Tang, L., Wagner, T., Fusswinkel, T., Zhang, S.-T., Hu, X.-K., and Schlegel, T.U., 2021, Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China: GSA Bulletin, https://doi.org/10.1130/B36170.1.

Supplemental Material

Table S1. List of studied samples from the Qiyugou Au deposit, Leimengou Mo deposit and Huashan barren pluton.

Table S2. Petrography and microthermometry data of fluid inclusion assemblages.

Table S3. Average elemental concentrations ($\mu g/g$) of fluid inclusion assemblages.

Table S1 List of studied sam	ples from the Qivugou Au dep	osit. Leimenaou Mo dei	posit and Huashan barren pluton.

Location	Sample	Brief description	Ρ	Μ	LA
19Q-0	19Q-01	Fine-grained PG, weak phyllic alteration, 15 m (from the southern margin) at 220 m level			
	19Q-02	Fine-grained PG, crosscut by pyrite vein which is poor in quartz, 40 m at 220 m level			
	19Q-03	Fine-grained PG with disseminated pyrite, phyllic alteration, 80 m at 220 m level			
	19Q-04	Fine-grained PG with disseminated pyrite, 110 m at 220 m level			
	19Q-05	Fine-grained PG, thin vein with abundant pyrite and minor quartz, 140 m at 220 m level			
	19Q-06	Pyrite-quartz veins cut the potassic altered PG, the veins have open cavities, 170 m at 220 m level			
	19Q-07	Strongly potassic alteration and silicification, pyrite occurs along the boundary or in the vein, 175 m at 220 m level			
190	19Q-08	Milky pyrite + quartz vein that crosscuts the pinkish PG, disseminated pyrite is abundant, 190 m at 220 m level		\checkmark	\checkmark
	19Q-09	Massive ore with weak potassic alteration, crosscut by pyrite-quartz vein, 195 m at 220 m level			
	19Q-10	Pyrite + quartz vein in PG, abundant medium-grained pyrite as aggregates, 180 m at 220 m level			
19Q-1 QYG- QYG- QYG-	19Q-11	Massive PG with pinkish color and disseminated pyrite, strongly potassic altered, 180 m at 220 m level			
	19Q-12	Massive ore with potassic-altered PG and pyrite + quartz vein, 200m at 220 m level			
	QYG-10	Fine-grained PG, pyrite is more abundant in the phyllic-altered domain, at 280 level			
	QYG-11	Potassic-altered PG with disseminated pyrite, at 280 m level		\checkmark	\checkmark
	QYG-12	Pyrite + quartz vein crosscut quartz + pyrite + molybdenite vein, host rock is PG, at 280 m level		\checkmark	\checkmark
	QYG-13	Thin vein of quartz + pyrite + molybdenite that cuts the fine-grained PG, at 280 m level		\checkmark	\checkmark
	QYG-14	Milky quartz vein that cuts potassic-altered PG, open cavities in the vein, at 280 m level			
	QYG-15	Milky quartz + pyrite vein that cuts the PG, disseminated pyrite in the vein and in the PG, at 280 m level			
QYG-16	QYG-16	Massive ore with strong potassic alteration, PG crosscut by pyrite-quartz vein, at 280 m level			
	QYG-17	Milky quartz with open cavity that cuts fine-grained PG, at 280 m level			
	QYG-18	Milky quartz with open cavity in host rock PG, at 280 m level			
	QYG-19	Coarse-grained pyrite + quartz vein that cuts pinkish PG, pyrite occurs in aggregates, at 280 m	\checkmark		
Leimengou	LMG-01	Quartz + molybdenite + pyrite ± chalcopyrite veinlets, crosscut the potassic-altered GP	\checkmark	\checkmark	\checkmark
	LMG-02	Milky quartz + pyrite ± molybdenite veins that crosscut GP, minor molybdenite distributed along the vein margin			

	LMG-03	Milky guartz + pyrite ± molybdenite veins that crosscut GP, abundant molybdenite in the vein		
LMG-04		Coarse-grained fluorite + calcite + quartz vein with open cavity		
	LMG-05	Weakly-altered GP with disseminated pyrite, crosscut by K-feldspar + quartz + molybdenite vein		
	LMG-06	Milky quartz vein with minor pyrite in the vein and molybdenite along the margin that crosscuts K-altered GP		
	LMG-07	Quartz + pyrite vein and quartz + molybdenite + pyrite vein that crosscut each other, host rock is GP		
	LMG-08	Quartz + pyrite vein crosscut by quartz + molybdenite + pyrite vein, the host GP contains disseminated pyrite		
	LMG-09	Strongly potassic-altered GP, crosscut by quartz + pyrite vein which contains no molybdenite		
	LMG-10	K-feldspar + quartz + molybdenite vein that crosscuts the GP which contains disseminated pyrite	 	\checkmark
	LMG-12	Barren GP, coarse K-feldspar constitutes the major phenocryst, no visible sulfide in hand-specimen		
	LMG-13	Barren GP, coarse K-feldspar constitutes the major phenocryst, no visible sulfide in hand-specimen		
	LMG-14	Barren GP with abundant disseminated pyrite		
	LMG-15	Quartz + molybdenite + pyrite vein that crosscuts the PG, the core of the vein is dominantly barren quartz,		
		molybdenite and pyrite occur along the margin		
	LMG-16	Quartz + molybdenite + pyrite vein that crosscuts the PG with open cavity, molybdenite occurs along the margin		
	LMG-17	Massive potassic-altered GP with disseminated pyrite, crosscut by thin quartz + molybdenite vein		
	LMG-18	Strongly potassic-altered GP with open cavity, crosscut by thin quartz + molybdenite vein		
	LMG-19	Massive GP with open cavity, molybdenite occurs as disseminated aggregates in the porphyry		
	LMG-20	Quartz + fluorite (light blue and colorless) vein that crosscuts the GP	 \checkmark	\checkmark
Huashan	19HS-01	Porphyritic biotite monzonite, phenocrysts: K-feldspar, plagioclase, quartz, biotite		
	19HS-02	Porphyritic monzonitic granite, phenocrysts: K-feldspar, plagioclase, quartz	 \checkmark	
	HS-01	Porphyritic biotite monzonite, phenocrysts: K-feldspar, plagioclase, quartz, biotite	 	
	HS-02	Porphyritic biotite monzonite, phenocrysts: K-feldspar, plagioclase, quartz, biotite	 	\checkmark
	JSM-01	Porphyritic biotite granite, phenocrysts: plagioclase, quartz, biotite		
	JSM-02	Porphyritic biotite granite, phenocrysts: plagioclase, quartz, biotite	 	\checkmark

Abbreviations: PG, porphyritic granite; GP, granite porphyry; P, petrography; M, Microthermometry; LA, laser ablation-inductively coupled plasma-mass spectrometry.