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List of Laramide volcanic-shallow intrusive centers/detrital zircons shown in Figure 1 
1 - 73 Ma for the diorite dike of Sleeping Ute Mountain, Colorado (Gonzales, 2015) 
2 - 68 Ma for the granodiorite-diorite porphyry stock of Hermosa Peak, Colorado (Gonzales, 

2015) 
3 - 69–65 Ma for the granite-diorite porphyry sill of Coal Bank Pass, Colorado (Gonzales, 2015) 
4 - 70 Ma for the diorite stock of La Plata Mountains ‘Notch’, Colorado (Gonzales, 2015) 
5 - Cretaceous McDermott Formation with major 70 Ma detrital zircon age peak, Colorado 

(Pecha et al., 2018) 
6 - Cretaceous Kirtland Formation with major 75 Ma detrital zircon age peak, New Mexico 

(Pecha et al., 2018) 
7 - 75–73 Ma ash-fall tuffs of McRae Formation, Love Ranch Basin, New Mexico (Amato et al., 

2017) 
8 - ~75 Ma monzonite porphyry stock and dacite sill of Twin Peaks, Burro Mountains, New 

Mexico (Amato et al., 2017).   
9 - 73–70 Ma ash-fall tuffs of Ringbone/Skunk Ranch and sandstone of the Cretaceous Ringbone 

Formation with major 73 Ma detrital zircon age peak, Little Hatchet Mts, New Mexico 
(Clinkscales and Lawton., 2015) 

10 - 73 Ma andesite, southern Winchester Mountains, Arizona (Mizer, 2018) 
11 - 76 Ma andesite of Bronco Volcanics and Uncle Sam Tuff, 75 Ma dacite porphyry and 73 

Ma Schieffelin granodiorite, Tombstone mining district, Arizona (Mizer, 2018) 
12 - 75 Ma Granite Peak stock, Whetstone Mountains, Arizona (Mizer, 2018) 
13 - 75 Ma granodiorite, quartz diorite and felsic dikes, Cerro Colorado mining district, Arizona 

(Mizer, 2018) 
14 - 75 Ma El Tiro granite and dacite porphyry, Silver Bell mining district, Arizona (Mizer, 

2018) 
15 - 74 Ma Williamson Canyon Volcanics, Banner mining district, Arizona (Mizer, 2018) 
16 - 73 Ma Concentrator Volcanics, Ajo mining district, Arizona (Mizer, 2018) 
 

Sample Preparation  

Hand-sized samples of Pierre Shale and Trinidad Sandstone were crushed and pulverized 

to less than mm-sized pieces and washed to remove the finest clays.  Based on observed sizes of 

heavy minerals in the crushed material, the sandstone was sieved into 63 – 125 μm and 20 – 63 

μm fractions and shale into a 20 – 63 μm fraction.  Detrital zircon and other heavy minerals were 

separated from the less dense minerals in each of the sieved fractions using Lithium 

Metatungstate (LMT) heavy liquid adjusted to a density of 2.9 g/cc. The heavy mineral separates 

were mounted randomly in 25 mm epoxy rounds, without pre-screening based on magnetic 

susceptibility, shape or color, which can bias detrital zircon age populations (Sircombe and 
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Stern, 2002; Sláma and Košler, 2012; Markwitz et al., 2017). In addition, the separates were 

mounted as monolayers so that polishing intersected the central portion of each grain, allowing 

meaningful comparisons of two-dimensional size measurements between different grains 

(Sylvester, 2012).  Thus, the heavy mineral separates provided a grain mount for each of the 

coarse (TSC) and fine (TSF) heavy mineral fractions of the Trinidad Sandstone and another 

mount for the heavy mineral fraction of the Pierre Shale (PSM).  As well, three thin sections 

(PSTS) were made from mudstone-rich layers in the Pierre Shale to date detrital zircons 

associated with the finest fraction of the rock and compare their morphologies and ages to 

detrital zircons extracted from the bulk sample by crushing.  

SEM and LA-ICP-MS Analysis 

Detrital zircon grains were located and identified in the mounts and sections using 

energy-dispersive X-ray spectroscopy (EDS) and backscattered electron (BSE) image analysis 

with automated scanning electron microscope (SEM) instruments:  an FEI Mineral Liberation 

Analyzer (MLA) (Fandrich et al., 2007; Sylvester, 2012) for the grain mounts and a TESCAN 

Integrated Mineralogical Analyzer (TIMA) (Hrstka et al., 2018) for the thin sections. SEM 

metadata are given in Table DR1. Representative zircon BSE images are shown in Figure DR1. 

U-Pb age analyses of zircon were made using a Nu Plasma AttoM magnetic sector 

inductively coupled plasma – mass spectrometry (ICP-MS) coupled to an ESI NWR193UC laser 

ablation (LA) system consisting of a TwoVol2 ablation chamber and a Coherent Excistar 193 nm 

ArF excimer laser. Detrital zircons were chosen for analysis in random fashion to avoid selection 

bias. Laser spots (20- and 12-μm wide for detrital zircons in mounts and thin sections, 

respectively) were placed on regions of zircon grains free of fractures, inclusions, or 

overgrowths, guided by BSE images.  For grains approaching 20-μm in diameter, it was 
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sometimes a challenge to place the 12-μm spot without being close to the grain rim, or 

intersecting small fractures, both of which sometimes have more Pb loss or common Pb than 

fracture-free regions within grains. Also, for zircon grains analyzed directly in thin sections, care 

was taken not to overlap the laser beam on to the surrounding matrix, which was rich in common 

Pb in the case of the mudstones of this study.  Careful imaging of the zircon grains in both 

transmitted and reflected light and measuring grain dimensions prior to laser ablation allowed the 

choice of laser spot size and positioning to be made most effectively. 

Analytical details and instrument parameters are included in Table DR1.  Zircon 91500 

(Wiedenbeck et al., 2004) was used to correct for mass spectrometer bias on Pb/Pb and U/Pb 

isotopic ratios and downhole U/Pb isotopic fractionation (Košler et al., 2002) and calculate U 

and Th concentrations from count rates.  Pb/Pb and U/Pb isotopic ages and U and Th 

concentrations were determined using Iolite software (v. 3.63) with the VizualAge DRS (Petrus 

and Kamber, 2012). Zircon ages were corrected for common Pb in Iolite using the Andersen 

(2002) method where the corrected fraction of common Pb >0.01, except where the correction 

increased the % discordancy of the grain in the Wetherill Concordia diagram.  U-Pb detrital 

zircon data for the Pierre Shale and Trinidad Sandstone samples are listed in Tables DR2 – DR5. 

Figure DR2 shows Wetherill Concordia diagrams for detrital zircons in the Pierre Shale and 

Trinidad Sandstone samples. 

Zircon secondary reference materials (SRMs) were analyzed with the detrital zircons 

from Pierre and Trinidad samples as a check and monitor on data quality:  Fish Canyon Tuff 

zircon (206Pb/238U= 28.478 ± 0.024 (2s) Ma; Schmitz and Bowring, 2001); Plešovice zircon 

(206Pb/238U = 337.16 ± 0.11 (2s) Ma; Sláma et al., 2008 recalculated by Horstwood et al., 2016); 

Temora-2 zircon (206Pb/238U = 416.78 ± 0.33 (2s) Ma; Black et al., 2004); Oracle zircon 
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(207Pb/206Pb = 1437.05 ± 0.77 (2s) Ma; Arizona LaserChron Center website, laserchron.org); Tan 

Brown zircon (207Pb/206Pb = 2512.24 ± 0.71 (2s) Ma; Bauer et al., 2020); Owens Gully Diorite 

(OG1) zircon (207Pb/206Pb= 3465.4 ± 0.6 (2s) Ma; Stern et al., 2009).  U-Pb zircon data for the 

SRMs analyzed with 20- and 12-μm spots are listed in Tables DR6 and DR7 respectively. 

Figures DR3 and DR4 show Wetherill Concordia diagrams for zircon SRMs analyzed with 20- 

and 12-μm spots respectively. 

We note that the 12-μm spot sizes produce somewhat older ages (~2 Ma beyond 

analytical uncertainty) in Plešovice and Temora2 reference materials than the 20-μm spots and 

their accepted ages.  The significance is likely the result of both (1) the presence of somewhat 

older age domains at small scales intersected more precisely by 12-μm than 20-μm laser ablation 

spots and (2) the smaller number of 12μm vs 20μm spot analyses (27 vs 123 for Plešovice, and 

22 vs 83 for Temora2), which were insufficient to provide a representative sample both younger 

and old age domains and yield an overall average within uncertainty of the accepted age.  SIMS 

analyses, which have spot sizes similar to the 12-μm laser spots used here, albeit with pit depths 

of only 1-2μm, have identified older domains in both zircon reference materials previously.  

Sláma et al. (2008) reported that SIMS U–Pb analyses of Plešovice zircon yielded a weighted 

mean 206Pb/238U date of 341.4±1.3 Ma (61analyses from 33 individual grains).  Figure 11 of 

Sláma et al. (2008) shows individual SIMS dates as old as 353.1±2.5 Ma.  Black et al. (2004) 

found a weighted mean 206Pb/238U SHRIMP date of 418.1±2.2 Ma for Temora2, with 15 of the 

51 analyses giving dates between 430 - 425 Ma. The main implication is that, as laser ablation 

spot sizes continue to decrease, small-scale heterogeneities in zircon grains will be recognized 

increasingly.   
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Disclaimer 

Any use of trade, product, or firm names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government. 
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Figure S1. Representative backscattered electron (BSE) Images of detrital zircon 
in the two major age populations (ca. 71 and 1690 Ma) of the Pierre Shale and 
Trinidad Sandstone 
 
Classification of Zircon Grain Morphology Types 
 
Type 1 – Complete, euhedral grain cross sections with oscillatory zoning, suggesting 
early crystallization free from competing mineral growth 
 
Type 2 – Complete or nearly complete, subhedral grain cross sections, often fractured, 
with diffuse oscillatory to patchy zoning 
 
Type 3 – Grain cross sections with irregular, embayed crystal faces, suggesting late-

stage crystallization interstitial to adjacent minerals in the crystalline source rock 
 
Type 4 – Crystal fragments 
 
 
 
71 ±	3 Ma Zircon Population 
 
Pierre Shale Thin Sections 
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Pierre Shale Coarse Silt (20 – 63 µm) Grain Mount 

 
 
 
Trinidad Sandstone Coarse Silt (20 – 63 µm) Grain Mount 
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Trinidad Sandstone Very Fine Sand (63 – 125 µm) Grain Mount 

 
 
 
1690 ±	15 Ma Zircon Population 
 
Pierre Shale Thin Sections 
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Pierre Shale Coarse Silt (20 – 63 µm) Grain Mount 

 
 
 
Trinidad Sandstone Coarse Silt (20 – 63 µm) Grain Mount 
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Trinidad Sandstone Very Fine Sand (63 – 125 µm) Grain Mount 
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Sylvester, Souders, Liu Geology G49684 
Figure S2.  Wetherill Concordia diagrams for detrital zircons in Pierre Shale and Trinidad 
Sandstone (all analyses)  
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Figure S3. Wetherill Concordia diagrams for zircon reference materials – 20-micron spo
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Figure S4. Wetherill Concordia diagrams for zircon reference materials – 12-micron spot 
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Figure S5.  Th/U in 1690 Ma Detrital Zircon Grains – Raton Basin 
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Table S1. Analytical method metadata for scanning electron microscope imaging and LA-
ICP-MS U-Pb geochronology of zircon 

Laboratory and Sample 
Preparation 

 

Laboratory name Mineral Isotope Laser Laboratory (MILL), Texas Tech University 

Sample type/mineral Detrital zircons 
Sample preparation Conventional crushing and heavy liquid mineral separation, 25-mm 

epoxy resin mount, 1-µm polish to finish 
Offcuts made into polished thin sections 

Scanning Electron 
Microscope (SEM) 
Imaging 

TIMA (TESCAN Integrated Mineral Analyzer): TESCAN-VEGA-3 
SEM, BSE-EDX, HV: 25.0 kV, WD: 14.8 - 15.1 mm 
MLA (Mineral Liberation Analyzer): FEI Quanta 400 SEM, BSE-
EDX, HV: 25.0 kV, WD: 11.9 – 12.3 mm 

Laser ablation 
system 

 

Make, Model and type ESI/New Wave Research, NWR193UC ArF excimer laser 
Ablation cell TwoVol2 two-volume ablation chamber 

Laser wavelength 
(nm) 

193 nm 

Pulse width (ns) 5 ns 
Fluence (J cm-2) 2.5 J cm-2/4.25 J cm-2 

Repetition rate (Hz) 8 Hz 
Ablation duration (s) 30 s 
Spot diameter (μm) 
nominal/actual 

20 μm / 12 μm 

Sampling mode / 
pattern 

Static spot ablation 

Carrier gas 100% He in the cell, Ar make-up gas combined using a Y- piece 
75% along the sample transport line to the torch. 

Cell carrier gas flow 
(He, l min-1) 

0.775 – 0.850 l min-1 

ICP-MS Instrument  
Make, Model and type Nu Instruments, Nu AttoM ICP-MS 
Sample introduction Laser Ablation  

RF power (W) 1300 W 
Ar gas flows (l min-1) Cool gas (Ar) = 13.0 l min-1 

Aux gas (Ar) = 0.7 – 0.95 l min-1 
Ar make gas (Ar) = 0.65 – 0.85 l min-1 
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Detection system MasCom Electron Multiplier 

Masses measured 202, 204, 206, 207, 208, 232, 235, 238 
Integration time per 
peak/dwell times (ms) 

200µs for each isotope except 400µs 206, 1ms 207, 2ms 235 

Total integration time 
per output data point (s) 

0.1984 s 
 

Analysis mode/ Detection 
mode 

Deflector jump/Pulse counting 

IC Dead time (ns) 9.2 ns 
Data Processing  
Calibration strategy 91500 zircon used as primary reference material, Plešovice, 

Temora2, Oracle, Tan Brown, OG1 and Fish Canyon Tuff zircons 
used as secondaries/validation 

Reference material 
(zircon) information 

91500 (Wiedenbeck et al. 1995)  
Plešovice (Sláma et al. 2008) 
Temora2 (Black et al., 2004) 
Oracle (Arizona LaserChron Center website, laserchron.org)  
Tan Brown (Bauer et al., 2020)  
OG1 (Stern et al., 2009) 
Fish Canyon Tuff (Schmitz and Bowring, 2001) 

Data processing 
package used / 
Correction for LIEF 

Iolite (v3.63) and VizualAge DRS (Petrus and Kamber 2012) 
software for data normalization, uncertainty propagation and age 
calculation. LIEF correction modeled using Exponential model in 
Iolite for 91500 zircon. Assumes reference material and samples 
behave identically. Ages are quoted at 2s absolute. 

Common-Pb correction, 
composition and 
uncertainty 

For zircons with high common Pb, ages are corrected with the 
Andersen (2002) method 

Quality control / 
Validation / Concordia 
Ages 

Plešovice (20µm) – 337.5 ± 0.7 (2s, MSWD = 0.5, n = 123) 
Temora-2 (20µm) – 413.0 ± 1.4 (2s, MSWD = 0.9, n = 83) 
Oracle (20µm) – 1437.3 ± 7.4 (2s, MSWD = 7.4, n = 18) 
Tan Brown (20µm) – 2508.3 ± 4.9 (2s, MSWD = 4.5, n = 41) 
 
Fish Canyon Tuff (12µm) – 28.74 ± 0.49 (2s, MSWD = 0.4, n=10) 
Plešovice (12µm) – 340.7 ± 1.7 (2s, MSWD = 0.14, n = 27) 
Temora-2 (12µm) – 423.5 ± 3.4 (2s, MSWD = 0.4, n = 22) 
OG1 (12µm) – 3471 ± 11 (2s, MSWD = 6.2, n=11) 

  
 




