
1 

Supplementary material to “Appearance and disappearance rates of Phanerozoic marine animal 

paleocommunities” 

A. D. Muscente1,2*, Rowan C. Martindale2, Anirudh Prabhu3, Xiaogang Ma4, Peter Fox3, 

Robert M. Hazen5, and Andrew H. Knoll6 

1Department of Geology, Cornell College, 600 First Street SW, Mount Vernon, Iowa, 52314, 

USA 

2Department of Geological Sciences, The University of Texas at Austin, 1 University Station 

C1100, Austin, Texas 78712, USA 

3Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Jonsson-

Rowland Science Center, 1W19, 110 8th Street, Troy, NY 12180, USA 

4Department of Computer Science, University of Idaho, 875 Perimeter Drive, MS 1010, 

Moscow, Idaho, 83844, USA 

5Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road, 

Washington, D.C. 20015, USA 

6Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, 

Cambridge, MA 02138, USA 

Muscente, A.D., et al., 2021, Appearance and disappearance rates of Phanerozoic marine animal paleocommunities: 
Geology, https://doi.org/10.1130/G49371.1



 

 

2 

 

MATERIALS AND METHODS 

Data 

Our study makes use of global data on collections of animal genera from marine and 

marginal marine rocks of Phanerozoic age, which were accessed from the Paleobiology Database 

(PBDB; https://paleobiodb.org/#/) on August 12, 2018 (Alroy, 2003; Peters and McClennen, 

2015) using the following link:  

 

http://paleobiodb.org/data1.2/occs/list.csv?datainfo&rowcount&base_name=Animalia&taxon_re

so=genus&idqual=genus_certain&pres=regular&interval=Phanerozoic&envtype=marine,margin

al,reef,stshallow,stdeep,offshore,slope,marindet&show=full,timebins,acconly 

 

To develop the dataset, we downloaded data on all occurrences of fossils assigned to 

genera with “accepted names,” according to the opinions in the database at the time of data 

acquisition. The dataset includes cases of fossils identified to the species level as well as fossils 

that are only assigned to genera. We omitted form and trace fossil taxa and revised the data to 

correct for synonymous and inconsistently ranked genera (see SI Dataset), leaving 126,174 

collections representing 641,923 occurrences of 26,953 valid genera. Overall, the dataset 

includes the age, formation, state, country, tectonic plate, lithology, environment, and taxonomic 

richness (genus count) of each collection. We revised the lithology and paleoenvironment data to 

reduce redundancy (Tables S1, S2), and assigned the collections to time bins 

(chronostratigraphic stages) using the standard ‘major’ method, wherein a collection is assigned 

to a time bin if 50% or more of its regional stratigraphic unit overlaps the chronostratigraphic 

stage (Muscente et al., 2018; Peters and McClennen, 2015). For some analyses, we also binned 

the collection using the relatively restrictive “contain” method, where a collection is assigned to 

a time bin if its regional stratigraphic unit can be correlated with strata located entirely between 

the upper and lower boundaries of the chronostratigraphic stage (Muscente et al., 2018; Peters 

and McClennen, 2015). 

 

Network data structure 

For the network analysis, we structured the collection data into a unipartite network with 

weighted connections (Muscente et al., 2018, 2019). The network in this study consists of two 

basic elements (Fig. S2): nodes (independent entities) and links (connections). Each node 

(n=124,605) is a fossil collection (Fig. S1), and each link (n=47,294,900) connects two 

collections that share a simple association of one or more genera. We omitted collections lacking 

any connections (n=1,323) as well as other collections (n=245) restricted to small, isolated 

components (i.e., groups of interconnected nodes lacking connections to other nodes in the 

network), so the data collectively represent 640,015 occurrences of 25,749 total genera, 

including 21,338 extinct (82.9%) and 3,989 extant (15.5%) taxa (the 422 uncounted taxa, or 

remaining 1.6%, are probably extinct). The network does not contain multiple edges (i.e., 

multiple links between nodes) or loops (i.e., links connecting nodes to themselves). We assigned 

each link a connection strength (weight) related to the taxonomic similarity of its two collections 

(Shi, 1993), which we calculated from the presence/absence of taxa using binary indices (Shi, 

1993). Traditionally, the Jaccard index is favored for multivariate analysis in paleoecology (Shi, 

1993). We also assigned weights to the nodes based on their taxonomic richness, so the 

collections of greatest richness exert the largest effect on network structure.  

 

https://paleobiodb.org/#/
http://paleobiodb.org/data1.2/occs/list.csv?datainfo&rowcount&base_name=Animalia&taxon_reso=genus&idqual=genus_certain&pres=regular&interval=Phanerozoic&envtype=marine,marginal,reef,stshallow,stdeep,offshore,slope,marindet&show=full,timebins,acconly
http://paleobiodb.org/data1.2/occs/list.csv?datainfo&rowcount&base_name=Animalia&taxon_reso=genus&idqual=genus_certain&pres=regular&interval=Phanerozoic&envtype=marine,marginal,reef,stshallow,stdeep,offshore,slope,marindet&show=full,timebins,acconly
http://paleobiodb.org/data1.2/occs/list.csv?datainfo&rowcount&base_name=Animalia&taxon_reso=genus&idqual=genus_certain&pres=regular&interval=Phanerozoic&envtype=marine,marginal,reef,stshallow,stdeep,offshore,slope,marindet&show=full,timebins,acconly
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Network graph 

In network graphing (Fig. S2), nodes of equal size were placed at lengths relative to each 

other according to the Fruchterman-Reingold force-directed algorithm using functions in the 

igraph package written in the R programming language (Csardi and Nepusz, 2006). The 

algorithm incorporated the connection weights (equal to the Jaccard similarities of the 

collections) in its calculations. The connections at the periphery of the graph were truncated to fit 

all of the nodes in the space. 

 

Assortativity coefficients and homophily 

In order to measure homophily, or the tendency of links to connect nodes possessing 

similar properties, we calculated ‘assortativity coefficients’ for various nominal and continuous 

variables (e.g., age, location, environment, lithology, etc.) using functions of the igraph package 

in RStudio (Csardi and Nepusz, 2006). These coefficients (Table S3) are similar to Pearson 

correlation coefficients. Values range from 0 to 1; high values reflect a great tendency for similar 

nodes to be connected, and vice versa. 

 

Community detection algorithms 

The nodes and links of the network make up its community structures. In general, 

community structures consist of units (modules) that appear in network graphs as clusters of 

densely connected nodes; a network may contain a fractal structure of repeatedly clustered 

modules. To explore its community structure and identify paleocommunities, we analyzed the 

network (Fig. S2) with a variety of ‘community detection algorithms’ (Table S4) using functions 

of igraph (Csardi and Nepusz, 2006). All of these algorithms partition networks into modules and 

have been used in other studies to analyze aspects of community paleoecology (Muscente et al., 

2018). The algorithms, however, exemplify different approaches to network partitioning 

(Muscente et al., 2019; Yang et al., 2016). Their results are often compared in terms of 

modularity (Q), a network property calculated from the fraction of links that connect nodes of the 

same module minus the corresponding fraction in an equivalent network with a random 

distribution of links (Clauset et al., 2004). The Q values in this study also take into consideration 

the weights of the connections (Csardi and Nepusz, 2006). In general, modularity scores vary 

from 0 to 1, and values >0.3 are considered good indicators of community structure (Clauset et 

al., 2004).  

We concentrate on outputs of the Infomap Algorithm because (a) unlike other methods, it 

utilizes both link and node weight data; (b) it does not require input on additional parameters, 

like step size in the walktrap algorithm; and (c) it produced the results with the greatest Q scores 

and module counts (Tables S4), indicating that it identified the best and smallest modules (see 

Supplementary Text below). In particular, the Q scores and module counts were highest for 

connection weights equal to Jaccard coefficients as opposed to values calculated from other 

indices (Table S5).  

The Infomap Algorithm relies on information theoretic principles; it seeks the community 

structure that minimizes the expected description length of an infinitely long random walk 

trajectory, where description length is the expected number of bits per node required to encode 

the path (Rosvall et al., 2010; Rosvall and Bergstrom, 2007). In other words, the algorithm 

attempts to identify ‘neighborhoods’ that frequently trap random walkers. Problematically, the 

Infomap Algorithm is a non-deterministic method (i.e., it may identify different modules in one 

run versus the next). To address this concern, we applied the algorithm to the network 200 times, 
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and compared the results produced by these 200 runs using common distance metrics, like the 

normalized mutual information (NMI), variation of information (VI), and the Rand and adjusted 

Rand indices (Table S6). We found that the results (e.g., Q and module count) did not 

significantly vary from one run to the next (see Supplementary Text below). 

 

Genus diversity and turnover proportions 

The generic corrected sampled-in-bin (CSIB) number, or gamma diversity (Figs. 1A, 

6A), genus extinction proportion, and genus origination proportion of each time bin (geologic 

stage) was determined from sample-standardized occurrence data with the subsample function of 

the divDyn package in R using 1000 iterations of the shareholder quorum subsampling (SQS) 

method at a quorum of 0.7 (Kocsis et al., 2019). The results were adjusted with a sample 

coverage estimator based on single reference taxa (Alroy, 2010), and are reported as the average 

values of those iterations along with 95% confidence intervals, as determined from the 97.5th and 

2.5th percentiles of the iterations. Proportions of genus origination and genus extinction (Fig. 

S6E) were calculated for each time bin with the ‘second-for-third’ substitution algorithm, which 

simulations indicate provide the most accurate and precise estimates for the origination and 

extinction rates of taxa (Alroy, 2015). The taxonomic CSIB diversity and turnover proportions 

are based on all occurrences of marine and marginal marine animal genera of Phanerozoic age in 

the PBDB, regardless of whether or not the genera occur within the collections included in the 

unipartite network (Fig. S2). 

 

Paleocommunity diversity and turnover proportions 

To explore ecologic change over time, we quantified the diversity and turnover of the 

modules (paleocommunities) using methods for measuring diversity, origination, and extinction 

of taxa (Alroy, 2008, 2015). Following traditional methods for measuring taxonomic change, in 

this approach, we treat the paleocommunities like taxa and collections like occurrences of these 

‘taxa.’ The first appearance datum of a paleocommunity corresponds to its oldest collection(s), 

and the last appearance datum of a paleocommunity corresponds to its youngest collection(s). 

The diversity of paleocommunities in a time bin (chronostratigraphic stage) equals their CSIB 

number (Figs. 1A, S6B), determined using the subsample function of the divDyn package in R 

(Kocsis et al., 2019). We quantify the appearance and disappearance of communities over time 

by calculating their proportions of ‘origination’ (appearance) and ‘extinction’ (disappearance) for 

each time bin (i.e., chronostratigraphic stage) in the Phanerozoic (Figs. 2, S6C, D). We 

calculated these proportions according to the ‘second-for-third’ rate estimator, which simulations 

indicate provide the most accurate and precise estimates for origination and extinction of taxa 

(Alroy, 2015). Prior to calculating the diversity and turnover proportions, we standardized the 

paleocommunity occurrence data by applying the SQS method to subsample fossil collections. 

We performed SQS and calculated the CSIB values and turnover proportions using the 

subsample() function of the divDyn package in R (Kocsis et al., 2019) and a quorum size of 0.8. 

The procedure involved 1000 iterations and the results were adjusted with a sample coverage 

estimator based on single collection modules (Alroy, 2010).  

Because the Infomap Algorithm is a non-deterministic method (i.e., it may identify 

different modules in one run versus the next), we applied the algorithm to the network 200 times 

and derived our best estimates of paleocommunity CSIB diversity and turnover for each run—

the ‘best estimates’ correspond to the average values of diversity and turnover from 1000 

iterations of SQS. We report our measures of paleocommunity diversity and turnover as the 
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average values of those best estimates along with their variation among 200 runs of Infomap. 

The variation in the results reflect uncertainty created by random chance and probability in the 

parameters of the Infomap Algorithm.  

The number of genera per paleocommunity (alpha diversity) and the number of 

paleocommunities per genus were calculated from occurrences of taxa and communities that 

were actually sampled within each bin. Paleocommunity differentiation (beta diversity) equals 

the average pairwise Jaccard distance (or dissimilarity) between paleocommunities that were 

sampled within each bin (Shi, 1993). These measures of diversity are based on the complete 

dataset rather than subsamples, and are reported as the average values and ranges of values from 

200 runs of the Infomap algorithm on the network.  

 

Uncertainty in turnover rate calculations 

 Besides the stochastic uncertainty associated with variation in the results of SQS and the 

Infomap algorithm, the paleocommunity turnover rate values in this study have a second form of 

intrinsic uncertainty related to the binomial probabilities of paleocommunities actually appearing 

and disappearing in the time bins. Consider disappearance rate. All of the paleocommunities 

within a time bin represent a sample, and the number of paleocommunities equals its sample 

size. The disappearance rate of the time bin depends on the number of paleocommunities that 

make their last appearance within the bin (the number of “successes”) and the number of 

paleocommunities that survive until the next bin (the number of “failures”). For a sample of 

paleocommunities from a time bin with a given turnover rate, it may be observed that fewer or 

more paleocommunities disappear than expected. The number of “successes” varies from one 

sample to the next according to the binomial probability distribution, with the observed number 

approaching the expected number for large sample sizes (i.e., total numbers of 

paleocommunities).   

To account for stochastic and binomial uncertainty, we calculated the errors of the 

turnover rate values using the following procedure. First, for each run of the Infomap algorithm, 

we derived our best estimates of the disappearance and appearances rates of the 

paleocommunities in each time bin using the ‘second-for-third’ rate estimator (see 

Paleocommunity diversity and turnover proportions), and then calculated the 95% binomial 

proportion confidence intervals (CIs) of the values using the normal approximation method 

based on central limit theorem. Second, for each time bin, we arrayed the upper and lower limits 

of the 95% CIs calculated in repeated runs of the Infomap algorithm. Lastly, we determined the 

97.5th and 2.5th percentile values of the upper and lower limits of disappearance and appearance 

for each time bin. As a consequence of this procedure, the error bars on the palecommunity 

turnover rate values in this study illustrate both stochastic and binomial uncertainty.  

 

Correlations 

We performed regression analyses in order to assess the direction and strength of the 

relationship (correlation) between taxonomic and ecologic turnover for the 100 stages in the 

Phanerozoic record. In these regressions, one variable is taxonomic turnover, defined as genus 

extinction or origination rate; and the other variable is ecologic change, corresponding to 

paleocommunity disappearance or appearance rate. Strictly speaking, neither taxonomic turnover 

nor ecologic change represents an “independent variable;” they are interchangeable. In addition, 

the measurements of these rates are subject to error, as they are derived from results of repeated 

subsampling and non-deterministic algorithms. For these reasons, we used the reduced major 
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axis (RMA) method (also known as Model II) of regression as opposed to ordinary least square 

(OLS) methods, such as Spearman’s rho (ρ), Kendall’s tau (τ), and Pearson’s r. Unlike the OLS 

methods (Mukaka, 2012; Schober et al., 2018), the RMA method does not differentiate between 

“independent” and “dependent” variables, and assumes a pattern of error variance in the data 

(Smith, 2009). The RMA method, consequently, is generally considered to be the best approach 

to regression for analyses of bivariate data with measurement error in both variables.  

To address any potential issues with distributions of values for the variables, we repeated 

the regression analyses on two variations of the turnover rate data: (1) the raw second-for-third 

proportions of the time bins (Figs. S11-S13) and (2) the time bins’ ranks with respect to their 

relative turnover rates (Figs. 3, S7-S10, S13). Notably, the raw second-for-third proportions are 

not normally distributed and include a number of outliers, in part, due to inclusion of time bins 

(i.e., mass extinctions) with atypically high rates of taxonomic extinction and community 

disappearance (Raup and Sepkoski, 1982). To “normalize” the data, we transformed the raw 

continuous data (i.e., turnover proportions) into ordinal data. The ranks of the time bins have a 

normal distribution (Figs. 3, S7-S10, S13). 

We performed the regression analyses using the “standardized major axis” (SMA) 

method of the lmodel2 package in R (Legendre, 2018), as SMA is equivalent to RMA in 

lmodel2. The results of each RMA regression include (1) an equation describing the ‘best fit’ of 

the bivariate relationship between two variables; (2) its correlation coefficient (R); (3) the 

coefficient of determination (i.e., R-squared value); (4) 95% confidence intervals for the y-

intercept and slope; and (5) 2- and 1-tailed parametric p-values. Correlations with p-values less 

than alpha (0.05) are considered statistically significant. 

 

Data standardization and sensitivity analyses 

To confirm that ecologic change is positively correlated with taxonomic change and that 

our results are robust, we standardized the data and conducted sensitivity analyses to address 

four potential types of error (Muscente et al., 2019): (a) unequal sampling of fossil collections 

affecting diversity and proportion calculations; (b) unequal sampling of fossil collections 

affecting identification of paleocommunities; (c) autocorrelation between taxonomic and 

ecologic turnover caused by similar term trends in the time series; and (d) correlation between 

taxonomic and ecologic turnover caused by the inclusion of low diversity collections and 

modules in the analyses. 

Unequal sampling of fossils of various ages may introduce errors into diversity and 

turnover proportion calculations (Alroy, 2003, 2008). To minimize these errors, prior to 

calculating the paleocommunity CSIB numbers and turnover proportions, we standardized the 

paleocommunity occurrence data by applying the SQS method with the subsample() function of 

the divDyn package in R (Kocsis et al., 2019) and a quorum of 0.8. The procedure involved 1000 

iterations and the results were adjusted with a sample coverage estimator based on single 

collection modules (Alroy, 2010).  

Given that stratigraphic position exerts a strong control on network topology, unequal 

sampling of collections of different ages may also affect module (i.e., paleocommunity) 

identification. We investigated this possibility by repeatedly subsampling a given number of 

collections from each chronostratigraphic system, equal to the duration of the period multiplied 

by the number of collections per million years in the Cambrian, the oldest and least sampled 

period (94.67 collections/million years). In total, we produced 100 subsamples, each of 51,216 

collections. From each subsample, we produced a subnetwork (Muscente et al., 2019). As 
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community detection algorithms tend to identify each component of a multi-component network 

as a module, we omitted collections lacking any connections as well as others belonging to 

isolated components (i.e., groups of interconnected nodes lacking connections to other nodes in 

the largest component); therefore, instead of 51,216 collections, each subnetwork consisted, on 

average, of 50,589 nodes (minimum: 50,472; maximum 50,664). In other words, each 

subnetwork is roughly 41% (50,589/124,605) of the whole (original) network. To each 

subnetwork, we applied the Infomap Algorithm, and compared its results to a random clustering 

of the whole network by calculating common distance metrics for comparing community 

structures, like NMI, VI, and the Rand and adjusted Rand indices (Table S8). For each 

calculation, we only considered collections found in the whole network and subnetwork (i.e., 

collections in the whole network, but absent in the subnetwork, did not factor into calculation).  

When time series follow similar long-term trends, they may be correlated, even though 

the direct relationships among the data are weak. To confirm that the results do not reflect this 

autocorrelation, we subjected the raw data (ecologic and taxonomic turnover proportions and 

ranks) to first-differencing, calculating first-differenced data points, each representing the 

difference between two consecutive time bins for a given turnover metric. We then repeated the 

regression analyses using the first-differenced data. Correlations between time series subjected to 

first differencing are considered robust to autocorrelation (Fig. S13). 

Additional errors may originate from the inclusion of low diversity collections and 

modules (i.e., those with few genera) in the proportion calculations. Some of these collections 

and modules may represent low diversity (e.g., monospecific) communities or they may be 

artefacts of incomplete sampling or data entry. In any case, low diversity collections may be poor 

markers of their modules if they consist of taxa that occur in multiple paleocommunities, and the 

appearance and disappearance of low diversity modules will tend to mirror the origination and 

extinction of taxa, as the effects of adding or subtracting a taxon are amplified at lower diversity 

levels. To address these concerns, we adopted a thresholding approach, systematically excluding 

collections and modules of varying diversity level from the proportion calculations, and for each 

run at a combination of thresholds, recalculating the regression statistics for the correlation 

between taxonomic and ecologic change. The results are presented as Kendall rank correlation 

(τ) coefficients (Fig. S14). We calculated τ for the turnover of the subsampled paleocommunities 

and all of the collections in network (Fig. S14A, S14B). In addition, we calculated the 

correlation between the proportions of the subsampled paleocommunities and all of the genera in 

the Phanerozoic (Fig. S14C, S14D). For this work, prior to calculating the paleocommunity 

turnover proportions, we standardized the subsampled paleocommunity occurrence data using 

the SQS method using the subsample() function of the divDyn package in R (Kocsis et al., 

2019). As more and more collections were omitted, it was necessary to increase the quorum size 

of the SQS method in order to ensure there was sufficient coverage, but in each instance, the 

smallest quorum size (generally between 0.7 and 0.9) was used. Each SQS analysis involved 100 

iterations and the results were adjusted with a sample coverage estimator based on single 

collection modules (Alroy, 2010).  

SUPPLEMENTARY RESULTS 

Additional description of collections and modules in the network 

Most collections in the network (51%) contain three or more animal genera (Fig. S3A). 

Although the distributions are positively skewed, most of the modules (54%) have been sampled 

eight or more times (Fig. S3B) and represent four or more genera (Fig. S3C). Indeed, the number 
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of genera per module is positively correlated with the number of collections per module 

(Adjusted R-squared value = 0.71), and the correlation is statistically significant (p-value < 

0.001) for both linear and multiple linear regression models (Fig. S4). This relationship is a 

consequence of the classic relationship between sampling and diversity, as more samples 

(collection) translates into more taxa, everything else being equal.  

When applied to the unipartite network in this study, the Infomap Algorithm returned the 

highest module counts and Q scores of all the community detection algorithms (Yang et al., 

2016), indicating that it performed best at identifying modules (Muscente et al., 2018, 2019), 

specifically when connection weight equals the Jaccard similarity of collections (Tables S4, S5). 

When we repeatedly applied the Infomap Algorithm to the unipartite network, we found that the 

results (e.g., Q and module count) did not significantly vary from one run to the next. With the 

Jaccard index, the algorithm returned, on average, 3937 modules with a Q of 0.85. The NMI 

values, which are commonly used to compare community structures (Karrer et al., 2008; 

Muscente et al., 2019), show that two successive random runs of the algorithm typically differ by 

only 1% of their information (Table S6).  

The majority of modules are limited to two or fewer lithologies, paleoenvironments, 

states, countries, and tectonic plates (Fig. S5). Most modules (69%) are limited to a single 

chronostratigraphic system (Fig. S5H); however, the majority (55%) have been sampled in two 

or more chronostratigraphic stages (Fig. S5I, S5K). If one accounts for sampling gaps between 

the oldest and youngest collections assigned to each module, the majority (55%) of modules 

represent time intervals spanning three or more ages, each on average, about 5-10 million years 

in duration (Fig. S5L). Random forest analysis (Breiman, 2001) indicates that tectonic plate is 

the best explanatory variable for module assignment followed by paleoenvironment (our 

revisions), lithology (our revisions), and system (Table S7). Given these results, we interpret the 

modules as paleocommunities for the following reasons: (1) the fossil collections are samples of 

local paleocommunities, (2) the collections in each module cannot be distinguished by methods 

that return the best Q values, and (3) most modules span narrow environmental and geographic 

ranges, even though they existed in one form or another for tens of millions of years. 

 

Results from standardization and sensitivity analyses 

The correlations between ecologic and taxonomic turnover are robust to the four types of 

error considered in this study. They are robust to unequal sampling of fossil collections from 

different systems. When we applied the Infomap Algorithm to standardized subnetworks, each 

with about 50,589 collections/nodes (~41% of the nodes in the whole network), we found that 

the community structures were generally similar to those produced from analysis of the whole 

network, both in term of modularity score (average Q = 0.85) and the actual module assignments 

of the collections (Table S8). The NMI scores comparing the whole network to the subnetwork 

clusterings show that they generally differ, on average, by about 5% of their information, even 

though the subnetworks contained 59% fewer collections. Second, the results do not change 

when the data are subjected to first-differencing; we still find a significant correlation between 

taxonomic and ecologic turnover (Fig. S13). Lastly, exclusion of low diversity collections (≤7 

genera) and modules (≤25 genera) does not alter the turnover proportions or time bin ranks (Fig. 

S14A, S14B); we find a significant correlation between taxonomic and ecologic change, even if 

75% of the collections are omitted prior to calculation of the ecologic turnover proportions and 

time bin ranks (Fig. S14C, S14D). In summation, none of the standardization and sensitivity 

analyses alter the outcomes of the study. 
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Figure S1. Global map of fossil collections (yellow dots) that make up the network in this study. 

All data on collections (n=124,599) were accessed from the Paleobiology Database (PBDB), 

specifically the ‘lat’ (latitude) and ‘lng’ (longitude) fields. Six of the collections in the network 

do not have latitudinal and/or longitudinal coordinates, and therefore, are not shown in the map.  
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Figure S2. Graph of the unipartite network. Each node is a fossil collection, and two nodes are 

connected if they share one or more marine or marginal marine animal genera. Node weight (not 

illustrated) equals the number of genera in the collection, and connection weight equals the 

Jaccard similarity of the collections. The color of each collection indicates its time bin 

(chronostratigraphic stage) as shown in the geologic column with absolute ages provided in 

Mega anna (Ma). 

  



 

 

11 

 

 

 

Figure S3. Bar plots describing collections and modules in the network. A: Number of 

collections versus taxonomic richness (number of genera) of each collection. B: Number of 

modules versus the number of collections in each module. C: Number of modules versus the 

number of genera represented by each module. The values represented by the y-axes in (B, C) 

are averages from 200 runs of the Infomap Algorithm on the network (Fig. S2).  
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Figure S4. Regression of the numbers of genera and collections in each module of the network. 

Each data point represents a module identified in one of 200 runs of the Infomap Algorithm on 

the network (Fig. S2). The x-axis is the number of collections assigned to the module, and the y-

axis is the number of genera represented by the collections in the module. The red and blue lines 

illustrate the results of linear and multiple linear regression analyses, respectively. These results 

include adjusted R-squared and associated p values. Correlations with p values less than alpha 

(0.05) are statistically significant. 
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Figure S5. Additional bar plots describing modules in the network. For all plots, the y-axis is the 

average number of modules from 200 runs of the Infomap Algorithm on the network (Fig. S2). 

Each x-axis is the number of categories (pertaining to a nominal variable) represented by the 

collections of the individual modules A: formation. B: lithology (‘lithology1’ field in PBDB). C: 

revised lithology (data from ‘lithology1’ field of the PBDB but modified to reduce redundancy; 

see Table S2). D: tectonic plate (‘geoplate’ field in PBDB). E: country (‘cc’ field in PBDB). F: 

state (‘state’ field in PBDB). G: environment (‘environment’ field in PBDB). H: system 

(collections binned into chronostratigraphic systems using ‘contain’ method). I: stage 

(‘time_major’ field in PBDB; collections binned into chronostratigraphic stages using ‘major’ 

method). J: environment (data from ‘environment’ field of PBDB but modified to reduce 

redundancy). K: stage (‘time_contain’ field in PBDB; collections binned into chronostratigraphic 

stages using ‘contain’ method). L: stage (modules assigned to all time bins—chronostratigraphic 

stages—between their oldest and youngest collections). 
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Figure S6. Line graphs showing the geologic history of ecologic and taxonomic change. A: 

Corrected sampled-in-bin (CSIB) numbers (Alroy, 2008) of all valid marine and marginal marine 

animal genera in the PBDB (n = 26,953) and paleocommunities identified by the Infomap 

Algorithm (Fig. S2) in this study. The so-called ‘big five’ mass extinctions (Raup and Sepkoski, 

1982) and other major biodiversity crises and ecologic transitions in Earth history (Bond and 

Grasby, 2017; McGhee et al., 2013) are also shown. Generic diversity was determined from 

sample-standardized occurrence data in the PBDB using the SQS method at a quorum of 0.7, and 

the results were adjusted with a sample coverage estimator based on single reference taxa (Alroy, 

2010). The gaps are consequences of insufficient data. B: The disappearance (‘extinction’) 

proportion of paleocommunities. C: The appearance (‘origination’) proportion of 

paleocommunities. D: The extinction proportion of marine and marginal animal genera. E. The 

origination proportion of marine and marginal marine animal genera. The proportions in B-E 

were calculated with the ‘second-for-third’ substitution algorithm (Alroy, 2015). The y-axis 

values of the paleocommunity data in A-C are averages of the best estimates from 200 runs of 

the Infomap Algorithm, and the error bars illustrate the minimum and maximum values of those 

runs (i.e., the stochastic uncertainty).  
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Figure S7. Rank correlation of the proportions of taxonomic extinction and paleocommunity 

disappearance. The data are the same as those in Fig. 3A, but the plot is enlarged and the data 

points are labelled. Each point is a time bin (n=89); 11 chronostratigraphic stages were omitted 

for insufficient data. The axes are the time bins’ ranks in terms of their turnover proportions 

(e.g., Figs. 2, S6C-E), in this case, the extinction proportion of marine and marginal marine 

animal genera (x-axis) and the disappearance proportion of paleocommunities (y-axis). The plot 

includes a trendline from reduced major axis regression; coefficient of correlation (R value); 

coefficient of determination (R-squared value); and associated p-values. The y-axis values are 

averages of best estimates from 200 runs of Infomap; and the x-axis values are averages from 

1000 subsamples of SQS. Error bars illustrate 95% CIs of the values. 
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Figure S8. Ranks of major events in Earth history in terms of the proportions of taxonomic 

extinction and paleocommunity disappearance. The data are the same as those in Fig. 3A and 

Fig. S7. Each point is a time bin (n=89); 11 chronostratigraphic stages were omitted for 

insufficient data. Shapes correspond to different types of events in the stages, including mass 

extinctions (Bambach, 2006; Bond and Grasby, 2017; McGhee et al., 2013; Sepkoski, 1982), 

minor extinctions (Bambach, 2006; Bond and Grasby, 2017; McGhee et al., 2013; Sepkoski, 

1982), post-mass extinction recovery intervals (Sheehan, 1996), global Oceanic Anoxic Events 

(Takashima et al., 2006), regional Oceanic Anoxic Events (Takashima et al., 2006), the 

Paleocene-Eocene Thermal Maximum (Foster et al., 2020; Speijer et al., 2012), and radiations of 

life like the Cambrian Explosion (Kouchinsky et al., 2012; Landing et al., 2013) and Great 

Ordovician Biodiversification Event (Servais and Harper, 2018; Servais et al., 2008; Webby, 

2004). For this work, we assume that the Induan and Olenekian represent minor extinction event 

stages and recovery from the Permian-Triassic mass extinction largely occurred in the Anisian, 

as suggested by various works (Bowring et al., 1999; Chen and Benton, 2012; Foster et al., 

2017). We assign the late Mississippian extinction event (the ‘Serpukhovian Extinction’), which 

occurred sometime during the late Visean or early Serpukhovian, to the Visean stage (Balseiro 

and Powell, 2019; McGhee et al., 2012; Powell, 2008). The axes are the time bins’ ranks in terms 

of their turnover proportions (e.g., Figs. 2, S6C-E), in this case, the extinction proportion of 

marine and marginal marine animal genera (x-axis) and the disappearance proportion of 

paleocommunities (y-axis). The plot includes a trendline from reduced major axis regression; 

coefficient of correlation (R value); coefficient of determination (R-squared value); and 

associated p-values. The y-axis values are averages of best estimates from 200 runs of Infomap; 

and the x-axis values are averages from 1000 subsamples of SQS.  
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Figure S9. Rank correlation of the proportions of taxonomic origination and paleocommunity 

appearance. The data are the same as those in Fig. 3B, but the plot is enlarged and the data points 

are labelled. Each point is a time bin (n=89); 11 chronostratigraphic stages were omitted for 

insufficient data. The axes are the time bins’ ranks in terms of their turnover proportions (e.g., 

Figs. 2, S6C-E), in this case, the origination proportion of marine and marginal marine animal 

genera (x-axis) and the appearance proportion of paleocommunities (y-axis). The plot includes a 

trendline from reduced major axis regression; coefficient of correlation (R value); coefficient of 

determination (R-squared value); and associated p-values. The y-axis values are averages of best 

estimates from 200 runs of Infomap; and the x-axis values are averages from 1000 subsamples of 

SQS. Error bars illustrate 95% CIs of the values. 
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Figure S10. Ranks of major events in Earth history in terms of the proportions of taxonomic 

origination and paleocommunity appearance. The data are the same as those in Fig. 3B and Fig. 

S9. Each point is a time bin (n=89); 11 chronostratigraphic stages were omitted for insufficient 

data. Shapes correspond to different types of events in the stages, including mass extinctions 

(Bambach, 2006; Bond and Grasby, 2017; McGhee et al., 2013; Sepkoski, 1982), minor 

extinctions (Bambach, 2006; Bond and Grasby, 2017; McGhee et al., 2013; Sepkoski, 1982), 

post-mass extinction recovery intervals (Sheehan, 1996), global Oceanic Anoxic Events 

(Takashima et al., 2006), regional Oceanic Anoxic Events (Takashima et al., 2006), the 

Paleocene-Eocene Thermal Maximum (Foster et al., 2020; Speijer et al., 2012), and radiations of 

life like the Cambrian Explosion (Kouchinsky et al., 2012; Landing et al., 2013) and Great 

Ordovician Biodiversification Event (Servais and Harper, 2018; Servais et al., 2008; Webby, 

2004). For this work, we assume that the Induan and Olenekian represent minor extinction event 

stages and recovery from the Permian-Triassic mass extinction largely occurred in the Anisian, 

as suggested by various works (Bowring et al., 1999; Chen and Benton, 2012; Foster et al., 

2017). We assign the late Mississippian extinction event (the ‘Serpukhovian Extinction’), which 

occurred sometime during the late Visean or early Serpukhovian, to the Visean stage (Balseiro 

and Powell, 2019; McGhee et al., 2012; Powell, 2008). The axes are the time bins’ ranks in terms 

of their turnover proportions (e.g., Figs. 2, S6C-E), in this case, the origination proportion of 

marine and marginal marine animal genera (x-axis) and the appearance proportion of 

paleocommunities (y-axis). The plot includes a trendline from reduced major axis regression; 

coefficient of correlation (R value); coefficient of determination (R-squared value); and 

associated p-values. The y-axis values are averages of best estimates from 200 runs of Infomap; 

and the x-axis values are averages from 1000 subsamples of SQS. 
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Figure S11. Simple correlation of the proportions of taxonomic extinction and paleocommunity 

disappearance. Each point is a time bin (n=89); 11 chronostratigraphic stages were omitted for 

insufficient data. The axes are turnover proportions (e.g., Figs. 3, S6C-E), in this case, the 

extinction proportion of marine and marginal marine animal genera (x-axis) and the 

disappearance proportion of paleocommunities (y-axis). The plot includes a trendline from 

reduced major axis regression; coefficient of correlation (R value); coefficient of determination 

(R-squared value); and associated p-values. The y-axis values are averages of best estimates 

from 200 runs of Infomap; and the x-axis values are averages from 1000 subsamples of SQS. 

Error bars illustrate 95% CIs of the values. 
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Figure S12. Simple correlation of the proportions of taxonomic origination and paleocommunity 

appearance. Each point is a time bin (n=89); 11 chronostratigraphic stages were omitted for 

insufficient data. The axes are turnover proportions (e.g., Figs. 2, S6C-E), in this case, the 

origination proportion of marine and marginal marine animal genera (x-axis) and the appearance 

proportion of paleocommunities (y-axis). The plot includes a trendline from reduced major axis 

regression; coefficient of correlation (R value); coefficient of determination (R-squared value); 

and associated p-values. The y-axis values are averages of best estimates from 200 runs of 

Infomap; and the x-axis values are averages from 1000 subsamples of SQS. Error bars illustrate 

95% CIs of the values. 
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Figure S13. Correlations between first-differences of taxonomic and ecologic turnover. Each 

point (n=88) represents two consecutive time bins, and the axes are the differences (Figs. 3, S7, 

S9) between their turnover proportions (e.g., Figs. 2, S6C-E). Whereas (A, B) represent 

differences in ranked (ordinal) data, (C, D) represent differences in raw turnover proportions. A: 

Difference in rank of extinction proportion of marine and marginal marine animal genera (x-

axis) versus difference in rank of the disappearance proportion of paleocommunities (y-axis). B: 

Difference in rank of the origination proportion of the taxa (x-axis) versus difference in the rank 

of the appearance proportion of the paleocommunities (y-axis). C: Difference in the extinction 

proportion of marine and marginal marine animal genera (x-axis) versus difference in the 

disappearance proportion of paleocommunities (y-axis). D: Difference in the origination 

proportion of the taxa (x-axis) versus difference in the appearance proportion of the 

paleocommunities (y-axis). Each plot includes a trendline from reduced major axis regression; 

coefficient of correlation (R value); coefficient of determination (R-squared value); and 

associated p-values. Correlations with p-values less than alpha (0.05) are statistically significant. 

The y-axis values are averages of best estimates from 200 runs of Infomap; and the x-axis values 

are averages from 1000 subsamples of SQS.  
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Figure S14. Results of sensitivity analysis. Each point (n=36,400) represents a non-random 

subsample of collections and modules from one of the 200 runs of the Infomap Algorithm on the 

network in this study (Fig. S2). The analysis involved a four-step procedure. First, collections 

and modules were systematically excluded from each subsample at various thresholds related to 

the collections’ and modules’ numbers of genera. Then, the data were standardized using the 

SQS method using the subsample function of the divDyn package in R (Kocsis et al., 2019) and 

the smallest quorum size (usually between 0.7 and 0.9) that did not result in an error. This step 

involved 1000 iterations, and the results were adjusted with a sample coverage estimators based 

on single collection/occurrence modules (Alroy, 2010). Next, each subsample was used to 

calculate new paleocommunity (appearance and disappearance) turnover proportions. (Alroy, 

2010). Finally, those proportions were compared to the references—the ecologic turnover 

proportions calculated from the whole network (Figs. 2, S6C, S6D) as well as the taxonomic 

turnover proportions of marine and marginal marine animal genera in the PBDB (Fig. S6E)—

through calculation of rank correlation coefficients and associated p values. For all plots, the x-

axis is the number of modules in the subsample, and y-axis is a Kendall rank correlation 

coefficient (τ). A: Subsampled versus whole network paleocommunity disappearance 

proportions. B: Subsampled versus whole network paleocommunity appearance proportions. C: 

Subsampled paleocommunity disappearance proportion versus genus extinction proportion. D: 

Subsampled paleocommunity appearance proportion versus genus origination proportion. The 

minimum number of genera per module in each subsample are shown in (A), and the collections’ 

taxonomic richness thresholds are illustrated by the colors of the points. The average number of 

collections (minus those in excluded modules) is provided in the key for each threshold level of 

collection richness. For (A, B), the subsamples with highest τ values produced the 

paleocommunity turnover proportions that were most similar to those of the whole network (Fig. 

S2), and for (C, D), the best correlations between taxonomic and ecologic turnover have the 

highest τ values. All τ values are statistically significant (p values < 0.05). 
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Table S1. Paleoenvironments of fossil collections. The data were accessed from the Paleobiology 

Database (PBDB) and revised to reduce redundancy and overlap (indet. = indeterminate). 

 
Paleoenvironment 

(‘environment’ in PBDB) 

Paleoenvironment 

(revised) 

 Paleoenvironment 

(‘environment’ in PBDB) 

Paleoenvironment 

(revised) 

"channel" fluvial/alluvial  lacustrine - large lacustrine 

"floodplain" fluvial/alluvial  lacustrine - small lacustrine 

alluvial fan fluvial/alluvial  lacustrine delta front lacustrine 

basin reef reef  lacustrine delta plain lacustrine 

basinal (carbonate) slope and basin  lacustrine deltaic indet. lacustrine 

basinal (siliceous) slope and basin  lacustrine indet. lacustrine 

basinal (siliciclastic) slope and basin  lagoonal paralic 

carbonate indet. other or unknown 

 lagoonal/restricted shallow 

subtidal paralic 

cave karst  levee fluvial/alluvial 

channel lag fluvial/alluvial  loess eolian 

coarse channel fill fluvial/alluvial  marginal marine indet. other or unknown 

coastal indet. other or unknown  marine indet. other or unknown 

crater lake lacustrine  mire/swamp mire/swamp 

crevasse splay fluvial/alluvial  offshore offshore shelf 

deep subtidal indet. deep subtidal  offshore indet. offshore shelf 

deep subtidal ramp deep subtidal  offshore ramp offshore shelf 

deep subtidal shelf deep subtidal  offshore shelf offshore shelf 

deep-water indet. slope and basin  open shallow subtidal shallow subtidal 

delta front deltaic  paralic indet. paralic 

delta plain deltaic  perireef or subreef reef 

deltaic indet. deltaic  peritidal peritidal 

dry floodplain fluvial/alluvial  platform/shelf-margin reef reef 

dune eolian  pond lacustrine 

eolian indet. eolian  prodelta deltaic 

estuary/bay paralic  reef, buildup or bioherm reef 

fine channel fill fluvial/alluvial  sand shoal shallow subtidal 

fissure fill karst  shallow subtidal indet. shallow subtidal 

fluvial indet. fluvial/alluvial  shoreface shallow subtidal 

fluvial-deltaic indet. fluvial/alluvial  sinkhole karst 

fluvial-lacustrine indet. fluvial/alluvial  slope slope and basin 

foreshore peritidal  slope/ramp reef reef 

glacial glacial  spring spring 

glauconitic other or unknown  submarine fan slope and basin 

interdistributary bay paralic  tar tar 

interdune eolian  terrestrial indet. other or unknown 

intrashelf/intraplatform 

reef reef 

 transition zone/lower 

shoreface deep subtidal 

karst indet. other or unknown  wet floodplain fluvial/alluvial 
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Table S2. Lithologies of the rocks that yielded the fossil collections. The data were accessed 

from the Paleobiology Database (PBDB) and revised to reduce redundancy and overlap. 

 
Lithology  

(‘lithology1’ in PBDB) 

Lithology 

(revised) 

 Lithology  

(‘lithology1’ in PBDB) 

Lithology 

(revised) 

"carbonate" not reported  gravel gravel 

"limestone" not reported  ironstone ironstone 

"mixed carbonate-siliciclastic" not reported  lignite lignite 

"reef rocks" not reported  lime mudstone lime mudstone 

"shale" not reported  marl marl 

"siliciclastic" not reported  mudstone mudstone 

"volcaniclastic" not reported  not reported not reported 

amber amber  packstone packstone 

ash ash  peat peat 

bafflestone bafflestone  phosphorite phosphorite 

bindstone bindstone  phyllite phyllite 

breccia breccia  quartzite quartzite 

chalk chalk  radiolarite radiolarite 

chert chert  rudstone rudstone 

claystone claystone  sandstone sandstone 

coal coal  schist schist 

conglomerate conglomerate  siderite siderite 

diatomite diatomite  siltstone siltstone 

dolomite dolomite  slate slate 

floatstone floatstone  tar tar 

framestone framestone  tuff tuff 

grainstone grainstone  wackestone wackestone 
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Table S3. Assortativity coefficients. Assortativity coefficients measure homophily, or the 

tendency of the nodes to connect to others possessing similar properties. Each row is a property 

of the fossil collections in the network, and values in parentheses are fields in the Paleobiology 

Database (PBDB). Assortativity coefficients were calculated for both nominal and continuous 

properties. 

 

Node property Property type Assortativity Coefficient 

Formation (‘formation’) Nominal 0.07 

Country (‘cc’) Nominal 0.17 

State (‘state’) Nominal 0.13 

Tectonic plate (‘geoplate’) Nominal 0.18 

Lithology (‘lithology1’) Nominal 0.13 

Lithology (revised from PBDB) Nominal 0.12 

Paleoenvironment (‘environmemt’) Nominal 0.13 

Paleoenvironment (revised from PBDB) Nominal 0.15 

Chronostratigraphic stage (‘time_major’) Nominal 0.20 

Chronostratigraphic system Nominal 0.60 

Maximum absolute age (‘max_ma’) Continuous 0.96 

Minimum absolute age (‘min_ma‘) Continuous 0.96 

Best age estimate: average of ‘max_ma’ & ‘min_ma’ Continuous 0.96 

Taxonomic/generic richness Continuous 0.10 

Number of links to other collections Continuous 0.35 
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Table S4. Results of different community detection algorithms. Five community detection 

algorithms were applied to the network (Csardi and Nepusz, 2006). In this analysis, each 

connection weight is a Jaccard coefficient. For the Infomap Algorithm, node weight equals 

taxonomic (generic) richness; in all other cases, the nodes are not weighted. These algorithms 

were selected because their computational complexity is relatively low (i.e., they ran to 

completion on the network on the order of minutes) and they do not require specification of 

additional parameters (e.g., step distance or cluster overlap). For each algorithm, the results 

include the number of modules (N) and modularity score (Q). The Louvain, fast greedy, and 

leading eigen algorithms are deterministic methods, meaning that their results do not vary from 

run to run (Csardi and Nepusz, 2006; Muscente et al., 2019; Muscente et al., 2018; Yang et al., 

2016). In contrast, Infomap and Label Propagation algorithms are non-deterministic algorithms, 

and their results may vary from one run to the next (Csardi and Nepusz, 2006; Muscente et al., 

2019; Muscente et al., 2018; Yang et al., 2016). To address this variation, we applied each of 

these algorithms 200 times to the network, and determined the average, minimum (min), and 

maximum (max) values of N and Q. 

 

Algorithm Average N  Min N Max N Average Q Min Q Max Q 

Infomap 3937 3917 3951 0.85 0.85 0.85 

Louvain 146 N/A N/A 0.84 N/A N/A 

Fast Greedy 234 N/A N/A 0.78 N/A N/A 

Leading Eigen 51 N/A N/A 0.78 N/A N/A 

Label Propagation 3319 3262 3412 0.77 0.74 0.79 
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Table S5. Results of the Infomap Algorithm with different similarity coefficients. Four versions 

of the network were produced that differed with regard to connection weight. In this analysis, 

node weight equals taxonomic (generic) richness, and each connection weight is a similarity 

coefficient. The connection weights of the four versions of the network were calculated using the 

following indices: the Jaccard (Jaccard, 1901), Second Kulczynski (Kulczynski, 1928), Simpson 

(Simpson, 1960), and Sørensen–Dice (Dice, 1945; Sørensen, 1948) coefficients. For each version 

of the network, the Infomap Algorithm was applied 25 times, and the average, minimum (min), 

and maximum (max) numbers of modules (N) and modularity (Q) scores were determined.   

 
Similarity index Average N  Min N Max N Average Q Min Q Max Q 

Jaccard 3937 3917 3951 0.85 0.85 0.85 

Second Kulczynski 1767 1749 1784 0.75 0.75 0.76 

Simpson 1223 1214 1233 0.73 0.72 0.73 

Sørensen–Dice 2984 2975 2992 0.73 0.72 0.73 
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Table S6. Distance metrics comparing different runs of the Infomap Algorithm on the network. 

In this analysis, node weight equals taxonomic (generic) richness, and each connection weight is 

a Jaccard coefficient. A total of 200 runs of the algorithm were conducted on the network, and 

from these results, 100 pairs of community structures (sets of modules) were compared with four 

distance metrics, related to the similarity of the clusterings and their shared information (Csardi 

and Nepusz, 2006). In the case of normalized mutual information (NMI) and the Rand indices, 

values range from 0 to 1 and are measures of similarity (i.e., identical clusterings produce values 

equal to 1). Variation of information (VI), in contrast, measures dissimilarity (i.e., identical 

clusterings produce values equal to 0). The results include the average, minimum, and maximum 

values observed among the 100 calculations. 

 
Distance Metric Average Minimum Maximum 

Normalized Mutual Information (NMI) 0.99 0.99 0.99 

Variation of Information (VI) 0.15 0.12 0.19 

Rand Index 1 1 1 

Adjusted Rand Index 0.97 0.95 0.98 
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Table S7. Results of random forest analysis. A total of 200 runs of the Infomap Algorithm were 

conducted on the network, in which node weight equals taxonomic (generic) richness and each 

connection weight equals a Jaccard coefficient. Each run returned a community structure (set of 

modules). To each of these clusterings, we applied a random forest algorithm (Breiman, 2001), a 

method that involves permuting each variable, in order to compare the nodes’ properties in terms 

of their importance as predicators of community structure (i.e., classification). The results 

include the average, minimum, and maximum values of importance, or the loss of function in 

mean squared error, measured using the Gini index (‘IncNodePurity’ in the randomForest 

function of the randomForest package in R). 

 

Node Property Average Minimum Maximum 

Tectonic plate (‘geoplate’) 1.81E+09 1.74E+09 1.88E+09 

Paleoenvironment (revised from PBDB) 1.05E+09 1.4E+09 1.48E+09 

Lithology (revised from PBDB) 1.44E+09 1.02E+09 1.09E+09 

Chronostratigraphic system 1.26E+09 1.22E+09 1.32E+09 
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Table S8. Results of standardization analysis. The nodes of the network in this study were 

repeatedly subsampled in order to produce 100 random subnetworks, which were analyzed with 

the Infomap Algorithm. In these analyses, node weight equals taxonomic (generic) richness, and 

each connection weight is a Jaccard coefficient. The results of each subnetwork analysis were 

compared to a random clustering from the full network using a number of distance metrics for 

comparing clusterings: NMI, VI, and the Rand and Adjusted Rand indices (Csardi and Nepusz, 

2006). In addition, the number of collection (n), number of modules (N) and modularity (Q) of 

each subnetwork clustering was recorded. The results include the average, minimum, and 

maximum value among the 100 runs for each value. In the case of NMI and the Rand indices, 

values range from 0 to 1 and are measures of similarity (i.e., identical clusterings produce values 

equal to 1). In contrast, VI measures dissimilarity (i.e., identical clusterings produce values equal 

to 0). 

 
Measurement Average Minimum Maximum 

Normalized Mutual Information (NMI) 0.95 0.94 0.95 

Variation of Information (VI) 0.72 0.68 0.76 

Rand Index >0.99 >0.99 >0.99 

Adjusted Rand Index 0.85 0.82 0.88 

Number of collections (n) 50588.51 50472 50664 

Number of modules (N) 2453.92 2402 2507 

Modularity score (Q) 0.85 0.85 0.86 
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Data S1. (separate file) 

An .xlsx file with the raw data and large tables produced by the analyses in this study is available 

for download from the Texas Data Repository at the following link (Muscente et al., 2021): 

 

https://doi.org/10.18738/T8/NZFFME 

  

https://doi.org/10.18738/T8/NZFFME
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