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1. Methodology 

1.1 Data 

Geophysical data used in our multi-observable probabilistic inversion include 

fundamental mode Rayleigh wave dispersion data, absolute elevation, geoid height, and 

surface heat flow (SHF). 

Rayleigh wave dispersion curves are taken from ambient noise tomography and 

teleseismic two-plane-wave tomography of a recent study by Fan et al. (2021), which 

generates Rayleigh wave phase velocity maps at 6-45 s periods and 45-143 s periods, 

respectively. The broadband dispersion curves that we use at 5-143 s are extracted from 

these two sets of dispersion maps by taking their averages at the overlapped period of 

45 s (Fig. S1 a-c). More details about the data, tomography methods, and uncertainty 

estimation can be found in Fan et al. (2021). To take advantage of the original high 

resolution of the Rayleigh wave phase velocity maps, we subdivide our study region 

into 736 1D columns with a surface area of 0.5°× 0.5°. 

Non-seismic data sets are collected from different sources: elevation data are taken 

from the GTOPO30 global elevation model  (http://lta.cr.usgs.gov/GEOPO30, Fig. S1 

f); filtered/upper mantle geoid height data are taken from Afonso et al. (2019) (Fig. S1 

e) and SHF data come from the continental China heat flow data set of Jiang et al. (2019) 

(Fig. S1 d). A low-pass filter is used to remove the high-frequency components with 

the wavelengths < 50 km in elevation. The filtered geoid minimizes/removes the effects 

of deep mantle (> 400 km) anomalies that are not considered in the inversion. In their 

recent global study, Afonso et al. (2019) presented and scrutinized a filtered geoid 

model that explicitly accounted for whole-mantle anomalies. Based on their results, and 

considering the size of our study region, we conclude that the filtered geoid model of 

Afonso et al. (2019) is suitable for our purposes. 



Some extreme SHF values (<20 mWm-2 and >150 mWm-2) are removed from the 

original dataset, which are believed to be associated with local, shallow perturbations 

from groundwater circulation. Based on the assumptions and limitations of the 1D 

approximation to solve the forward problems (Afonso et al., 2013a; 2013b; 2016a), we 

adopt a different resolution for the non-seismic data. Therefore, the elevation, geoid 

height and SHF data associated with each 1D column are computed using a moving 

average method with a window size of 1°× 1°. The means and variances computed for 

each 1°× 1° cell are used, respectively, as input data and associated uncertainty during 

the inversion. We assign minimum uncertainties to elevation and geoid height of 150 

m and 1.2 m, respectively, to account for theoretical modeling errors (Afonso et al., 

2013b). The standard deviation assigned to the SHF data is 20% of the mean SHF, with 

a minimum of 10 mWm-2 (Jaupart and Mareschal, 2011). 

 

1.2 Thermochemical modelling 

The method used in this study has been particularly designed for constraining the 

present-day lithospheric thermal and compositional structure by incorporating data sets 

with different and complementary sensitivities to shallow/deep, thermal/compositional 

anomalies. Full descriptions of this method have been presented in detail in Afonso et 

al. (2013a; b; 2016a) and Qashqai et al. (2016; 2018). Therefore, we only provide a 

brief introduction to the main forward/inversion problems and model parameterization 

relevant to this study. 

The forward problems involve: i) solving the steady-state heat transfer equation, ii) 

computing the stable mineral assemblages in the upper mantle and their physical 

properties (e.g. Vp, Vs, ρ) via Gibbs free-energy minimization, iii) predicting geoid 

height and solving the isostatic balance equations (i.e., we assume that the present-day 



elevations are isostatically supported, but the effects of dynamic topography are also 

tested and shown in Fig. S2), iv) calculating the fundamental mode Rayleigh wave 

dispersion curves and attenuation effects due to temperature-dependent anelasticity (cf. 

Afonso et al., 2013a; b; Qashqai et al., 2016). The inverse problem is solved by adopting 

a Bayesian inference approach. In this framework, prior information at hand on both 

observable data and model parameters are combined with information from observed 

data and physical models (i.e. forward problems). This allows us to derive a 

multidimensional probability density function (PDF) over the parameter and data space, 

known as the posterior PDF, which represents the most comprehensive solution to the 

inverse problem (Tarantola, 2005). We employ a Markov Chain Monte Carlo (MCMC) 

sampling method based on the Delayed Rejection Adaptive Metropolis (DRAM) 

algorithm of Haario et al. (2006) to sample the posterior PDF. In this study, we run 

290,000 simulations per column and use 50,000 simulations in the initial pre-adaptive 

stage. Subsequently, we update the proposal distribution every 30,000 new samples (i.e. 

a total of eight adaptations). The total number of simulations for the entire region is 

213.5 million (736 columns). 

Each 1D column is parameterized into three crustal layers (upper/sediments, middle, 

and lower crust) and two upper mantle layers (lithospheric and sublithospheric mantle) 

(Fig. S3). Each crustal layer is characterized by its thermal conductivity (𝜅), coefficient 

of thermal expansion (𝛼), compressibility (𝛽), bulk density (𝜌), Vp/Vs, thickness (h), 

and radiogenic heat production (RHP). Of these, the first three are assumed known 

(Table S1), while the others are inverted for. Priors for these unknown crustal 

parameters are given in Table S2. The initial sedimentary thickness is taken from the 

CRUST1.0 model (Laske et al., 2013) and the depth to the Moho is taken from the 

receiver function study of Li et al. (2014). The bulk compositions of the lithospheric 



and sublithospheric mantle are defined by five major oxides within the system CaO-

FeO-MgO-Al2O3-SiO2 (priors are also listed in Table S2). 

The temperature distribution inside the lithosphere is obtained by solving the 

steady-state heat transfer equation subject to Dirichlet boundary conditions at the 

surface (typically Ts=10 ℃) and at the bottom of the lithosphere (TLAB=1250 ℃) within 

a finite-difference mesh (red dots in Fig. S3). In the sublithospheric mantle (i.e. 

convection-dominated layer), temperature is a free parameter retrieved by linear 

interpolation between “temperature nodes” located at different depths (base of the 

transition layer 𝑇஻௨௙௙௘௥, three intermediate nodes 𝑇௜௡௧௘௥ଵ, 𝑇௜௡௧௘௥ଶ, 𝑇௜௡௧௘௥ଷ and bottom 

of the model 𝑇௕௢௧௧௢௠). These five unknown parameters are sampled by the DRAM 

algorithm during the MCMC inversion and their priors are listed in Table S2. Then the 

equilibrium assemblages and their thermophysical properties (e.g. Vp, Vs, 𝜌, etc.) are 

computed at each “thermodynamic node” (blue squares in Fig. S3) via Gibbs free-

energy minimization using components of the Perple_X software (Connolly, 2009) and 

the thermodynamic database of Xu et al. (2008). All these computed velocities and 

densities are linearly interpolated to the fine mesh during the forward calculations of 

dispersion curves. The data fits of this inversion are shown in Fig. S4. 

 

1.3 Melting model 

We estimate melt fractions in the mantle based on the inverted temperature (T), the 

solidus temperature (𝑇ௌ) and the liquidus temperature (𝑇௅) as follows (Katz et al., 2003): 

𝐹௠௘௟௧ ൌ ሺ ்ି்ೄ
்ಽି்ೄ

ሻଵ.ହ.                                                        (1) 

where 𝐹௠௘௟௧ represents melt fraction, and 𝑇ௌ and 𝑇௅ are computed as: 

𝑇ௌ ൌ 1085.7൅ 132.9𝑃 െ 5.1𝑃ଶ                                        (2) 

𝑇௅ ൌ 1780 ൅ 45𝑃 െ 2𝑃ଶ                                              (3) 



where P is pressure in GPa. Two significant simplifying assumptions are that both the 

solidus and liquidus temperatures used here are representative of dry peridotite only 

and no melting history or latent heat effects are considered. Thus, predicted melt 

fractions should be taken with caution and as first order estimates only. The effect of 

melt on seismic velocities is also considered based on the results of Clark and Lesher 

(2017), assuming a maximum melt fraction retention in the mantle of 5% (any melt 

predicted above this threshold is assumed to be completely extracted from the mantle 

and therefore it cannot affect seismic velocities). The reductions in compressional wave 

(∆𝑉௉) and shear wave (∆𝑉ௌ) velocities as functions of melt fraction are: 
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where 𝛽 is the ratio of the adiabatic bulk moduli of the solid to that of the liquid, 𝛾 is 

the ratio of the shear modulus to adiabatic bulk moduli for the solid phases, 𝜌௅ and 𝜌ௌ 

are densities of the silicate melt and crystalline mantle, respectively, and 𝛬௄ and 𝛬ீ are 

geometric factors of pore shape. Approximate values of these parameters can be found 

in Clark and Lesher (2017) and Takei (2002), thus ∆𝑉௉ and ∆𝑉ௌ can be estimated by 

∆𝑉௉ ൌ െ1.9𝐹௠௘௟௧ and ∆𝑉ௌ ൌ െ2.4𝐹௠௘௟௧, respectively. These two equations establish 

near-linear relations between the reductions in velocities and melt fraction in mantle 

depth at relatively low melt fraction (൑ 10%, Clark and Lesher, 2017). Therefore, the 

seismic velocities (𝑉௉ and 𝑉ௌ) after considering the effect of the melt can be calculated 

by: 

𝑉௉ ൌ 𝑉௉_௦௬௦ െ 1.9 ∗ 𝐹௠௘௟௧ ∗ 𝑉௉_௦௬௦                                (6) 

𝑉ௌ ൌ 𝑉ௌ_௦௬௦ െ 2.4 ∗ 𝐹௠௘௟௧ ∗ 𝑉ௌ_௦௬௦                                 (7) 

where 𝑉௉_௦௬௦  and 𝑉ௌ_௦௬௦  are the seismic velocities of a system without melting (but 



including attenuation effects due to temperature-dependent anelasticity). It is worth 

noting that although the presence of melt will also reduce the bulk density, we neglect 

this effect since it is always small compared to the uncertainties in data sets constraining 

the bulk density (Afonso et al., 2016). 

 

2. Mafic melts may have been trapped beneath central-east SLB 

We note that a thermal anomaly and thin lithosphere (Fig. 2a, Fig. S7a) is imaged 

beneath the central-east SLB, where our model also predicts partial melting in the 

mantle (Fig. 2b). Yet, there is no evidence of recent magmatism on the surface in this 

region. Given the thick sedimentary sequence in this part of the basin, mafic melts 

generated in the sublithospheric mantle may have been preferentially emplaced at 

deeper levels in the crust and/or as sills within the sedimentary units. Indeed, this 

hypothesis is supported by the high Vp/Vs values (i.e. presence of mafic rocks) that we 

image in this region at mid-low crustal depths (Fig S7c, d); similar Vp/Vs values have 

been reported in Tao et al. (2014). There is also independent evidence for mafic crustal 

components beneath the SLB based on the high shear wave velocity imaged at mid-

lower crustal depths (Guo et al., 2015). Alternatively, the shallow asthenospheric 

mantle beneath this region could be more refractory than what we assumed to estimate 

melt fractions (e.g. as a result of previous melting episodes) and therefore less prone to 

generating melts.  

To verify the reliability of our predicted mantle temperatures and melt content 

beneath the SBL, and to assess any potential influence that the thick low-velocity 

sediments may have on the deep structure, we conducted a number of tests. We first 

construct four synthetic models and compute their associated Rayleigh wave dispersion 

curves (see Figure S8): i) a model without sediments and with mantle temperatures 



below the solidus (blue line); ii) a model without sediments and with mantle 

temperatures above the solidus at ~80 km depth (purple line); iii)  a model with a 4 km 

thick sedimentary layer (shear wave velocity  ~2.3 km/s) and mantle temperatures 

below the solidus (red line); and iv) a model with a 4 km thick sedimentary layer and 

mantle temperatures above the solidus at ~80 km depth (cyan line). As expected, these 

models demonstrate that sediments influence the dispersion curves mainly at low 

periods (< 40 s), while the deep mantle temperature influences dispersion curves at long 

periods (> 30 s). Although there is some influence from sediments on periods longer 

than 40 s, they are well within uncertainties.  

We also run four inversions using these synthetic dispersion curves. Fig. S8b shows 

the inverted temperature structures as the mean of the posterior probability density 

function. The inverted temperatures (red line) using the synthetic dispersion curve from 

model (iii) does not show a higher temperature than the solidus. Therefore, we conclude 

that it is unlikely that the low-velocity basin (with a sediment thickness of ~ 4 km) 

would influence the inversion (and/or dispersion curves) in a way that artificially high 

temperatures (and associated melts) would be obtained in the mantle. Consequently, 

the predicted high-temperatures and associated partial melting beneath the central-east 

SLB seem to be a robust feature. 

 

3. Evaluation of contamination and source variations 

Although samples with MgO > 6% should not have been significantly affected by 

fractionation or contamination, we cannot completely rule out these and other effects 

(e.g. a pyroxenitic component in the source) on the composition of the basalts. However, 

there are several lines of evidence that suggest that contamination and/or source 

heterogeneity cannot be the main factor controlling the composition of the basalts. First, 



the common occurrence of mantle xenoliths in erupted volcanic rocks throughout the 

region suggests that magma ascended rapidly, with limited interaction with the crustal 

materials (Zhang and Guo, 2016; Wang et al., 2017; Yu et al., 2018). Second, the Sr-

Nd-Pb isotope composition of basalts with ages < 5 Ma show no correlation with 

eruption age and/or location (Fig. S11). Third, the observed correlations between both 

the foci of volcanism and its average composition with lithospheric thickness and 

sublithospheric temperature anomalies (Figs. 2, 3 and S10) are unlikely to be 

coincidental. If source composition was the main factor controlling the compositional 

variability of the basalts, we should not see these correlations unless the composition 

of the source was also correlated with both lithospheric thickness and sublithospheric 

temperature anomalies. In summary, the evidence above indicate that a dominant effect 

from variations in mantle source composition is unlikely. 
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Fig. S1. Geophysical data used in the multi-observable probabilistic inversion. Examples of Rayleigh 

wave phase velocity maps from (a) ambient noise tomography (ANT), (c) two-plane-wave tomography 

(TPWT) and (b) the combined ANT + TPWT dataset for three different periods; (d) Surface heat flow; 

(e) Geoid height; (f) Topography. Gray triangles in c) are the seismic stations. Colored dots in d) indicate 

the available measurements in NEC which are interpolated onto the whole study area with a gridding 

method based on continuous curvature splines (Smith and Wessel, 1990). Given the poor coverage of 

this dataset, we assign large uncertainties to it (see Methods). 

 

  



Fig. S2. Potential effects of dynamic topography on inversion results.  The first row shows the observed 

input topography (a) and the inverted Moho (b) and LAB (c) depths discussed in the main text. The 

second row shows the results for Moho (e) and LAB (f) depths when the input topography contains a 

positive dynamic contribution of 400 m (panel d; Davies et al., 2019). The third row shows the same 

results as in (d-f) but for an input topography that contains a dynamic contribution of -400 m. Note that 

the inversion results are robust against expected dynamic contributions and they overlap at the level of 

1 standard deviation (Figs. S5 and S7b). 

 

  



Fig. S3. Model parameterization used in the 1D inversion of each 1ox1o cell, modified from Afonso et al. 

(2013) and Zhang et al. (2019). Blue points along the geotherm (intermediate nodes) represent the points 

where full Gibbs free-energy minimization is performed during the MCMC inversion.  

 

  



Fig. S4. Left column: predicted data from the inversion (Rayleigh wave phase velocity maps for periods 

of 10 s, 45 s, and 125 s; SHF, geoid height, and topography). Second column: absolute differences 

between the means of the observed and predicted observables. The right two columns are the data fits 

for three representative locations in GXR, SLB, and CBM. The data fit for SHF is generally poorer than 

for other datasets. This is mostly because of the larger uncertainties assigned to this observable. Despite 

this, the predicted SHF is still within the assumed uncertainties. 

 



Fig. S5. Map of uncertainty (as 1 of the posterior PDF) of LAB depth. 

 

 

  



Fig. S6. (a) Depths at which partial melting in the mantle is predicted. (b) A temperature profile crosses 

the KDV, CBSV, and JPHV;the Moho and LAB depths are indicated with white and purple solid lines, 

respectively. Although there is more melt predicted under the region between the CBSV and JPHV (Fig. 

2 in main text), the melt is generated at deeper levels and under a thicker lithosphere than in the 

surrounding regions that contain recent volcanism. Shallower melts may be extracted to the surface more 

efficiently under thinned regions than deeper melts under thick lithospheres. 

 

  



Fig. S7. a) Moho depth, b) associated uncertainty as 1 of the posterior PDF, c) Vp/Vs of the middle 

crust and d) Vp/Vs of the lower crust. 

 

 

 

 

 

 

 

 

 

 

 

 

  



Fig. S8. a) Predicted Rayleigh wave dispersion curves based on the four synthetic models explained in 

the text. b) Corresponding inverted geotherms (as the mean of the posterior probability density function); 

note that the cyan line is covered by the purple line. 

 
 

 

 

  



Fig. S9. Systematic variations in ratios of more- to less-incompatible elements as a function of LAB 

depth. Grey arrows highlight the general trend between lithospheric thickness and geochemical proxies 

of degree of melting.   

 

 

Fig. S10. Systematic variations in ratios of more- to less-incompatible elements as a function of melt 

fraction. Grey arrows highlight the general trend between melt fraction and geochemical proxies of 

degree of melting.   

 

 

 



Fig. S11. Sr-Nd-Pb isotope composition of the young basalts in NEC correlate neither with the eruption 

age nor with the relative distance from a common point (130°E, 40°N). 

  



Table S1. Constant crustal parameters. 

 

 

 

 

 

 

 

 

 

 

 

Subscripts 1, 2 and 3 denote the three crustal layers. κ: thermal conductivity; α: coefficient of thermal 

expansion; β: compressibility. 

 

 

 

 

  

Parameter Value 

𝜅ଵ ሺ𝑊𝑚ିଵ℃ିଵሻ 2.4 

𝜅ଶ ሺ𝑊𝑚ିଵ℃ିଵሻ 2.3 

𝜅ଷ ሺ𝑊𝑚ିଵ℃ିଵሻ 2.1 

𝛼ଵ (℃ିଵ) 2.7 ൈ 10ିହ 

𝛼ଶ (℃ିଵ) 2.6 ൈ 10ିହ 

𝛼ଷ (℃ିଵ) 2.3 ൈ 10ିହ 

𝛽ଵ ሺ𝑃𝑎ିଵሻ 5.0 ൈ 10ିଵଵ 

𝛽ଶ ሺ𝑃𝑎ିଵሻ 1.4 ൈ 10ିଵଵ 

𝛽ଷ ሺ𝑃𝑎ିଵሻ 1.1 ൈ 10ିଵଵ 



Table S2. Unknown parameters and their initial prior ranges. 

Parameter Range 

Crust  

Density (first crustal layer) (kg/m3) 2000-2500 

Density (second crustal layer) (kg/m3) 2600-3000 

Density (third crustal layer) (kg/m3) 2800-3200 

𝑉௉/𝑉ௌ (first crustal layer) 1.85-2.05 

𝑉௉/𝑉ௌ (second crustal layer) 1.65-1.85 

𝑉௉/𝑉ௌ (third crustal layer) 1.85-2.10 

Δh (first crustal layer) (km) -2.0-2.0 

Δh (second crustal layer) (km) -5.0-5.0 

Δh (third crustal layer) (km) -5.0-5.0 

RHP (μW/m3) 0.4-1.8 

Mantle  

LAB (km) 50-200 

AlଶOଷ in the lithosphere (wt.%) 0.5-5.5 

FeO in the lithosphere (wt.%) 6.0-9.2 

MgO in the lithosphere (wt.%) 34.0-55.0 

CaO in the lithosphere (wt.%) 0.2-5.2 

AlଶOଷ in the sublithosphere (wt.%) 0.5-5.5 

FeO in the sublithosphere (wt.%) 6.0-9.2 

MgO in the sublithosphere (wt.%) 34.0-55.0 

CaO in the sublithosphere (wt.%) 0.2-5.2 

Tbuffer (℃) 1230-1550 

Tint1 (℃) 1250-1560 

Tint2 (℃) 1300-1580 

Tint3 (℃) 1330-1580 

Tbottom (℃) 1430-1650 

 


