Jiang, P., et al., 2021, Water in omphacite fingerprints the thermal history of eclogites: Geology, https://doi.org/10.1130/G49566.1

Supplementary material for

Water in omphacite fingerprinting the thermal history of eclogite

Peilin Jiang, Hanyong Liu, Henrik Skogby, Ren-Xu Chen, Xiaozhi Yang

Fig. S1 Unpolarized FTIR spectra of starting omphacite. Spectra were not averaged so that variations in relative intensity are shown for different grains. OH distribution was zoned in some grains, due to fluid-rock interactions during sample exhumation (Sheng et al., 2007). Initial OH

content was calculated by averaging all spectra.

Fig. S2 Baseline-corrected unpolarized FTIR profile of a omphacite grain. Integral absorbance (cm⁻¹) and distance from grain center (μm, in parentheses) are shown.

Fig. S3 Average unpolarized FTIR spectra of omphacite annealed with different durations. Shown are at 700 (blue) and 600 (red) °C under otherwise identical conditions.

Fig. S4 FTIR spectra of omphacite annealed at different temperature. (a) unpolarized spectra from different grains (spectra were not averaged so that variations in relative intensity are shown for different grains), and (b) polarized spectra along two orthogonal directions (0 & 90 °) of unoriented

grains.

Fig. S5 Raman spectra of annealed omphacite. Raman modes are essentially the same between samples. The bottom is for a reference omphacite (from https://rruff.info).

 Table S1 Chemical composition of starting and recovered omphacite (wt. %)

	SiO ₂	s.d.	TiO ₂	s.d.	Al ₂ O ₃	s.d.	FeO	s.d.	MgO	s.d.	CaO	s.d.	Na ₂ O	s.d.	Total
Starting omphacite															
BXL	56.37	0.52	0.04	0.03	9.69	0.09	1.65	0.04	10.60	0.37	15.47	0.11	5.75	0.04	99.57
Recove	red omp	hacite													
B137	56.86	0.47	0.02	0.02	9.91	0.19	1.60	0.14	10.89	0.14	15.30	0.14	6.03	0.25	100.61
A157	56.39	0.68	0.01	0.01	9.83	0.03	1.61	0.02	10.80	0.02	15.40	0.07	6.04	0.06	100.08
A113	56.27	0.09	0.03	0.04	9.77	0.34	1.62	0.00	10.78	0.15	15.66	0.09	5.86	0.18	99.99
A115	56.88	0.12	0.06	0.02	9.76	0.08	1.63	0.05	10.74	0.09	15.52	0.17	5.65	0.10	100.24
A158	56.97	0.28	0.03	0.02	10.11	0.25	1.53	0.07	10.54	0.19	15.28	0.03	5.98	0.06	100.44
B219	56.54	0.29	0.01	0.01	9.89	0.06	1.56	0.02	10.54	0.01	15.26	0.06	5.96	0.22	99.76
B157	56.05	0.48	0.07	0.03	9.51	0.35	1.56	0.10	10.85	0.12	15.82	0.23	5.51	0.24	99.35
B148	56.81	0.27	0.02	0.01	9.35	0.03	1.66	0.08	10.96	0.10	15.67	0.02	5.87	0.02	100.34
B160	55.98	0.66	0.02	0.02	9.93	0.25	1.58	0.04	10.49	0.08	15.40	0.04	5.74	0.17	99.14
B163	56.42	0.62	0.01	0.03	9.96	0.29	1.59	0.42	10.47	0.21	15.14	0.66	5.89	0.33	99.48
A133	56.34	0.03	0.02	0.04	9.28	0.08	1.67	0.09	11.06	0.18	15.62	0.23	5.96	0.09	99.95
A145	56.32	0.15	0.07	0.02	9.78	0.25	1.52	0.05	10.14	0.30	15.24	0.12	5.75	0.11	98.81
A147	56.03	0.08	0.03	0.03	10.10	0.13	1.55	0.02	10.40	0.23	15.10	0.14	5.93	0.15	99.14
A149	57.01	0.35	0.01	0.01	10.23	0.15	1.58	0.08	10.71	0.31	15.06	0.06	5.99	0.06	100.58
A150	56.67	0.18	0.09	0.03	10.35	0.24	1.61	0.26	10.89	0.07	15.22	0.36	6.23	0.36	101.07
A154	56.42	0.15	0.09	0.02	9.86	0.24	1.68	0.15	10.46	0.09	15.24	0.23	5.88	0.22	99.63
B209	56.14	0.25	0.01	0.01	9.65	0.36	1.57	0.10	10.87	0.22	15.55	0.06	5.88	0.08	99.67
A148	56.44	0.32	0.00	0.02	9.30	0.07	1.55	0.05	10.82	0.12	15.63	0.26	5.84	0.15	99.58
B210	55.64	0.32	0.03	0.01	9.50	0.30	1.58	0.01	10.83	0.11	15.80	0.09	5.68	0.00	99.06
B215	56.57	0.19	0.05	0.03	9.77	0.31	1.55	0.11	11.05	0.15	15.70	0.13	5.69	0.11	100.38
A159	56.10	0.20	0.06	0.02	10.07	0.04	1.56	0.04	10.49	0.07	14.91	0.19	6.09	0.20	99.28
A153	56.58	0.39	0.06	0.04	9.79	0.20	1.59	0.16	10.54	0.20	15.34	0.06	5.91	0.16	99.81
A155	56.61	0.32	0.05	0.02	9.80	0.15	1.52	0.04	10.70	0.23	15.46	0.30	5.92	0.15	100.06

Assuming all Fe as FeO. Shown are the average by analyzing multi points both within and between grains of each sample, and data in the italic (*s.d.*) are the standard deviation. MnO and K₂O contents are usually $\sim 0.01\%$ or lower, and are not shown.

(°C)	1 GPa		2 GPa		3 GPa		
	Abs3620/Abs3450	s.d.	Abs3620/Abs3450	s.d.	Abs3620/Abs3450	s.d.	
600	0.10	0.02					
650	0.15	0.09					
700	0.19	0.07	0.16	0.09	0.15	0.04	
750	0.22	0.07	0.22	0.09	0.23	0.06	
800	1.05	0.21	0.31	0.15	0.34	0.06	
850			0.32	0.16			
900	0.69	0.24	0.62	0.18	0.38	0.12	
950					1.01	0.15	
1000	0.67	0.28	0.71	0.14	0.95	0.28	
1100					1.11	0.27	

Table S2 Average Abs3620/Abs3450 of annealed omphacite

Shown are the average of unpolarized spectra for each sample, and data in the italic (s.d.) are the standard deviation from multi-grain analyses.

Sample	Mineral	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	Total
0010001	grt	38.69	0.00	20.98	-	26.40	0.30	4.21	9.31	-	99.88
09WD21		0.30	0.00	0.52	-	0.97	0.17	0.83	0.74	-	
(2.9 GPa,	omp	54.79	0.07	8.96	0.12	7.36	0.00	7.77	13.50	6.52	99.10
693 °C)		0.40	0.03	0.20	0.04	0.24	0.01	0.12	0.20	0.13	
0011/000	grt	38.43	0.05	22.56	-	22.67	0.78	6.20	9.27	-	99.95
09WD22		0.27	0.02	0.21	-	0.33	0.41	0.47	0.47	-	
(2.7 GPa,	omp	55.99	0.13	11.15	0.06	3.82	0.01	8.08	12.84	6.50	98.58
62/°C)		0.22	0.04	0.21	0.05	0.55	0.02	0.22	0.26	0.21	
	grt	38.45	0.05	22.28	-	22.57	0.74	5.70	9.88	-	99.66
09WD25		0.22	0.05	0.16	-	0.22	0.16	0.14	0.31	-	
(2.6 GPa,	omp	55.33	0.16	10.50	0.09	4.38	0.01	8.51	13.94	6.12	99.05
666 °C)		0.34	0.05	0.32	0.04	0.19	0.01	0.21	0.13	0.12	
	grt	37.95	0.04	21.87	-	24.80	0.94	5.07	8.80	-	99.47
09WD26		0.22	0.03	0.18	-	0.16	0.09	0.19	0.09	-	
(3.2 GPa,		55.18	0.05	10.18	0.27	6.60	0.03	7.60	12.66	6.97	99.54
714 °C)	omp	0.42	0.06	0.22	0.10	0.46	0.02	0.40	0.32	0.13	

Table S3Composition of garnet and omphacite in the Hongan eclogites (wt. %)

Assuming all Fe as FeO, and data in the italic are the standard deviation. -, below 0.01%. grt, garnet; omp, omphacite. Equilibrium *P* and *T* were estimated by the eclogite-facies grt-cpx barometer (Simakov

and Taylor, 2000) and thermometer (Nakamura, 2009).

References cited

- Nakamura D. (2009) A new formulation of garnet-clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set: Journal of Metamorphic Geology, v.27, p.495-508.
- Sheng, Y.M., Xia, Q.K., Dallai, L., Yang, X., and Hao, Y.T., 2007, H₂O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China: Geochimica et Cosmochimica Acta, v. 71, p. 2079–2103.
- Simakov S.K., and Taylor L.A. (2000) Geobarometry for deep mantle eclogites: solubility of Ca-Tschermaks in clinopyroxene: International Geological Review, v.42, p.534-544.