima-1 and Cima-3 suggests polybaric
crystallization of clinopyroxene similar to that observed in the majority of Big Pine basalts
(Brehm and Lange, 2020). This is consistent with other recent studies, which report the
preservation of polybaric crystallization of clinopyroxene within a sample or individual crystal
(Hammer et al., 2016; Mollo et al., 2020).
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