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METHODS 

Mapping natural river centerlines 

We analyzed the centerlines for natural channels from an existing global dataset that 

includes rivers with widths ≥30 m (Allen and Pavelsky, 2018a, 2018b) and targeted datasets for 

rivers with documented channel migration in the Andean foreland and the continental US (Lagasse 

et al., 2004; Sylvester et al., 2019). For the Allen and Pavelsky (2018b) dataset, we used their 

“simplified” centerlines and excluded features flagged as canals, tidal channels, or lakes.  

We used spline interpolation to resample the channel centerline data with the node spacing 

equal to the mean channel width, consistently with the modeled centerlines. A sensitivity test for 

the global sinuosity dataset showed a difference of < 4% in the median sinuosity using linear (S = 

1.40) versus spline interpolation (S = 1.45). We used a fitting procedure to estimate AR-2 model 

parameters for the interpolated version of each of the natural centerlines (Fig. S1). 
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Sinuosity calculations 

Geologic constraints such as valley margins can steer channels at scales substantially larger 

than individual meander bends (Ferguson, 1975), which can introduce sources of sinuosity beyond 

those created by either random perturbations or channel migration. Therefore, to diminish this 

effect we calculated sinuosity for all modeled and natural channels using the average value for a 

moving window with width L = 50wc, where L is along-stream distance and wc is channel width. 

For a channel with high sinuosity (e.g., S = 3), this window scale is slightly greater than the 

meander wavelength (Williams, 1986).  

 

AR-2 model  

Using the second-order autoregressive (AR-2) model, we rendered each channel centerline 

with a length of 150 channel widths; for natural meanders with sinuosity S = 1.5, this length 

corresponds to roughly 10 meander wavelengths (Williams, 1986). The model is stationary and 

oscillatory within a region of parameter space bounded by −1 < 𝑏𝑏2 < 1 − |𝑏𝑏1| and 𝑏𝑏2 < −1
4
𝑏𝑏12 

(Ferguson, 1979). We ran a parameter sweep across 0 < b1 ≤ 2.0 and −1 ≤ b2 < 0, which includes 

this constrained region, and varied 𝜎𝜎 from 0.1 to 0.5. These ranges span the large majority of fitted 

AR-2 parameter values for natural channels using the global dataset (Fig. S1).  

Each model parameter independently affects centerline shape (Fig. S2). Increasing the 

magnitude of b1 increases meander wavelength and sinuosity. Increasing the magnitude of b2 (i.e., 

more negative values) decreases meander wavelength, or similarly increases the frequency of 

curvature change. Increasing 𝜎𝜎 with other parameters fixed increases sinuosity. 

The detailed form of each modeled centerline depends on the random disturbance series 𝜖𝜖 

(Equation 1 in the main text). Therefore, for each set of parameters (b1, b2 and 𝜎𝜎) we used n 
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different series of 𝜖𝜖 to generate a set of replicate centerlines. We measured the proportion of the 

channel length that belonged to meander neck cutoffs (i.e., self-intersecting loops), and removed 

these cutoffs to generate simplified centerlines. Straightened reaches formed by enacting the cutoff 

were generated with the original node spacing using linear interpolation. Then for each set of 

replicates, we calculated the mean and standard deviation of sinuosity, the proportion of sinuosity 

values greater than a critical value (Sc = 1.5), and the mean fraction of original channel length in 

cutoff loops. 

We separately tested the effect of the number of replicate centerlines (n) on estimated 

sinuosity statistics for the AR-2 model (Fig. S3). Overall, the mean sinuosity for each replicate set 

is consistent between n = 100 and n = 1000, except for cases in which a significant portion of the 

modeled centerlines is bound in cutoff loops (Fig. S3A). The standard deviation of sinuosity 

behaves similarly between the n = 100 and n = 1000 cases (Fig. S3B). We used linear regression 

to determine the R2 value for the mean sinuosity calculated for 1000 replicates versus the mean 

calculated with smaller values of n, excluding any replicate sets that included cutoffs. Figure S3C 

shows that R2 does not change substantially for n ≥ 100 (Fig. S3C). Therefore, we used n = 100 

replicates for each parameter set using the AR-2 model for the analyses in the main text (Fig. 2 

and 4).  

 

Channel migration model 

We modeled river channel migration using the curvature-driven centerline model of 

Howard and Knutson (1984). In this model, channel width (wc) is fixed and the centerline evolves 

due a spatial convolution of local and upstream centerline curvature. The dimensionless migration 

rate is 
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𝑅𝑅1(𝑠𝑠) = Ω𝑅𝑅𝑜𝑜(𝑠𝑠) +
Γ∫ 𝑅𝑅𝑜𝑜(𝑠𝑠−𝜉𝜉)𝐺𝐺(𝜉𝜉)𝑑𝑑𝜉𝜉𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚

0

∫ 𝐺𝐺(𝜉𝜉)𝑑𝑑𝜉𝜉𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚
0

, (S1) 

where s is the centerline node index, Ro = (Cwc)-1, C is local curvature, ξ is distance along the 

centerline, and Ω and Γ are weighting coefficients set to -1 and 2.5, respectively. G is a weighting 

function  

𝐺𝐺(𝜉𝜉) = 𝑒𝑒−
2𝑘𝑘𝐶𝐶𝑓𝑓
ℎ𝑐𝑐

𝜉𝜉, (S2) 

where k is a dimensionless coefficient set to unity, Cf is a dimensionless friction coefficient set to 

0.01 and hc is channel depth. We set channel width and depth to 20 m and 1 m, respectively. The 

dimensioned migration rate at each node is calculated as 

𝑀𝑀(𝑠𝑠) = 𝑘𝑘𝑒𝑒𝑅𝑅1(𝑠𝑠)𝜇𝜇𝜀𝜀, (S3) 

where ke is a rate constant, µ is overall channel sinuosity, and ε is a coefficient set to -2/3. We set 

ke to yield a maximum lateral erosion rate of 1 m/year. Meander neck cutoffs were identified by 

self-intersection of the channel banks and were removed. The model boundary conditions were 

periodic with respect to channel geometry and the curvature integration (Equation S1). For further 

details regarding model implementation see Limaye and Lamb (2013). 

 To characterize the channel centerlines evolved using this model, we measured the length 

of half-meanders between curvature inflections after Howard and Hemberger (1991). We 

measured the 84th percentile of half-meander bend length to isolate the behavior of relatively long 

bends that contribute substantially to overall sinuosity (Fig. 3B in the main text). We also measured 

sinuosity using the same moving-window approach as for the centerlines from the AR-2 model 

and natural cases. 
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FIGURES 

 

Figure S1. Histograms of fitted AR-2 model parameters (b1, b2, 𝜎𝜎) for a global dataset of natural 

channels (Allen and Pavelsky, 2018a, 2018b).  
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Figure S2. Example channel centerlines for different magnitudes of each of the parameters, b1, b2 

and 𝜎𝜎, with the other two parameters fixed. 
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Figure S3. Sensitivity analyses to test the effect of the number replicate centerlines (n) generated 

using the AR-2 model on estimated sinuosity (S) statistics. (A) Scatter plot of mean sinuosity for 

each set of replicate centerlines using n =1000 versus n = 100. The marker color indicates the mean 

length of the original channel in cutoff loops for the n = 1000 cases. (B) Scatter plot of the standard 

deviation (SD) of sinuosity for n = 1000 versus n = 100. The marker color uses the same convention 

as in (A). (C) R2 value for mean(S) using 1000 replicates versus mean(S) using n replicates, plotted 

against n. This plot excludes any cases with cutoff loops. 




