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A. DESCRIPTION OF GPLATES KINEMATIC RECONSTRUCTION 

Lutz (2021) reconstructed extension in the central Basin and Range using three main 

reconstruction paths that relate fault block kinematics to relative Euler pole rotations (Fig. S1 

and Tables S1-S3). The main reconstruction path links the Sierra Nevada to the Colorado Plateau 

through the center of the Death Valley region (black in Fig. S1 and Table S1). The northeastern 

reconstruction (blue in Fig. S1) path relates fault block kinematics northeast of the Furnace 

Creek fault zone (FCFZ) (e.g. Silver Peak Range to Funeral Mountains) to the main 

reconstruction path via the Resting Spring Range (Table S2). The southern reconstruction path 

(green in Fig. S1) involves the Argus Mountains, Slate Range, and Granite Mountains south of 

the Garlock fault (Table S3). This path links to the main path via the Panamint Mountains. 

Here we simply present tables of Eueler pole rotations that drive the kinematic model. 

The relative motions between crustal fault blocks from which the rotations are derived can be 

found in Lutz (2021). 
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Figure S1. Map of the Death Valley region showing total reconstruction vectors between major fault blocks. Mountains and 
ranges associated with the numbers shown in range blocks are given in Tables S1-S3 and are separated out as sections in the 
Supplemental Material  text. Abbreviations for mountains (fault blocks): AM: Argus Mountains. BFH: Bullforg Hills. c/sBM: 
Central/S Black Mountains. BM: Bare Mountain. BR: Benton Range. CM: Cottonwood Mountains. COSO: Coso Range. 
m/swFM: Main/SW Funeral Mountains. GAM: Granite-Avawatz Mountains. GR: Greenwater Range. GVM: Grapevine 
Mountains. IM: Inyo Mountains. KR: Kingston Range. LCR: Last Chance Range. MM: Montgomery Mountains. NR: Nopah 
Range. n/sOM: N/S Owlshead Mountains. E/W Panamint Mountains. RS: Resting Spring Range. SaR: Saline Range. SM: Spring 
Mountains. SN: Sierra Nevada. n/sSP: N/S Silver Peak Range. SpeR/Specter Range. SpoR: Spotted Range. SPM: Sylvania-
Palmetto Mountains. SR: Slate Range. SRGM: Slate Range-Gold Mountains. e/wPM: YM: Yucca Mountain.  WM: White 
Mountains.  
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Figure S2. Map of the Death Valley region showing Quaternary faults, thrust plates, basin thicknesses, offset features, and the 
LAB-depth gradient (dashed white lines and color map on top right). Thrust plate map after Lutz et al. (2021). AD: breakaway of 
Amargosa Detachment. BCD: Boundary Canyon detachment. BMF: Black Mountains fault zone. CSF: Crystal Springs fault 
zone.  EF: Emigrant fault. FLVF: Fish Lake Valley fault. GFZ: Garlock fault zone. HMF: Hunter Mountain fault zone. KRD: 
Kingston Range detachment. OVF: Owens Valley fault zone. SHF: Sheephead fault zone. SNF: Sierra Nevada frontal fault zone. 
SFZ: Stateline fault zone. WMF: White Mountains fault zone. 
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Figure S3. Reconstructions of the DVR at selected times. See Fig. S2 for the thrust plates and abbreviations. See animation for a 
full reconstruction sequence in 0.1-Myr time-steps. Note the evolution of the LAB depth gradient deflection in C and D (dashed 
white line). 
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Table S1 
      

Euler Pole rotations and kinematic inputs for the main reconstruction path 
 

Fault Block 
Restoration 

Time 
(Ma) 

Longitude 
(°) 

Latitude 
(°) 

Angle 
(°) 

Kinematic inputs and notes References 

Sierra Nevada-
White (1001-
1004) 

0 90.0000 0.0000 0.0000 11.1 km of post-2.8 Ma separation (322°) on Owens 
Valley fault; yields ~3.4-3.7 mm/yr slip rate, 
consistent with paleo-seismic and GPS-based slip-
rate models; 3 km 15-12 Ma separation on White M 
fz 

(Bachman, 1978; Lee et 
al., 2001b; Stockli et al., 
2003; Kirby et al., 2008) 

2.8 29.9617 -2.6572 0.0994 
12 29.9617 -2.6572 0.0994 
15 37.8448 7.3692 0.1185 

Benton-White 
(WM) (1002-
1004)  

0 90.0000 0.0000 0.0000 7.5 km of 3-0 Ma NW-separation on White Mtns fz 
based on gravity-based basin depth (Lutz, 2021) 

3 47.3236 28.3724 0.0670 

White-Inyo 
(1004-1008) 

0 3.0531 -25.7158 0.0000 1.1 km of post-1.7 Ma separation (306°) on Deep 
Springs fault (Lee et al., 2001a) 

1.7 44.5760 20.3368 0.0093 

Inyo-Last 
Chance (1008-
1010) 

0 90.0000 0.0000 0.0000 
8.2 km of 3.5-0 Ma NW-separation on the normal 
faults in the Saline Range linked to dextral slip on 
the Hunter Mountain fz 

(Burchfiel et al., 1987; 
Sternlof, 1988; Oswald 
and Wesnousky, 2002; 
Lee et al., 2009; Knott et 
al., 2019) 

3.5 43.8131 17.8028 0.0730 

Last Chance-
Cottonwood 
(1010-1011) 

0 90.0000 0.0000 0.0000 2 km of post-4 Ma separation (301°) on the Tin 
Mountain fz 

(Snow and White, 1990; 
Knott et al., 2019) 4 42.7356 16.1162 0.0183 

Cottonwood-
wPanamint 
(1011-1012) 

0.0 90.0000 0.0000 0.0000 
2.5 km of 3-4.2 Ma NW-separation on the Towne 
Pass fault zone; the 7.6 Ma rotation is to align the 
offset granitic stocks along the FCFZ; 5.7 km of 7.6-
11.4 Ma slip to get to the 8.5 km of total Miocene-
recent Cottonwood-Panamint Mountains separation. 

(Hall, 1971; Hodges et 
al., 1989; Snyder and 
Hodges, 2000; Andrew 
and Walker, 2009; 
Nachbor and Wetmore, 
2017) 

3.0 22.0385 -10.7998 0.0004 
4.2 42.5509 15.7942 0.0236 
7.6 51.6544 42.2697 0.0552 

11.4 51.1336 39.4012 0.0758 

ePanamint-
Resting Spring 
(1013-1025) 

1.2 31.9479 0.6385 0.0373 4.05 km of post-1.2 Ma offset from  basaltic gravels; 
3.95 km offset of gravels from 3.3-1.2 Ma; yields 3.5 
mm/yr for FCFZ; Closure of central DV graben at 7 
Ma; ~40 km of post-7.6 Ma offset from granitic stock 
along FCFZ; 45 km of post-12 Ma NW-separation 
on Jurassic batholiths across FCFZ; 7.5 km of 16-
12 Ma E-W extension based on thrust plate 
correlations 

(Stewart, 1983; Oakes, 
1987; Reheis and 
Sawyer, 1997b; Klinger 
and Sarna-Wojcicki, 
2001; Frankel et al., 
2007; Renik and Christie-
Blick, 2013; Bidgoli et al., 
2015) 

3.3 31.8906 0.5727 0.0714 
7 26.7826 -5.0154 0.1260 

7.6 31.8855 0.6439 0.2997 
12 38.9975 9.9071 0.7314 
16 40.4581 12.2462 0.7912 

nOwlshead-
ePanamint 
(1016-1013) 

0 90.0000 0.0000 0.0000 Estimated 26° of post-14 Ma clockwise vertical-axis 
rotation from alignment of Wingate Wash fault to 
Amargosa detachment; offset magnetic anomalies 

(Guest et al., 2003; 
Luckow et al., 2005; 
Fridrich and Thompson, 
2011)  

14 35.9121 116.9886 19.4077 

Resting 
Spring-Nopah 
(1025-1026) 

0 90.0000 0.0000 0.0000 ~5 km of 16-9 Ma WSW-directed separation based 
on syntectonic Miocene deposits and ca. 9 Ma 
volcanics deposited on tilted Resting Spring Rng 

(Snow and Wernicke, 
2000; Niemi et al., 2001; 
Fridrich and Thompson, 
2011)  

9 90.0000 0.0000 0.0000 
16 53.0142 49.6767 0.0267 

Nopah-
Kingston 
(1026-1027) 

0 90.0000 0.0000 0.0000 ~14 km of total 16-7 Ma separation based on thrust 
plate correlations; 9 km (273°) from 16-13.5 Ma and 
5 km (242°) from 13.5-7 Ma; 13.5-7 Ma separation 
based on offset tuff and inferred cessation of slip on 
the Crystal Springs fz 

(Topping, 1993; Davis et 
al., 1993; Workman et 
al., 2003; Fridrich and 
Thompson, 2011; Lutz et 
al., 2021) 

7 90.0000 0.0000 0.0000 
12 45.5546 104.8543 0.0302 
16 53.6392 70.1319 0.1220 

Kingston-
Spring (1027-
1041) 

0 90.0000 0.0000 0.0000 ~30 km of total separation (309°) on Stateline fz 
since 13.1 Ma, with most slip prior to 3.5 Ma; post-
3.5 Ma slip rate of 0.8 mm/yr, consistent with GPS-
based models  

(Burchfiel et al., 1983; 
Wernicke, 2004; Hill and 
Blewitt, 2006; Guest et 
al., 2007; Fridrich and 
Thompson, 2011) 

3.5 38.7400 9.7501 0.0273 

13.1 38.0834 8.8208 0.2809 

sBlack-Black 
(1018-1014) 

0 90.0000 0.0000 0.0000 ~25 km separation between Sperry Hills granite 
megabreccia and Kingston Range pluton; includes 
16.7° of CW vertical axis rotation; setup yields ~20 
km separation on the Sheephead fault 

(Topping, 1993; Renik, 
2010; Fridrich and 
Thompson, 2011; 
Flemming, 2018) 

7 36.2844 116.0559 0.0709 
12.2 36.3881 115.7466 16.7400 

Spring-
Colorado 
Plateau (1041-
101) 

0 90.0000 0.0000 0.0000 ~47 km of 15-11 Ma WSW-separation on Las 
Vegas Valley shear zone, ~65 km of 16-12 Ma 
separation between Frenchman Mtn and CP based 
on megabreccia and reconstruction of Virgin Mtns 
detachment; ~ 54 km of 16-12 Ma extension 
between Mormon Mtns and CP based on cross-
section reconstruction through Beaver Dam/Tule 
springs and Mormon Peak detachments 

(Wernicke et al., 1988; 
Duebendorfer and Black, 
1992; Axen, 1993; 
Duebendorfer et al., 
1998; Snow and 
Wernicke, 2000) 

10 27.5230 102.2949 0.0032 
12 53.5334 42.0763 0.1045 
14 51.8565 87.6819 0.3874 
16 51.7063 87.0002 0.7585 
18 52.9948 78.5016 0.8668 

 

  



 7 

 

 
Table S2 

    
  

Euler Pole rotations and kinematic inputs for the northern reconstruction path  

Fault Block 
Restoration 

Time 
(Ma) 

Longitude 
(°) 

Latitude 
(°) 

Angle 
(°) Kinematic inputs and notes References 

nSilver Peak-sSilv 
Peak (1005-1006) 

0 90 0 0.0000 ~9.3 km of 12-6 Ma left-lateral oblique-normal 
separation, part of the total 20-30 km separation on the 
Silver Peak-Lone Mtn detachment system 

(Stewart and 
Diamond, 1990; 
Oldow et al., 1994; 
Petronis et al., 
2002a; Petronis et 
al., 2007; Oldow et 
al., 2009; Petronis 
et al., 2009; 
Mueller, 2019) 

6 90.0000 0.0000 0.0000 
12 25.8348 -5.8675 0.0840 

sSilver Peak-
Sylvania/Palmetto 

(1006-1007) 

0 90.0000 0.0000 0.0000 ~18 km of 12-6 Ma left-lateral oblique-normal 
separation, part of the total 20-30 km separation on the 
Silver Peak-Lone Mtn detachment system 

6 90.0000 0.0000 0.0000 
12 51.8797 72.6145 0.1659 

Sylvania/Palmetto-
Slate/Gold (1006-

1007) 

0 90.0000 0.0000 0.0000 25° CW rotation from 12-6 Ma based on 
paleomagnetic, thermochronology and geochronology 
around the Silver Peak-Lone Mtn detachment system. 

6 90.0000 0.0000 0.0000 
12 37.4937 117.4980 25.0952 

Slate/Gold-
Grapevine (1021-

1022) 

0 90.0000 0.0000 0.0000 5.5 km of 12-6 Ma normal-sense separation (306°); 
yields 0.9 mm/yr extension rate across Bonnie-Claire 
flat, consistent with very low Quaternary slip rates 
nearby 

(Machette et al., 
2004; Hoeft and 
Frankel, 2010; Foy 
et al., 2012; Lifton 
et al., 2015) 

6 90.0000 0.0000 0.0000 

12 40.3499 12.6587 0.0498 

Grapevine-
mainFuneral 
(1022-1023) 

0 90.0000 0.0000 0.0000 
35 km of 12-7 Ma normal-sense separation (306°) 
along the Boundary Canyon detachment based on 
offset Eocene-early Miocene normal faults, correlation 
of tectonic mélange, thermo-chronometry, thermo-
kinematic modeling 

(Hoisch and 
Simpson, 1993; 
Applegate and 
Hodges, 1995; 
Snow and 
Wernicke, 2000; 
Beyene, 2011) 

7 36.4318 -12.6568 -0.0003 

12 39.8758 11.6323 0.3151 

swFuneral-
mainFuneral 
(1024-1023) 

0 90.0000 0.0000 0.0000 
6.5 km of 4-7 Ma right-lateral oblique separation (312°) 
on the fault between these two blocks 

(Cemen and 
Wright, 1990; 
Applegate and 
Hodges, 1995) 

4 6.8788 -21.0804 0.0003 
7 36.1802 6.0580 0.0590 

Bare-mainFuneral 
(1030-1023) 

0 90.0000 0.0000 0.0000 ~14 km of 12-7 Ma right-lateral separation (289°) on 
Amargosa segment Stateline fz based on offset 
anticline and Eocene-early Miocene rocks 

(Wright and Troxel, 
1993; Fridrich et 
al., 2012; Lutz, 
2021) 

7 90.0000 0.0000 0.0000 
12 43.6370 18.9035 0.1270 

Bullfrog-
mainFuneral 
(1029-1023) 

0 90.0000 0.0000 0.0000 35 km of 12-7 Ma normal-sense separation (306°) 
along the Bullfrog Hills detachment. Based on 
assumption that the Bullfrog Hills and Boundary 
Canyon detachments are part of the same surface. 

(Hamilton, 1988; 
Maldonado, 1990; 
Beyene, 2011) 

7 36.2621 74.6176 0.0020 
12 39.7573 12.0696 0.3164 

Greenwater-
swFuneral 

(1015_1024) 

0 90.0000 0.0000 0.0000 
9 km 6.5-3.5 Ma dextral separation based on an offset 
basal conglomerate of the Furnace Creek Formation  

(Blair et al., 1999; 
Fridrich and 
Thompson, 2011) 

3.5 90.0000 0.0000 0.0000 
6.5 43.8788 18.4714 0.0721 

mainFuneral-
Resting Spring 

(1023-1025) 

0 90.0000 0.0000 0.0000 ~22.6 km of 16-7 Ma normal-sense separation (286°) 
based on thrust belt correlation and cross section 
reconstruction 

Lutz et al., 2021; 
Fridrich et al., 
2012 

7 90.0000 0.0000 0.0000 
16 50.5202 36.8588 0.2032 

Specter-Spotted 
(1032-1033) 

0 90.0000 0.0000 0.0000 
75° of 18-10 Ma CW vertical axis rotation to re-align 
thrust structures 

(Snow and Prave, 
1994; Snow and 
Wernicke, 2000) 

10 90.0000 0.0000 0.0000 
18 36.9577 115.8616 12.3659 

Spotted-Spring 
(1033-1041) 

0 90.0000 0.0000 0.0000 
63° of 18-10 Ma CW vertical axis rotation to re-align 
thrust structures 

(Snow and Prave, 
1994; Snow and 
Wernicke, 2000) 

10 90.0000 0.0000 0.0000 
18 36.6464 116.0669 62.5470 

Montgomery-
Spring (1034-

1041)  

4 90.0000 0.0000 0.0000 35° of 16-4 Ma CW vertical axis rotation and ~25 km of 
dextral oblique separation along the West Spring Mtns 
fault; re-alignment of thrust structures 

(Snow and 
Wernicke, 2000; 
Lutz et al., 2021) 16 36.5979 115.6534 35.6415 
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Table S3 
      

Euler Pole rotations and kinematic inputs for the southern reconstruction path  

Fault Block 
Restoration 

Time 
(Ma) 

Longitude 
(°) 

Latitude 
(°) 

Angle 
(°) Kinematic inputs and notes References 

Argus-Slate (1036-
1037) 

0 90.0000 0.0000 0.0000 7° of 3-0 Ma CW vertical-axis rotation from paleomag 
and 17.1 km total separation (300°) on Panamint 
detachment from offset volcanics; setup yields 1 mm/yr 
post-3 Ma slip rate on Searles Valley fault and 0.3-0.6 
mm/yr slip rate on the Ash Hill fault 

(Schweig, 1989; 
Densmore and 
Anderson, 1997; 
Walker et al., 
2005; Andrew and 
Walker, 2009) 

3 36.0419 117.2465 7.0000 

15 38.2727 117.2437 0.5389 

Slate-Panamint1 
(1027-1012) 

0 90.0000 0.0000 0.0000 17.1 km total separation (300°) on Panamint 
detachment based on offset volcanics; 14.7 km (296°) 
of which between Slate Rng and Panamint Mtns  

(Walker et al., 
2005; Andrew and 
Walker, 2009) 

4.2 40.6102 11.1556 0.1052 
15 42.4766 14.2776 0.1305 

Granite/Avawatz-
Slate (1038-1037) 

0 90.0000 0.0000 0.0000 
Total Garlock Fault zone offset of ~64-74 km based on 
Independence Dike Swarm, East-Sierran thrust 
system, eugioclinal Pz rocks, basal passive margin 
sequence,  and Miocene volcanics (Dacite domes and 
Bedrock Spring fm); ~33 km separation since ca. 3.8 
Ma on conglomerate of Golden Valley/ Goler Gulch; 
~19 km separation from 7-3.8 Ma 

(Smith, 1962; 
Michael, 1966; 
Smith and Ketner, 
1970; Jahns et al., 
1971; Davis and 
Burchfiel, 1973; 
Carr et al., 1997; 
Monastero et al., 
1997), (Andrew et 
al., 2014) 

3.8 34.5124 116.7611 16.2392 
7 34.4442 116.7199 22.1881 

10.5 34.5566 116.6851 27.7993 

  

Table S4 
   

Thermo-chronometric data shown in Fig. S3 
Mountain Range Cooling 

Age (Ma) 
Age Type Reference 

White Mountains 11-13 Ma AFT and (U-Th)/He (Stockli et al., 2003) 

White Mountains 3-4 Ma Apatite (U-Th)/He (Stockli et al., 2003) 

Inyo Mountains 2.5-3.2 Ma Apatite (U-Th)/He (Lee et al., 2009) 

Silver Peak Range 11 Ma ZFT (Oldow et al., 1994) 

Silver Peak Range 6-7 Ma AFT (Oldow et al., 1994) 

Bare Mountain  10-11 Ma AFT (Ferrill et al., 2012) 

Funeral Mountains 9-11 Ma Zircon (U-Th)/He (Beyene, 2011) 

Funeral Mountains 7 Ma Zircon (U-Th)/He (Beyene, 2011) 

Funeral Mountains 5.5 Ma AFT (Holm and Dokka, 1991) 

N. Black Mountains 1-4 Ma Apatite (U-Th)/He (Sizemore et al., 2019) 

Central Black Mtns 4-7 Ma Zircon (U-Th)/He (Bidgoli et al., 2015) 

S. Black Mountains 8.5-5.4 Ma Zircon (U-Th)/He (Bidgoli et al., 2015) 

Panamint Range 2.5-4.5 Ma Apatite (U-Th)/He (Bidgoli et al., 2015) 

McCullough Range 16-11 Ma Apatite (U-Th)/He (Mahan et al., 2009) 

McCullough Range 5 Ma Apatite (U-Th)/He (Mahan et al., 2009) 

Slate Range 6-8 Ma Apatite (U-Th)/He (Walker et al., 2014) 

AFT: apatite fission track. ZFT: zircon fission track 
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RECONSTRUCTION OF THE DEFLECTIONS IN THE LAB AND MOHO DEPTH 

GRADIENTS 

 Both the NW-trending part of the overall NE-trending LAB depth gradient (Figs. 1C 

main text and S8) and the Moho depth gradient deflections were reconstructed using a simple 

“cut and slide” method (Fig. S4-S8). We chose a cut line through the center of the whole-

lithosphere shear zone (see Fig. 1A in main text), then translated the western slice to the SE 

along the cut line until the LAB depth gradient and Moho depth-contours were re-aligned. 

Maximum and minimum dextral offsets were estimated by reconstructing the most and least 

amount of offset, respectively while still re-aligning the LAB depth gradient and Moho depth 

contours. Table S5 and Figs. S4-S8 summarize the results of these basic reconstructions. 

 

 

Table S5 

Inferred Moho offsets from reconstruction of ENE-WSW-striking, NNW-SSE-trending crustal thickness gradient 

Moho depth/crustal thickness model Dextral offset magnitude Notes 

Gilbert, 2012 (Fig. S5) 59 ± 14 km 
Used ~34 km crustal thickness contour; sharply offset between the 

FCFZ and SFZ 

Tape et al., 2012 (Fig. S6) 

56 ± 6 km 
Used -36 km Moho depth contour; deflected between the FCFZ and 

SFZ 

0-10 km 
Used -34 km Moho depth contour; little offset between the FCFZ and 

SFZ; possibly offset along the PVFZ 

Shen and Ritzwoller, 2016 (Fig. S7) 70 ± 8 km 
Used ~32 km crustal thickness contour; sharply offset between the 

FCFZ and SFZ 

Buehler and Shearer, 2010 (Fig. S8) 65 ± 15 km 
Used 28-30 km crustal thickness contours; deflected over broad area 

between FCFZ and LVSZ 

Lee et al., 2014 did not calculate 

In W DVR: faults offset velocity structures at 10 km depth, but 

probably not 20 km depth slice (e.g. HMF) 

In E DVR: FCFZ and SFZ clearly truncate velocity structures at 10 km 

and 20 km depth slices 

 HMF: Hunter Mountain fault zone; LVSZ: Las Vegas Valley shear zone; FCFZ: Furnace Creek fault zone; SFZ: Stateline fault zone 



 10 

 

Figure S4. Reconstructions of the dextral deflection in the LAB depth gradient. See Fig. S2 for abbreviations. 
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Figure S5. Reconstructions of the dextral deflection in the Moho depth gradient. Map after Gilbert (2012). FCFZ: Furnace Creek  
fault zone. SFZ: Stateline fault zone.  
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Figure S6. Reconstructions of the dextral deflection in the Moho depth gradient. Map after Tape et al. (2012). FCFZ: Furnace 
Creek fault zone. SFZ: Stateline fault zone. 
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Figure S7. Reconstructions of the dextral deflection in the Moho depth gradient. Map after Shen and Ritzwoller (2016). FCFZ: 
Furnace Creek fault zone. SFZ: Stateline fault zone. 
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Figure S8. Reconstructions of the dextral deflection in the Moho depth gradient. Map adapted from Buehler and Shearer (2010). 
FCFZ: Furnace Creek fault zone. SFZ: Stateline fault zone. 
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UPPER-CRUSTAL DEXTRAL SHEAR MAGNITUDE ACROSS THE WHOLE-

LITHOSPHERE SHEAR ZONE 

The 57 ± 7 km of upper-crustal dextral shear across the whole-lithosphere shear zone 

since ca. 8-7 Ma is based on averaging the sum of the total separation of upper-crustal fault 

blocks across the zone since 8 Ma and 7 Ma, based on kinematic modeling of offset features (see 

Figs. S2, S9, Animation 1, Table S1, and Lutz, 2021). The post-8 Ma separation along the Fish 

Lake Valley-Northern Death Valley-Furnace Creek fault zone (abbreviated FCFZ; See Fig. S2) 

of ~45-48 km was calculated as separation between the White Mountains (block 1004 in GPlates 

model) and the Funeral Mountains (block 1023 in GPlates model). This was added to the post-8 

Ma separation along the Stateline fault zone (SFZ~16 km), which was calculated as separation 

between the Kingston Range (block 1027 in GPlates model) and the Spring Mountains  (block 

1041 in GPlates model). Total post-7 Ma separations along the FCFZ and SFZ are ~38 km and 

~13 km, respectively. Therefore, the magnitudes of post-8 and post-7 Ma upper-crustal dextral 

shear across the whole-lithosphere shear zone are 64 km and 50 km, respectively (57 ± 7 km). 

This magnitude was close to the magnitudes estimated from the LCML offset markers (the 

deflected or offset depth gradients documented above) and so was considered to be the time-

frame for when whole-lithosphere shear initiated. 
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Figure S9. Reconstructions of upper-crustal extension and shear across the whole-lithosphere shear zone. The reconstruction 
shows the magnitude of separation across the area bounded by the Furnace Creek and Stateline fault zones for  pre-8 Ma 
decoupled conditions and post-8 Ma coupled, whole-lithosphere shear. Specific offset markers are listed in Table 1 and 
described in detail in Lutz, 2021. See Fig. S2 for the explanation of thrust plates (colored polygons). 
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