Supplement: Whole-lithosphere shear during oblique rifting

¹Lutz, Brandon M., ¹Axen, Gary A., ¹van Wijk, Jolante, ¹Phillips, Fred M.

¹Earth and Environmental Science Department, New Mexico Institute of Mining and Technology,

801 Leroy Pl, Socorro, NM 87801

CONTENTS

- A. DESCRIPTION OF GPLATES KINEMATIC RECONSTRUCTION
- B. RECONSTRUCTIONS OF THE LAB- AND MOHO- DEPTH GRADIENTS
- C. UPPER-CRUSTAL DEXTRAL SHEAR MAGNITUDE ACROSS THE WHOLE-LITHOSPHERE SHEAR ZONE

LIST OF FIGURES and TABLES

- S1: Map of the Death Valley region showing fault block identification numbers and net reconstruction vectors between model fault blocks.
- Table S1: Total Euler Pole rotations for the main reconstruction path
- Table S2: Total Euler Pole rotations for the N. reconstruction path
- Table S3: Total Euler Pole rotations for the S. reconstruction path
- Table S4: List of thermochronometric data in Fig. S3
- S2: Map showing key offset features used in tectonic reconstruction (Lutz, 2021)
- S3: Snapshots of Lutz (2021) kinematic reconstruction of the DVR
- S5: Map and reconstructions of the LAB-depth gradient
- Table S5: Summary of Moho gradient offsets
- S6: Map and reconstructions of Gilbert (2012) Moho
- S7: Map and reconstructions of Tape et al. (2012) Moho
- S8: Map and reconstructions of Shen and Ritzwoller (2016) Moho
- S9: Map and reconstructions of Buehler and Shearer (2010) Moho

A. DESCRIPTION OF GPLATES KINEMATIC RECONSTRUCTION

Lutz (2021) reconstructed extension in the central Basin and Range using three main reconstruction paths that relate fault block kinematics to relative Euler pole rotations (Fig. S1 and Tables S1-S3). The main reconstruction path links the Sierra Nevada to the Colorado Plateau through the center of the Death Valley region (black in Fig. S1 and Table S1). The northeastern reconstruction (blue in Fig. S1) path relates fault block kinematics northeast of the Furnace Creek fault zone (FCFZ) (e.g. Silver Peak Range to Funeral Mountains) to the main reconstruction path via the Resting Spring Range (Table S2). The southern reconstruction path (green in Fig. S1) involves the Argus Mountains, Slate Range, and Granite Mountains south of the Garlock fault (Table S3). This path links to the main path via the Panamint Mountains.

Here we simply present tables of Eueler pole rotations that drive the kinematic model. The relative motions between crustal fault blocks from which the rotations are derived can be found in Lutz (2021).

Figure S1. Map of the Death Valley region showing total reconstruction vectors between major fault blocks. Mountains and ranges associated with the numbers shown in range blocks are given in Tables S1-S3 and are separated out as sections in the Supplemental Material text. Abbreviations for mountains (fault blocks): AM: Argus Mountains. BFH: Bullforg Hills. c/sBM: Central/S Black Mountains. BM: Bare Mountain. BR: Benton Range. CM: Cottonwood Mountains. COSO: Coso Range. m/swFM: Main/SW Funeral Mountains. GAM: Granite-Avawatz Mountains. GR: Greenwater Range. GVM: Grapevine Mountains. IM: Inyo Mountains. KR: Kingston Range. LCR: Last Chance Range. MM: Montgomery Mountains. NR: Nopah Range. n/sOM: N/S Owlshead Mountains. E/W Panamint Mountains. RS: Resting Spring Range. SaR: Saline Range. SM: Spring Mountains. SN: Sierra Nevada. n/sSP: N/S Silver Peak Range. SpeR/Specter Range. SpoR: Spotted Range. SPM: Sylvania-Palmetto Mountains. SR: Slate Range. SRGM: Slate Range-Gold Mountains. e/wPM: YM: Yucca Mountain. WM: White Mountains.

Figure S2. Map of the Death Valley region showing Quaternary faults, thrust plates, basin thicknesses, offset features, and the LAB-depth gradient (dashed white lines and color map on top right). Thrust plate map after Lutz et al. (2021). AD: breakaway of Amargosa Detachment. BCD: Boundary Canyon detachment. BMF: Black Mountains fault zone. CSF: Crystal Springs fault zone. EF: Emigrant fault. FLVF: Fish Lake Valley fault. GFZ: Garlock fault zone. HMF: Hunter Mountain fault zone. KRD: Kingston Range detachment. OVF: Owens Valley fault zone. SHF: Sheephead fault zone. SNF: Sierra Nevada frontal fault zone. SFZ: Stateline fault zone. WMF: White Mountains fault zone.

Figure S3. Reconstructions of the DVR at selected times. See Fig. S2 for the thrust plates and abbreviations. See animation for a full reconstruction sequence in 0.1-Myr time-steps. Note the evolution of the LAB depth gradient deflection in C and D (dashed white line).

Table S1	
Euler Pole rotations and kinematic inputs for the main reconstruction g	bath

Fault Block Restoration	Time (Ma)	Longitude	Latitude	Angle (°)	Kinematic inputs and notes	References
	0	90.0000	0.0000	0.0000	11.1 km of post-2.8 Ma separation (322°) on Owens	
Sierra Nevada-	2.8	29,9617	-2.6572	0.0994	Valley fault; yields ~3.4-3.7 mm/yr slip rate,	(Bachman, 1978; Lee et
White (1001-	12	29.9617	-2.6572	0.0994	consistent with paleo-seismic and GPS-based slip-	al., 2001b; Stockli et al.,
1004)	15	37 8448	7 3692	0 1185	fate models, 5 km 15-12 Ma separation on white M	2003; Kirby et al., 2006)
Benton-White	0	90.0000	0.0000	0.0000	7.5 km of 2.0 Mo NWV concretion on White Mtro fr	
(WM) (1002-	3	47 3236	28 3724	0.0670	based on gravity-based basin depth	(Lutz, 2021)
1004)	0	3 0531	_25 7158	0.0000	1.1 km of next 1.7 Me concretion (206%) on Deen	
(1004-1008)	17	44 5760	20.3368	0.0093	Springs fault	(Lee et al., 2001a)
	0	90,0000	0.0000	0.0000		(Burchfiel et al., 1987;
Inyo-Last Chance (1008- 1010)	3.5	43.8131	17.8028	0.0730	8.2 km of 3.5-0 Ma NW-separation on the normal faults in the Saline Range linked to dextral slip on the Hunter Mountain fz	Sternlof, 1988; Oswald and Wesnousky, 2002; Lee et al., 2009; Knott et al., 2019)
Last Chance-	0	90.0000	0.0000	0.0000	2 km of post-4 Ma separation (301°) on the Tin	(Snow and White, 1990:
(1010-1011)	4	42.7356	16.1162	0.0183	Mountain fz	Knott et al., 2019)
	0.0	90.0000	0.0000	0.0000		(Hall 1971: Hodges et
Cottonwood	3.0	22.0385	-10.7998	0.0004	2.5 km of 3-4.2 Ma NW-separation on the Towne	al., 1989; Snyder and
wPanamint	4.2	42.5509	15.7942	0.0236	offset granitic stocks along the FCFZ; 5.7 km of 7.6-	Hodges, 2000; Andrew
(1011-1012)	7.6	51.6544	42.2697	0.0552	11.4 Ma slip to get to the 8.5 km of total Miocene-	Nachbor and Wetmore,
	11.4	51.1336	39.4012	0.0758	recent Cottonwood-Panamint Mountains separation.	2017)
	1.2	31.9479	0.6385	0.0373	4.05 km of post-1.2 Ma offset from basaltic gravels;	(Stewart, 1983; Oakes,
	3.3	31.8906	0.5727	0.0714	3.95 km offset of gravels from 3.3-1.2 Ma; yields 3.5	1987; Reheis and
ePanamint- Resting Spring (1013-1025)	7	26.7826	-5.0154	0.1260	Ma; ~40 km of post-7.6 Ma offset from granitic stock along FCFZ; 45 km of post-12 Ma NW-separation	and Sarna-Wojcicki, 2001; Frankel et al.,
	7.6	31.8855	0.6439	0.2997		
(12	38.9975	9.9071	0.7314	on Jurassic batholiths across FCFZ; 7.5 km of 16- 12 Ma F-W extension based on thrust plate	2007; Renik and Christie- Blick 2013: Bidgoli et al
	16	40.4581	12.2462	0.7912	correlations	2015)
nOwlshead-	0	90.0000	0.0000	0.0000	Estimated 26° of post-14 Ma clockwise vertical-axis	(Guest et al., 2003;
ePanamint (1016-1013)	14	35.9121	116.9886	19.4077	rotation from alignment of Wingate Wash fault to Amargosa detachment; offset magnetic anomalies	Euckow et al., 2005; Fridrich and Thompson, 2011)
Resting	0	90.0000	0.0000	0.0000	~5 km of 16-9 Ma WSW-directed separation based	(Snow and Wernicke,
Spring-Nopah	9	90.0000	0.0000	0.0000	on syntectonic Miocene deposits and ca. 9 Ma	2000; Niemi et al., 2001; Fridrich and Thompson
(1025-1026)	16	53.0142	49.6767	0.0267	volcanics deposited on tilted Resting Spring Rng	2011)
	0	90.0000	0.0000	0.0000	~14 km of total 16-7 Ma separation based on thrust	(Topping, 1993; Davis et
Nopah- Kingston	7	90.0000	0.0000	0.0000	plate correlations; 9 km (273°) from 16-13.5 Ma and 5 km (242°) from 13 5-7 Ma: 13 5-7 Ma separation	al., 1993; Workman et
(1026-1027)	12	45.5546	104.8543	0.0302	based on offset tuff and inferred cessation of slip on	Thompson, 2011; Lutz et
	16	53.6392	70.1319	0.1220	the Crystal Springs fz	al., 2021)
Kingston-	0	90.0000	0.0000	0.0000	~30 km of total separation (309°) on Stateline fz	(Burchfiel et al., 1983; Wernicke, 2004; Hill and
Spring (1027-	3.5	38.7400	9.7501	0.0273	since 13.1 Ma, with most slip prior to 3.5 Ma; post-	Blewitt, 2006; Guest et
1041)	13.1	38.0834	8.8208	0.2809	based models	al., 2007; Fridrich and Thompson, 2011)
a Blook Blook	0	90.0000	0.0000	0.0000	~25 km separation between Sperry Hills granite	(Topping, 1993; Renik, 2010: Fridrich and
sBlack-Black (1018-1014)	7	36.2844	116.0559	0.0709	16.7° of CW vertical axis rotation; setup yields ~20	Thompson, 2011;
. ,	12.2	36.3881	115.7466	16.7400	km separation on the Sheephead fault	Flemming, 2018)
	0	90.0000	0.0000	0.0000	~47 km of 15-11 Ma WSW-separation on Las	(Mornicko et al. 1000;
Spring-	10	27.5230	102.2949	0.0032	separation between Frenchman Mtn and CP based	Duebendorfer and Black.
Colorado	12	53.5334	42.0763	0.1045	on megabreccia and reconstruction of Virgin Mtns	1992; Axen, 1993;
Plateau (1041- 101)	14	51.8565	87.6819	0.3874	detachment; ~ 54 km of 16-12 Ma extension between Mormon Mtns and CP based on cross-	Duebendorfer et al., 1998: Snow and
	16	51.7063	87.0002	0.7585 section reconstruction through Beaver Dam/Tule Wer		Wernicke, 2000)
	18	52.9948	78.5016	0.8668	springs and Mormon Peak detachments	

Table S2

Fuler Pole rotations	and kinematic	inputs for the	northern	reconstruction	nath
				1000H3truotion	vaui

Fault Block Restoration	Time (Ma)	Longitude (°)	Latitude (°)	Angle (°)	Kinematic inputs and notes	References
	0	90	0	0.0000	~9.3 km of 12-6 Ma left-lateral oblique-normal	
nSilver Peak-sSilv	6	90.0000	0.0000	0.0000	separation, part of the total 20-30 km separation on the	(Stewart and
1 eak (1005-1000)	12	25.8348	-5.8675	0.0840	Silver Peak-Lone Mtn detachment system	Diamond, 1990;
sSilver Peak-	0	90.0000	0.0000	0.0000	~18 km of 12-6 Ma left-lateral oblique-normal	 Oldow et al., 1994; Petronis et al
Sylvania/Palmetto	6	90.0000	0.0000	0.0000	separation, part of the total 20-30 km separation on the	2002a; Petronis et
(1006-1007)	12	51.8797	72.6145	0.1659	Silver Peak-Lone Mtn detachment system	al., 2007; Oldow et
Sylvania/Palmetto-	0	90.0000	0.0000	0.0000	25° CW rotation from 12-6 Ma based on	et al., 2009; Petronis
Slate/Gold (1006-	6	90.0000	0.0000	0.0000	paleomagnetic, thermochronology and geochronology	Mueller, 2019)
1007)	12	37.4937	117.4980	25.0952	around the Silver Peak-Lone Mtn detachment system.	
	0	90.0000	0.0000	0.0000	5.5 km of 12-6 Ma normal-sense separation (306°):	(Machette et al.,
Slate/Gold- Granevine (1021-	6	90.0000	0.0000	0.0000	yields 0.9 mm/yr extension rate across Bonnie-Claire	2004; Hoeft and Erankel, 2010; Eov
1022)	12	40.3499	12.6587	0.0498	flat, consistent with very low Quaternary slip rates nearby	et al., 2012; Lifton et al., 2015)
	0	90.0000	0.0000	0.0000		(Hoisch and
Grapevine-	7	36.4318	-12.6568	-0.0003	35 km of 12-7 Ma normal-sense separation (306°)	Simpson, 1993; Appledate and
mainFuneral					offset Eocene-early Miocene normal faults, correlation	Hodges, 1995;
(1022-1023)	12	39.8758	11.6323	0.3151	of tectonic mélange, thermo-chronometry, thermo- kinematic modeling	Snow and Wernicke, 2000; Beyene, 2011)
swEuneral-	0	90.0000	0.0000	0.0000		(Cemen and
mainFuneral (1024-1023)	4	6.8788	-21.0804	0.0003	6.5 km of 4-7 Ma right-lateral oblique separation (312°)	Wright, 1990; Applegate and
	7	36.1802	6.0580	0.0590	on the ladit between these two blocks	Hodges, 1995)
Bare-mainFuneral	0	90.0000	0.0000	0.0000	~14 km of 12-7 Ma right-lateral separation (289°) on	(Wright and Troxel,
	7	90.0000	0.0000	0.0000	Amargosa segment Stateline fz based on offset	1993; Fridrich et
(1000 1020)	12	43.6370	18.9035	0.1270	anticline and Eocene-early Miocene rocks	2021)
Bullfrog-	0	90.0000	0.0000	0.0000	35 km of 12-7 Ma normal-sense separation (306°)	(Hamilton, 1988;
mainFuneral	7	36.2621	74.6176	0.0020	along the Bullfrog Hills detachment. Based on assumption that the Bullfrog Hills and Boundary	Maldonado, 1990;
(1029-1023)	12	39.7573	12.0696	0.3164	Canyon detachments are part of the same surface.	Beyene, 2011)
Greenwater-	0	90.0000	0.0000	0.0000		(Blair et al., 1999;
swFuneral	3.5	90.0000	0.0000	0.0000	9 km 6.5-3.5 Ma dextral separation based on an offset	Fridrich and
(1015_1024)	6.5	43.8788	18.4714	0.0721		Thompson, 2011)
mainFuneral-	0	90.0000	0.0000	0.0000	~22.6 km of 16-7 Ma normal-sense separation (286°)	Lutz et al., 2021:
Resting Spring	7	90.0000	0.0000	0.0000	based on thrust belt correlation and cross section	Fridrich et al.,
(1023-1025)	16	50.5202	36.8588	0.2032	reconstruction	2012
Specter-Spotted (1032-1033)	0	90.0000	0.0000	0.0000		(Snow and Prave.
	10	90.0000	0.0000	0.0000	75° of 18-10 Ma CW vertical axis rotation to re-align thrust structures	1994; Snow and
	18	36.9577	115.8616	12.3659		Wernicke, 2000)
	0	90.0000	0.0000	0.0000		(Snow and Prave
Spotted-Spring (1033-1041)	10	90.0000	0.0000	0.0000	63° of 18-10 Ma CW vertical axis rotation to re-align thrust structures	1994; Snow and
(1000 1041)	18	36.6464	116.0669	62.5470		Wernicke, 2000)
Montgomery-	4	90.0000	0.0000	0.0000	35° of 16-4 Ma CW vertical axis rotation and ~25 km of	(Snow and
Spring (1034- 1041)	16	36.5979	115.6534	35.6415	dextral oblique separation along the west Spring Mths fault; re-alignment of thrust structures	Lutz et al., 2000;

Table S3	
Euler Pole rotations and kinematic inputs for the southern reconstruction pa	ith

Fault Block Restoration	Time (Ma)	Longitude (°)	Latitude (°)	Angle (°)	Kinematic inputs and notes	References	
Argus-Slate (1036- 1037)	0	90.0000	0.0000	0.0000	7° of 3-0 Ma CW vertical-axis rotation from paleomag	(Schweig, 1989;	
	3	36.0419	117.2465	7.0000	and 17.1 km total separation (300°) on Panamint	and 17.1 km total separation (300°) on Panamint	Densmore and Anderson, 1997:
	15	38.2727	117.2437	0.5389	detachment from offset volcanics; setup yields 1 mm/yr post-3 Ma slip rate on Searles Valley fault and 0.3-0.6 mm/yr slip rate on the Ash Hill fault	Walker et al., 2005; Andrew and Walker, 2009)	
Slate-Panamint1 (1027-1012)	0	90.0000	0.0000	0.0000	17.1 km total separation (300°) on Panamint	(Walker et al.,	
	4.2	40.6102	11.1556	0.1052	detachment based on offset volcanics; 14.7 km (296°)	2005; Andrew and Walker, 2009)	
	15	42.4766	14.2776	0.1305	of which between Slate Rng and Panamint Mtns		
	0	90.0000	0.0000	0.0000	Total Garlock Fault zone offset of ~64-74 km based on	(Smith, 1962; Michael, 1966; Smith and Ketner, 1970; Jahns et al.,	
	3.8	34.5124	116.7611	16.2392			
Granite/Avawatz- Slate (1038-1037)	7	34.4442	116.7199	22.1881	Independence Dike Swarm, East-Sierran thrust		
	10.5	34.5566	116.6851	27.7993	sequence, and Miccene volcanics (Dacite domes and Bedrock Spring fm); ~33 km separation since ca. 3.8 Ma on conglomerate of Golden Valley/ Goler Gulch; ~19 km separation from 7-3.8 Ma	1971; Davis and Burchfiel, 1973; Carr et al., 1997; Monastero et al., 1997), (Andrew et al., 2014)	

Table S4

Thermo-chronometric data shown in Fig. S3

Mountain Range	Cooling Age (Ma)	Аде Туре	Reference		
White Mountains	11-13 Ma	AFT and (U-Th)/He	(Stockli et al., 2003)		
White Mountains	3-4 Ma	Apatite (U-Th)/He	(Stockli et al., 2003)		
Inyo Mountains	2.5-3.2 Ma	Apatite (U-Th)/He	(Lee et al., 2009)		
Silver Peak Range	11 Ma	ZFT	(Oldow et al., 1994)		
Silver Peak Range	6-7 Ma	AFT	(Oldow et al., 1994)		
Bare Mountain	10-11 Ma	AFT	(Ferrill et al., 2012)		
Funeral Mountains	9-11 Ma	Zircon (U-Th)/He	(Beyene, 2011)		
Funeral Mountains	7 Ma	Zircon (U-Th)/He	(Beyene, 2011)		
Funeral Mountains	5.5 Ma	AFT	(Holm and Dokka, 1991)		
N. Black Mountains	1-4 Ma	Apatite (U-Th)/He	(Sizemore et al., 2019)		
Central Black Mtns	4-7 Ma	Zircon (U-Th)/He	(Bidgoli et al., 2015)		
S. Black Mountains	8.5-5.4 Ma	Zircon (U-Th)/He	(Bidgoli et al., 2015)		
Panamint Range	2.5-4.5 Ma	Apatite (U-Th)/He	(Bidgoli et al., 2015)		
McCullough Range	16-11 Ma	Apatite (U-Th)/He	(Mahan et al., 2009)		
McCullough Range	5 Ma	Apatite (U-Th)/He	(Mahan et al., 2009)		
Slate Range	6-8 Ma	Apatite (U-Th)/He	(Walker et al., 2014)		
AFT: apatite fission track. ZFT: zircon fission track					

RECONSTRUCTION OF THE DEFLECTIONS IN THE LAB AND MOHO DEPTH GRADIENTS

Both the NW-trending part of the overall NE-trending LAB depth gradient (Figs. 1C main text and S8) and the Moho depth gradient deflections were reconstructed using a simple "cut and slide" method (Fig. S4-S8). We chose a cut line through the center of the whole-lithosphere shear zone (see Fig. 1A in main text), then translated the western slice to the SE along the cut line until the LAB depth gradient and Moho depth-contours were re-aligned. Maximum and minimum dextral offsets were estimated by reconstructing the most and least amount of offset, respectively while still re-aligning the LAB depth gradient and Moho depth contours. Table S5 and Figs. S4-S8 summarize the results of these basic reconstructions.

Table S5

Inferred Moho offsets from reconstruction of ENE-WSW-striking, NNW-SSE-trending crustal thickness gradient

Moho depth/crustal thickness model	Dextral offset magnitude	Notes
Cilbort 2012 (Fig. S5)	50 ± 14 km	Used ~34 km crustal thickness contour; sharply offset between the
Gilbert, 2012 (Fig. 33)	59 T 14 Kill	FCFZ and SFZ
	56 ± 6 km	Used -36 km Moho depth contour; deflected between the FCFZ and
Topo at al. 2012 (Fig. Sc)	50 I 0 KII	SFZ
Tape et al., 2012 (Fig. 30)	0.10 km	Used -34 km Moho depth contour; little offset between the FCFZ and
	0-10 km	SFZ; possibly offset along the PVFZ
Shen and Ritzwoller, 2016 (Fig. S7)	70 + 8 km	Used ~32 km crustal thickness contour; sharply offset between the
	70 ± 0 km	FCFZ and SFZ
Buebler and Shearer 2010 (Fig. S8)	65 + 15 km	Used 28-30 km crustal thickness contours; deflected over broad area
	00 1 10 km	between FCFZ and LVSZ
		In W DVR: faults offset velocity structures at 10 km depth, but
Les stal 2014	did pot colouloto	probably not 20 km depth slice (e.g. HMF)
Lee el al., 2014	did hot calculate	In E DVR: FCFZ and SFZ clearly truncate velocity structures at 10 km
		and 20 km depth slices

HMF: Hunter Mountain fault zone; LVSZ: Las Vegas Valley shear zone; FCFZ: Furnace Creek fault zone; SFZ: Stateline fault zone

Maps showing reconstruction of the LAB depth gradient deflection

0 km 50 100

56 ± 6 km dextral offset

Reconstruction using ~50 km dextral shear

Reconstruction using ~62 km dextral shear

Figure S4. Reconstructions of the dextral deflection in the LAB depth gradient. See Fig. S2 for abbreviations.

Reconstruction using ~45 km dextral shear

Reconstruction using ~72 km dextral shear

Figure S5. Reconstructions of the dextral deflection in the Moho depth gradient. Map after Gilbert (2012). FCFZ: Furnace Creek fault zone. SFZ: Stateline fault zone.

Reconstruction using ~50 km dextral shear

Reconstruction using ~62 km dextral shear

Figure S6. Reconstructions of the dextral deflection in the Moho depth gradient. Map after Tape et al. (2012). FCFZ: Furnace Creek fault zone. SFZ: Stateline fault zone.

Reconstruction using ~62 km dextral shear

Reconstruction using ~78 km dextral shear

Figure S7. Reconstructions of the dextral deflection in the Moho depth gradient. Map after Shen and Ritzwoller (2016). FCFZ: Furnace Creek fault zone. SFZ: Stateline fault zone.

Reconstruction using ~50 km dextral shear

Reconstruction using ~80 km dextral shear

Figure S8. Reconstructions of the dextral deflection in the Moho depth gradient. Map adapted from Buehler and Shearer (2010). FCFZ: Furnace Creek fault zone. SFZ: Stateline fault zone.

UPPER-CRUSTAL DEXTRAL SHEAR MAGNITUDE ACROSS THE WHOLE-LITHOSPHERE SHEAR ZONE

The 57 ± 7 km of upper-crustal dextral shear across the whole-lithosphere shear zone since ca. 8-7 Ma is based on averaging the sum of the total separation of upper-crustal fault blocks across the zone since 8 Ma and 7 Ma, based on kinematic modeling of offset features (see Figs. S2, S9, Animation 1, Table S1, and Lutz, 2021). The post-8 Ma separation along the Fish Lake Valley-Northern Death Valley-Furnace Creek fault zone (abbreviated FCFZ; See Fig. S2) of ~45-48 km was calculated as separation between the White Mountains (block 1004 in GPlates model) and the Funeral Mountains (block 1023 in GPlates model). This was added to the post-8 Ma separation along the Stateline fault zone (SFZ~16 km), which was calculated as separation between the Kingston Range (block 1027 in GPlates model) and the Spring Mountains (block 1041 in GPlates model). Total post-7 Ma separations along the FCFZ and SFZ are ~38 km and ~13 km, respectively. Therefore, the magnitudes of post-8 and post-7 Ma upper-crustal dextral shear across the whole-lithosphere shear zone are 64 km and 50 km, respectively $(57 \pm 7 \text{ km})$. This magnitude was close to the magnitudes estimated from the LCML offset markers (the deflected or offset depth gradients documented above) and so was considered to be the timeframe for when whole-lithosphere shear initiated.

Upper-crustal reconstructions of dextral shear across the whole-lithosphere shear zone

Figure S9. Reconstructions of upper-crustal extension and shear across the whole-lithosphere shear zone. The reconstruction shows the magnitude of separation across the area bounded by the Furnace Creek and Stateline fault zones for pre-8 Ma decoupled conditions and post-8 Ma coupled, whole-lithosphere shear. Specific offset markers are listed in Table 1 and described in detail in Lutz, 2021. See Fig. S2 for the explanation of thrust plates (colored polygons).

SUPPLEMENTAL REFERENCES

- Andrew, J.E., and Walker, J.D., 2009, Reconstructing late Cenozoic deformation in central Panamint Valley, California: Evolution of slip partitioning in the Walker Lane: Geosphere, v. 5, no. 3, p. 172–198, doi: 10.1130/GES00178.1.
- Andrew, J.E., Walker, J.D., and Monastero, F.C., 2014, Evolution of the central Garlock fault zone, California: A major sinistral fault embedded in a dextral plate margin: GSA Bulletin, v. 127, no. 1-2, p. 227–249, doi: 10.1130/B31027.1.
- Applegate, J.D.R., and Hodges, K.V., 1995, Mesozoic and Cenozoic extension recorded by metamorphic rocks in the Funeral Mountains, California: Geological Society of America Bulletin, v. 107, no. 9, p. 1063– 1076, doi: 10.1130/0016-7606(1995)107<1063:macerb>2.3.co;2.
- Axen, G.J., 1993, Ramp-flat detachment faulting and low-angle normal reactivation of the Tule Springs thrust, southern Nevada: Geological Society of America Bulletin, v. 105, no. 8, p. 1076–1090.
- Bachman, S.B., 1978, Pliocene-Pleistocene break-up of the Sierra Nevada–White-Inyo Mountains block and formation of Owens Valley: Geology, v. 6, no. 8, p. 461–463.
- Bacon, S.N., and Pezzopane, S.K., 2007, A 25,000-year record of earthquakes on the Owens Valley fault near Lone Pine, California: Implications for recurrence intervals, slip rates, and segmentation models: Geological Society of America Bulletin, v. 119, no. 7-8, p. 823–847.
- Beyene, M.A., 2011. Mesozoic burial, Mesozoic and Cenozoic exhumation of the Funeral Mountains core complex, Death Valley, Southeastern California. PhD Thesis; 363 p. University of Nevada, Las Vegas.
- Bidgoli, T.S., Amir, E., Walker, J.D., Stockli, D.F., Andrew, J.E., and Caskey, S.J., 2015, Low-temperature thermochronology of the Black and Panamint mountains, Death Valley, California: Implications for geodynamic controls on Cenozoic intraplate strain: Lithosphere, v. 7, no. 4, p. 473–480, doi: 10.1130/L406.1.
- Blair, T.C., Raynolds, R.G., Wright, L.A., and Troxel, B.W., 1999, Sedimentology and tectonic implications of the Neogene synrift Hole in the Wall and Wall Front members, Furnace Creek basin, Death Valley, *in* Wright, L.A. and Troxel, B.W. eds., *Cenozoic basins of the Death Valley Region: Geological Society of America Special Paper 333*, p. 127-168.
- Blakely, R.J., Jachens, R.C., Calzia, J.P., and Langenheim, V.E., 1999, Cenozoic basins of the Death Valley extended terrane as reflected in regional-scale gravity anomalies, *in* Wright, L.A. and Troxel, B.W. eds., *Cenozoic basins of the Death Valley Region: Geological Society of America Special Paper 333*, p. 1-16.
- Burchfiel, B.C., Hamill, G.S., and Wilhelms, D.E., 1983, Structural geology of the Montgomery Mountains and the northern half of the Nopah and Resting Spring Ranges, Nevada and California: Geological Society of America Bulletin, v. 94, no. 11, p. 1359.
- Burchfiel, B.C., Hodges, K.V., and Royden, L.H., 1987, Geology of Panamint Valley-Saline Valley pull-apart system, California: Palinspastic evidence for low-angle geometry of a Neogene range-bounding fault: Journal of Geophysical Research: Solid Earth, v. 92, no. B10, p. 10422–10426.
- Carr, M.D., Christiansen, R.L., Poole, F.G., and Goodge, J.W., 1997, Bedrock geologic map of the El Paso Mountains in the Garlock and El Paso Peaks 7–1/2' quadrangles: Kern County, California: US Geological Survey Miscellaneous Investigations Series Map I-2389.

- Cemen, I., and Wright, L.A., 1990, Effect of Cenozoic extension on Mesozoic thrust surfaces, *in*, Wernicke, B.P., ed., *Basin and Range Extensional Tectonics Near the Latitude of Las Vegas, Nevada,* Geological Society of America Memoir 176, p. 305-316.
- Davis, G.A., and Burchfiel, B.C., 1973, Garlock fault: An intracontinental transform structure, southern California: Geological Society of America Bulletin, v. 84, no. 4, p. 1407–1422.
- Davis, G.A., Fowler, T.K., Bishop, K.M., Brudos, T.C., Friedmann, S.J., Burbank, D.W., Parke, M.A., and Burchfiel, B.C., 1993, Pluton pinning of an active Miocene detachment fault system, eastern Mojave Desert, California: Geology, v. 21, no. 7, p. 627–5.
- Densmore, A.L., and Anderson, R.S., 1997, Tectonic geomorphology of the Ash Hill fault, Panamint Valley, California: Basin Research, v. 9, no. 1, p. 53–63.
- Duebendorfer, E.M., and Black, R.A., 1992, Kinematic role of transverse structures in continental extension: An example from the Las Vegas Valley shear zone, Nevada: Geology, v. 20, no. 12, p. 1107–1110.
- Duebendorfer, E.M., Beard, L.S., and Smith, E.I., 1998, Restoration of Tertiary deformation in the Lake Mead region, southern Nevada: The role of strike-slip transfer faults: Accommodation zones and transfer zones: The regional segmentation of the Basin and Range province: Geological Society of America Special Paper, v. 323, p. 127–148.
- Ferrill, D.A., Morris, A.P., Stamatakos, J.A., Waiting, D.J., Donelick, R.A., and Blythe, A.E., 2012, Constraints on exhumation and extensional faulting in southwestern Nevada and eastern California, U.S.A., from zircon and apatite thermochronology: Lithosphere, v. 4, no. 1, p. 63–76, doi: 10.1130/L171.1.
- Flemming, 2018, Geometry, timing, and kinematics of Neogene extensional and transtensional structures of southern Death Valley: Implications for regional reconstructions and a corrective method for rigid body rotations. [PHD Thesis]. The University of Texas, El Paso.
- Foy, T.A., Frankel, K.L., Lifton, Z.M., Johnson, C.W., and Caffee, M.W., 2012, Distributed extensional deformation in a zone of right-lateral shear: Implications for geodetic versus geologic rates of deformation in the eastern California shear zone-Walker Lane: Tectonics, v. 31, no. 4, doi: 10.1029/2011TC002930.
- Frankel, K.L., Dolan, J.F., Finkel, R.C., Owen, L.A., and Hoeft, J.S., 2007, Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and cosmogenic 10Be geochronology: v. 34, no. 18, doi: 10.1029/2007GL030549.
- Fridrich, C.J., and Thompson, R.A., 2011, Cenozoic tectonic reorganizations of the Death Valley region, southeast California and southwest Nevada. U.S. Geological Survey Professional Paper 1783. 36 p.
- Fridrich, C.J., Thompson, R.A., Slate, J.L., Berry, M.E., and Machette, M.N., 2012, Geologic map of the southern Funeral Mountains including nearby groundwater discharge sites in Death Valley National Park, California and Nevada: Scientific Investigations Map, no. 3151, doi: 10.3133/sim3151.
- Guest, B., Niemi, N., 1996, Clayton, R., Ducea, M., Jones, C.H., Mahan, K.H., and Niemi, N.A., 2007, Stateline fault system: A new component of the Miocene-Quaternary Eastern California shear zone: Geological Society of America Bulletin, v. 119, no. 11-12, p. 1337–1347.
- Guest, B., Pavlis, T.L., Golding, H., and Serpa, L., 2003, Chasing the Garlock: A study of tectonic response to vertical axis rotation: Geology, v. 31, no. 6, p. 553-556.

- Hall, W.E., 1971, Geology of the Panamint Butte Quadrangle, Inyo County, California: U.S. Geological Survey Bulletin, no. 1299, 67 p.
- Hamilton, W.B., 1988, Detachment faulting in the Death Valley region, California and Nevada: Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada US Geological Survey Bulletin, v. 1790, p. 51–85.
- Hill, E.M., and Blewitt, G., 2006, Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network, Geophyscial Research Letters, v. 33, no. 14, p. 1008–1005, doi: 10.1029/2006GL026140.
- Hodges, K.V., McKenna, L.W., Stock, J., Knapp, J., Page, L., Sternlof, K., Silverberg, D., Wüst, G., and Walker, J.D., 1989, Evolution of extensional basins and basin and range topography west of Death Valley, California: Tectonics: v. 8, no. 3, p. 453–467, doi: 10.1029/tc008i003p00453.
- Hoeft, J.S., and Frankel, K.L., 2010, Temporal variations in extension rate on the Lone Mountain fault and strain distribution in the eastern California shear zone–Walker Lane: Geosphere, v. 6, no. 6, p. 917–936, doi: 10.1130/GES00603.1.
- Hoisch, T.D., and Simpson, C., 1993, Rise and tilt of metamorphic rocks in the lower plate of a detachment fault in the Funeral Mountains, Death Valley, California: Journal of Geophysical Research: Solid Earth, v. 98, no. B4, p. 6805–6827, doi: 10.1029/92jb02411.
- Holm, D.K., and Dokka, R.K., 1991, Major Late Miocene cooling of the middle crust associated with extensional orogenesis in the Funeral Mountains, California: v. 18, no. 9, p. 1775–1778, doi: 10.1029/91gl02079.
- Jahns, R.H., Troxel, B.W., and Wright, L.A., 1971, Some structural implications of a late Precambrian– Cambrian section in the Avawatz Mountains, California. Geological Society of America Abstracts with Programs v. 3, p. 140.
- Kirby, E., Anandakrishnan, S., Phillips, F., and Marrero, S., 2008, Late Pleistocene slip rate along the Owens Valley fault, eastern California: Geophysical Research Letters, v. 35, no. 1.
- Klinger, R.E., and Sarna-Wojcicki, A.M., 2001, Stop A2 Active tectonics and deposition in the Lake Rogers basin: Quaternary and Late Pliocene Geology of the Death Valley Region: Recent Observations on Tectonics, Stratigraphy, and Lake Cycles (Guidebook for the 2001 Pacific Cell—Friends of the Pleistocene Fieldtrip), p. 25.
- Knott, J.R., Lutz, B.M., Heizler, M., Phillips, F.M., and Heitkamp, K., 2019, Tectonic Reorganization in the Death Valley Area at 4 Ma: Geological Society of America Abstracts with Programs. V. 51, no. 5.
- Lee, J., Rubin, C.M., and Calvert, A., 2001a, Quaternary faulting history along the Deep Springs fault, California: Geological Society of America Bulletin, v. 113, no. 7, p. 855–869.
- Lee, J., Spencer, J., and Owen, L., 2001b, Holocene slip rates along the Owens Valley fault, California: Implications for the recent evolution of the Eastern California Shear Zone: Geology, v. 29, no. 9, p. 819– 822.
- Lee, J., Stockli, D.F., Owen, L.A., Finkel, R.C., and Kislitsyn, R., 2009, Exhumation of the Inyo Mountains, California: Implications for the timing of extension along the western boundary of the Basin and Range Province and distribution of dextral fault slip rates across the eastern California shear zone: Tectonics, v. 28, no. 1, p. n/a–n/a, doi: 10.1029/2008TC002295.

- Lifton, Z.M., Frankel, K.L., and Newman, A.V., 2015, Latest Pleistocene and Holocene slip rates on the Lone Mountain fault: Evidence for accelerating slip in the Silver Peak-Lone Mountain extensional complex: Tectonics, v. 34, no. 3, p. 449–463, doi: 10.1002/2013TC003512.
- Luckow, H., Pavlis, T., Serpa, L., Guest, B., Wagner, D., Snee, L., Hensley, T., Korjenkov, A., 2005. Late Cenozoic sedimentation and volcanism during transtensional deformation in Wingate Wash and the Owlshead Mountains, Death Valley, Earth-Science Reviews, v. 73, p. 177–219, doi:10.1016/j.earscirev.2005.07.013
- Machette M. Haller K. Wald L. (2004). Quaternary Fault and Fold Database for the nation, USGS Fact Sheet FS2004-3033 , 2 p.
- Mahan, K.H., Guest, B., Wernicke, B.P., and Niemi, N.A., 2009, Low-temperature thermochronologic constraints on the kinematic history and spatial extent of the Eastern California shear zone: Geosphere, v. 5, no. 6, p. 483–495, doi: 10.1130/GES00226.1.
- Maldonado, F., 1990, Structural geology of the upper plate of the Bullfrog Hills detachment fault system, southern Nevada: Geological Society of America Bulletin, v. 102, no. 7, p. 992–1006.
- Michael, E.D., 1966, Large lateral displacement on Garlock fault, California, as measured from offset fault system: Geological Society of America Bulletin, v. 77, no. 1, p. 111–114.
- Monastero, F.C., Sabin, A.E., and Walker, J.D., 1997, Evidence for post-early Miocene initiation of movement on the Garlock fault from offset of the Cudahy Camp Formation, east-central California: Geology, v. 25, no. 3, p. 247–250.
- Mueller, N.J., 2019, Pliocene Kinematic Reorganization, Fault Geometry, Basin Evolution, and Displacement Budget Along the Furnace Creek – Fish Lake Valley Fault Zone, Eastern California and Western Nevada:, p. 1–170.
- Nachbor, A.C., and Wetmore, P., 2017, Preliminary Structure from motion data for the Towne Pass fault, northern Death Valley National Park, California, Geological Society of America Abstracts with programs, v. 49, no. 6, doi: 10.1130/abs/2017AM-302776
- Niemi, N.A., Wernicke, B.P., Brady, R.J., Saleeby, J.B., and Dunne, G.C., 2001, Distribution and provenance of the middle Miocene Eagle Mountain Formation, and implications for regional kinematic analysis of the Basin and Range province: Geological Society of America Bulletin, v. 113, no. 4, p. 419–442.
- Oakes, E.H., 1987, Age and rates of displacement along the Furnace Creek fault zone, northern Death Valley, California: Geological Society of America Abstracts with Programs. v. 19, p. 437.
- Oldow, J.S., Elias, E.A., Ferranti, L., McClelland, W.C., McIntosh, W.C., and Cashman, P.H., 2009, Late Miocene to Pliocene synextensional deposition in fault-bounded basins within the upper plate of the western Silver Peak–Lone Mountain extensional complex, west-central Nevada: Late Cenozoic structure and evolution of the Great Basin–Sierra Nevada transition: Geological Society of America Special Paper, v. 447, p. 275–312.
- Oldow, J.S., Kohler, G., and Donelick, R.A., 1994, Late Cenozoic extensional transfer in the Walker Lane strike-slip belt, Nevada: Geology, v. 22, no. 7, p. 637-640.
- Oswald, J.A., and Wesnousky, S.G., 2002, Neotectonics and Quaternary geology of the Hunter Mountain fault zone and Saline Valley region, southeastern California: Geomorphology, v. 42, no. 3, p. 255–278, doi: 10.1016/S0169-555X(01)00089-7.

- Petronis, M.S., Geissman, J.W., Holm, D.K., Wernicke, B.P., and Schauble, E., 2002a, Assessing vertical axis rotations in large-magnitude extensional settings: A transect across the Death Valley extended terrane, California: Journal of Geophysical Research: Solid Earth, v. 107, no. B1, p. EPM 4–1–EPM 4–21, doi: 10.1029/2001JB000239.
- Petronis, M.S., Geissman, J.W., Oldow, J.S., and McIntosh, W.C., 2002b, Paleomagnetic and 40Ar/39Ar geochronologic data bearing on the structural evolution of the Silver Peak extensional complex, west-central Nevada: Geological Society of America Bulletin, v. 114, no. 9, p. 1108–1130.
- Petronis, M.S., Geissman, J.W., Oldow, J.S., McIntosh, W.C., and Cashman, P.H., 2009, Late Miocene to Pliocene vertical-axis rotation attending development of the Silver Peak–Lone Mountain displacement transfer zone, west-central Nevada: Late Cenozoic structure and evolution of the Great Basin–Sierra Nevada transition: Geological Society of America Special Paper, v. 447, p. 215–253.
- Petronis, M.S., Geissman, J.W., Oldow, J.S., McIntosh, W.C., and Roeske, S.M., 2007, Tectonism of the southern Silver Peak Range: Paleomagnetic and geochronologic data bearing on the Neogene development of a regional extensional complex, central Walker Lane, Nevada: Special Papers-Geological Society of America, v. 434, p. 81.
- Reheis, M.C., and Sawyer, T.L., 1997, Late Cenozoic history and slip rates of the Fish Lake valley, Emigrant Peak, and Deep Springs fault zones, Nevada and California: Geological Society of America Bulletin, v. 109, no. 3, p. 280–299.
- Renik, B., 2010, Distribution of Neogene extension and strike slip in the Death Valley region, California-Nevada, with implications for palinspastic reconstruction and models of normal faulting [Ph.D. thesis]: New York City, Columbia University, 238 p.
- Renik, B., and Christie-Blick, N., 2013, A new hypothesis for the amount and distribution of dextral displacement along the Fish Lake Valley-northern Death Valley-Furnace Creek fault zone, California-Nevada: Tectonics, v. 32, no. 2, p. 123–145, doi: 10.1029/2012TC003170.
- Schweig, E.S., III, 1989, Basin-range tectonics in the Darwin Plateau, southwestern Great Basin, California: Geological Society of America Bulletin, v. 101, no. 5, p. 652–662, doi: 10.1130/0016-7606(1989)101<0652:brtitd>2.3.co;2.
- Smith, G.I., 1962, Large Lateral Displacement on Garlock Fault, Califonia, as Measured from Offset Dike Swarm: AAPG Bulletin, v. 46, no. 1, p. 85–104.
- Smith, G.I., and Ketner, K.B., 1970, Lateral displacement on the Garlock fault, southeastern California, suggested by offset sections of similar metasedimentary rocks: US Geological Survey Professional Paper, v. 700, p. D1–D9.
- Snow, J.K., and Prave, A.R., 1994, Covariance of structural and stratigraphic trends: Evidence for anticlockwise rotation within the Walker Lane Belt Death Valley region, California and Nevada: Tectonics, v. 13, no. 3, p. 712–724.
- Snow, J.K., and Wernicke, B.P., 2000, Cenozoic tectonism in the central Basin and Range; magnitude, rate, and distribution of upper crustal strain: American Journal of Science, v. 300, no. 9, p. 659–719, doi: 10.2475/ajs.300.9.659.
- Snow, J.K., and White, C., 1990, Listric normal faulting and synorogenic sedimentation, northern Cottonwood Mountains, Death Valley region, California, *in*, Wernicke, B.P., *Basin and Range Extensional Tectonics Near the Latitude of Las Vegas, Nevada:* Geological Society of America Memoir, v. 176, p. 413–445.

- Snyder, N.P., and Hodges, K.V., 2000, Depositional and tectonic evolution of a supradetachment basin: 40Ar/39Ar geochronology of the Nova Formation, Panamint Range, California: Basin Research, v. 12, no. 1, p. 19–30, doi: 10.1046/j.1365-2117.2000.00108.x.
- Sternloff, K.R., 1988, Structural style and kinematic history of the active Panamint-Saline extensional system, Inyo county, California [Ph.D. thesis]: Cambridge, Massachusetts Institute of Technology, 30 p
- Stewart, J.H., 1983, Extensional tectonics in the Death Valley area, California: Transport of the Panamint Range structural block 80 km northwestward: Geology, v. 11, no. 3, p. 153, doi: 10.1130/0091-7613(1983)11<153:etitdv>2.0.co;2.
- Stewart, J.H., and Diamond, D.S., 1990, Changing patterns of extensional tectonics; overprinting of the basin of the middle and upper Miocene Esmeralda Formation in western Nevada by younger structural basins, *in* Wernicke, B.P. ed., *Basin and Range Extensional Tectonics Near the Latitude of Las Vegas, Nevada,* Geological Society of America Memoir, p. 447–476.
- Stockli, D.F., Dumitru, T.A., McWilliams, M.O., and Farley, K.A., 2003, Cenozoic tectonic evolution of the White Mountains, California and Nevada: Geological Society of America Bulletin, v. 115, no. 7, p. 788– 816, doi: 10.1130/0016-7606(2003)115<0788:cteotw>2.0.co;2.
- Topping, D.J., 1993, Paleogeographic reconstruction of the Death Valley extended region: Evidence from Miocene large rock-avalanche deposits in the Amargosa Chaos Basin, California: Geological Society of America Bulletin, v. 105, no. 9, p. 1190–1213, doi: 10.1130/0016-7606(1993)105<1190:protdv>2.3.co;2.
- Walker, J.D., Bidgoli, T.S., Didericksen, B.D., Stockli, D.F., and Andrew, J.E., 2014, Middle Miocene to recent exhumation of the Slate Range, eastern California, and implications for the timing of extension and the transition to transtension: Geosphere, v. 10, no. 2, p. 276–291, doi: 10.1130/ges00947.1.
- Walker, J.D., Kirby, E., and Andrew, J.E., 2005, Strain transfer and partitioning between the Panamint Valley, Searles Valley, and Ash Hill fault zones, California: Geosphere, v. 1, no. 3, p. 111, doi: 10.1130/GES00014.1.
- Wernicke, B.P., 2004, Tectonic implications of a dense continuous GPS velocity field at Yucca Mountain, Nevada: Journal of Geophysical Research: Solid Earth, v. 109, no. B12, p. 189, doi: 10.1029/2003JB002832.
- Wernicke, B.P., Axen, G.J., and Snow, J.K., 1988, Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada: Geological Society of America Bulletin, v. 100, no. 11, p. 1738–1757.
- Wright, L.A., and Troxel, B.W., 1993, Geologic map of the central and northern Funeral Mountains and adjacent areas: Death Valley region, southern California: US Geological Survey Miscellaneous Investigations Series Map I–2305.