Foley, E.K., et al., 2021, Jurassic Arc: Reconstructing the Lost World of eastern Gondwana: Geology, v. 49, https://doi.org/10.1130/G49328.1

Jurassic Arc: Reconstructing the lost world of eastern Gondwana

Elliot.K. Foley*, R.A. Henderson, E.M. Roberts, A.I.S. Kemp, C.N. Todd, E.M. Knutsen, C. Fisher, C.C. Wainman and Carl Spandler.

Department of Geosciences, James Cook University Townsville, Queensland 4811, Australia *E-mail contact: <u>elliot.foley@my.jcu.edu.au</u>

SUPPLEMENTARY PAPERS

Geology (2021)

SUPPLEMENTARY PAPERS

Supplementary file A. List of samples used for U-Pb geochronology in this study (PDF).

Supplementary file B. U-Pb geochronological datasets (Excel file).

Supplementary file C. List of samples used for Lu-Hf analysis in this study (PDF).

Supplementary file D. Lu-Hf isotope analytical datasets (Excel file).

Supplementary file E. Analytical setup and procedures used (PDF).

Supplementary file F. Crustal addition rate calculations (PDF).

Supplementary file G. Supplementary Figure 1. Plotted EHf data with isotopic evolution curves

(PDF).

U-Pb isotopes by LA-SF-ICP-MS (UWA)

Zircon U-Pb isotope compositions were determined by LA-SF-ICPMS at The University of Western Australia. The LA-SF-ICPMS system used in this study consisted of an Element XR ICPMS coupled to a Cetac Analyte G2 193 nm ArF laser. During the course of this study we took advantage of the improved sensitivity of the Element XR's higher vacuum interface and employed a Jet sample cone and X skimmer cone configuration, along with 4.5 mL/min N² introduced with a total of 1 L/min of He carrier gas through the laser cell and Helix sample cup. Laser ablation analysis were carried out using a fluence of 4 J/cm2, a laser repetition rate of 5Hz, and laser spot diameter of 15 um. Each analysis consisted of a 10 s gas blank, while the laser was firing on the shutter, follow by 30 seconds of ablation time for a total of 150 laser shots. Each analysis also consisted of a 20 s washout period before the next analysis began. This routine measured masses, ²⁰⁰Hg, ²⁰²Hg, ²⁰⁴Hg+Pb, ²⁰⁶Pb ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, and ²³⁸U. Daily ThO/Th was routinely less than 0.3% percent. While no common Pb correction was applied, samples with excess ²⁰⁴Pb- beyond that of background- were rejected. All analyses were calibrated to the 1064 Ma 91500 zircon standard using the ID-TIMS data from Schoene et al., 2006. The 337 Ma Plešovice (Sláma et al., 2008) and the 416 Ma Temora 2 zircons were (Black et al., 2004) employed as a secondary standard to monitor the accuracy of the method. During this study, the weighted mean ²⁰⁶Pb/²³⁸U age of Plešovice was 335 ± 2 Ma (2SE), while the Temora 2 zircon yielded an age of 413 ± 3 Ma (2SE). U-Pb isotope data were reduced using the method described in Fisher et al. (2014.).

Thermo Fisher ELEMENT XR (SF-ICP-MS)		
Forward power	1350 W	
Plasma gas	16 L/ min Argon	
Auxiliary gas	0.95 L/min Argon	
Make-up gas (He + N2)	1.00 L/min He (Cell 0.30 L/min, Cup 0.70 L/min); 4.5 mL/min N2	
Monitored masses	238U, 232Th, 208Pb, 207Pb, 206Pb, 204Pb, 202Hg, 200Hg	
Detector mode	Fixed in counting or analogue respective to count rate	
Cycle time	310ms	
Other notes	Quartz injector, Ni X skimmer & Jet sample cones, tuned for ThO+/Th+ <0.3%; Th/U ~1	
Photon Machines	Analyte.G2 ArF Excimer laser	
Wavelength	193 nm	
Pulse length	~4 ns	
Fluence	~4 J/cm ²	
Cell	HelEx II 2 volume cell	
Spot size	25 μm	
Repetition rate	5 Hz	
Delay between analyses	20s	
Ablation duration	30s	

References

Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology 205, 115-140.

Fisher, C. M., Vervoort, J. D., & DuFrane, S. A., 2014, Accurate Hf isotope determinations of complex zircons using the "laser ablation split stream" method. Geochemistry, Geophysics, Geosystems, 15(1), 121–139.

Schoene, B., Crowley, J.L., Condon, D.J., Schmitz, M.D., Bowring, S.A., 2006. Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochimica et Cosmochimica Acta 70, 426-445.

Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1-35.

U-Pb isotopes by LA-ICP-MS (JCU)

For comprehensive details of the U-Pb LA-ICP-MS setup employed at James Cook University (JCU), see Todd et al. (2019).

Zircon standards employed were GJ1 (609 Ma; Jackson et al., 2004), TEMORA 2 (417 Ma; Black et al., 2004), Plešovice (337 Ma; Sláma et al., 2008) and 91500 (1064 Ma; Schoene et al, 2006).

Thermo iCAP-RQ		
Forward power	1450 W	
Plasma gas	15 L/ min Argon	
Auxiliary gas	0.8 L/min Argon	
Make-up gas	0.5 L/min Argon	
Shield torch Sampling depth	none 5 mm	
Photon Machines Ana	alyte.G2 193 nm ArF Excimer laser	
Wavelength	193 nm	
Pulse length	< 5 ns	
Energy density	~3 J/cm ²	
Carrier gas	0.8 (MFC1) +0.3 (MFC2) L/min Helium	
Nitrogen	4 mL/min	
Ablation style	Line scan	
Scan speed	3 μm/s	
Spot size	30 µm	
Repetition rate	5 Hz	

References

Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology 205, 115-140.

Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 47-69.

Schoene, B., Crowley, J.L., Condon, D.J., Schmitz, M.D., Bowring, S.A., 2006. Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochimica et Cosmochimica Acta 70, 426-445.

Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1-35.

Todd, C. N., Roberts, E. M., Knutsen, E. M., Rozefelds, A. C., Huang, H. Q., & Spandler, C. (2019). Refined age and geological context of two of Australia's most important Jurassic vertebrate taxa (Rhoetosaurus brownei and Siderops kehli), Queensland. *Gondwana Research*, *76*, 19-25.

Lu-Hf isotopic Analysis (UWA)

ThermoScientific Neptune PLUS Multi-Collector Mass Spectrometer (LA-MC-ICP-MS)		
Forward power	1450 W	
Plasma gas	15 L/ min Argon	
Auxiliary gas	0.8 L/min Argon	
Make-up gas	0.5 L/min Argon	
Photon Machines Ana	lyte.G2 193 nm ArF Excimer laser	
Wavelength	193 nm	
Pulse length	< 5 ns	
Energy density	$\sim 5 \text{ J/cm}^2$	
Carrier gas	0.7 (MFC1) +0.3 (MFC2) L/min Helium	
Nitrogen	9 mL/min	
Scan speed	n/a	
Spot size	40 to 50 µm	
Ablation duration	60 s	
Repetition rate	4 Hz	

For comprehensive details of the Lu-Hf isotope analytical setup and data processing procedures employed at the University of Western Australia (UWA), see Petersson et al., 2019, 2020).

Ablation sites were selected to overlap those of the corresponding concordant U-Pb analysis for each zircon grain.

Corrections for isobaric interference of Lu and Yb on ¹⁷⁶Hf were performed by monitoring ¹⁷⁵Lu (¹⁷⁶Lu/¹⁷⁵Lu = 0.02655) (Vervoort et al., 2004) and ¹⁷¹Yb (¹⁷⁶Yb/¹⁷¹Yb = 0.897145) (Segal et al., 2003). Yb isotope ratios were normalized to ¹⁷³Yb/¹⁷¹Yb = 1.130172 (Segal et al., 2003). Hf isotope ratios (¹⁷⁹Hf/¹⁷⁷Hf) were normalized to 0.7325 (Patchett and Tatsumoto, 1981), using an exponential law.

Uncertainties for reference and sample zircons are given at two standard errors and incorporate the reproducibility of the Mud Tank zircon analyses, added in quadrature. Four zircon references, Mud Tank (MTZ), FC-1, TEMORA 2 and 91500 were analysed concurrently with the unknowns to monitor instrumental accuracy and precision. Normalized (S1) 176 Hf/ 177 Hf values for MTZ, FC-1 and 91500 were 0.282488 ± 14, 0.282181 ± 19, and 0.282311 ± 24 respectively. Normalized (S5) 176 Hf/ 177 Hf values for MTZ, FC-1 and TEMORA 2 were 0.282494 ± 13, 0.282175 ± 19 and 0.282693 ± 19 respectively.

The solution ¹⁷⁶Hf/¹⁷⁷Hf value of FC-1 employed is 0.282184 ± 16 (Woodhead and Hergt, 2005), and the solution ¹⁷⁶Hf/¹⁷⁷Hf value of MTZ, to which all sample zircon analyses were normalized, is 0.282507 ± 6 (Woodhead and Hergt, 2005). The solution ¹⁷⁶Hf/¹⁷⁷Hf value of 91500 is 0.282306

 \pm 8 (Woodhead and Hergt, 2005). The solution ¹⁷⁶Hf/¹⁷⁷Hf value of TEMORA 2 is 0.282686 \pm 8 (Woodhead and Hergt, 2005).

Initial epsilon Hf values were calculated using the chondritic uniform reservoir (CHUR) parameters of Bouvier et al. (2008), 176 Hf/ 177 Hf = 0.282725 and 176 Lu/ 177 Hf = 0.0336 (Bouvier et al., 2008), and the 176 Lu decay constant of 1.867 \pm 0.008 \times 10⁻¹¹ yr⁻¹ published by Söderlund et al. (2004).

References

Bouvier, A., Vervoort, J.D., & Patchett, P.J. (2008). The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chrondrites and implication for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters*, 273, 48-57.

Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., Gray, C. M., & Blevin, P. L. (2009). Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia. *Earth and Planetary Science Letters*, 284, 455-466.

Næraa, T., Scherstén, A., Rosing, M. T., Kemp, A. I. S., Hoffmann, J. E., Kokfelt, T. F., & Whitehouse, M. J. (2012). Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. *Nature*, 485, 627-630.

Patchett, P.J., and Tatsumoto, M. (1981). A routine high-precision method for Lu-Hf isotope geochemistry and chronology. *Contributions to Mineralogy and Petrology*, 75, 263-267.

Petersson, A., Kemp, A.I.S., Gray, C.M., and Whitehouse, M.J. (2020). Formation of early Archaen Granite-Greenstone Terranes from a globally chondritic mantle: Insights from igneous rocks of the Pilbara Craton, Western Australia. *Chemical Geology* 511, 119757.

Petersson, A., Kemp, A.I.S., Hickman, A.H., Whitehouse, M.J., Martin, L., and Gray, C.M. (2019). A new 3.59 Ga magmatic suite and a chondritic source to the east Pilbara Craton. *Chemical Geology*, 511, 51-70.

Segal, I., Halicz, L., and Platzner, I.T. (2003). Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure. *Journal of Analytical Atomic Spectrometry*, 18, 1217-1223.

Söderland, U., Patchett, J.P., Vervoort, J.D., and Isachsen, C.E. (2004). The 176 Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. *Earth and Planetary Science Letters*, 219, 311-324.

Vervoort, J.D., Patchett, J.P., Söderland, U., and Baker, M. (2004). Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry, Geophysics, Geosystems, 5.

Woodhead, J.D., and Hergt, J.M. (2005). A preliminary appraisal of seven natural zircon reference materials for in-situ Hf isotope determination. *Geostandards and Geoanalytical Research*, 29, 183-195.

Lu-Hf isotopic Analysis (JCU)

For comprehensive details of the Lu-Hf isotope analytical setup and data processing procedures employed at James Cook University (JCU), see Kemp et al. (2009), Næraa et al. (2012) and Tucker et al. (2016).

ThermoScientific Neptune Plasma Multi-Collector Mass Spectrometer (LA-MC-ICP-MS)	
Forward power	1450 W
Plasma gas	15 L/ min Argon
Auxiliary gas	0.8 L/min Argon
Make-up gas	0.5 L/min Argon
Photon Machines Analy	rte.G2 193 nm ArF Excimer laser
Wavelength	193 nm
Pulse length	< 5 ns
Energy density	~3 J/cm ²
Carrier gas	0.8 (MFC1) +0.3 (MFC2) L/min Helium
Nitrogen	4 mL/min
Scan speed	3 μm/s
Spot size	50 µm
Ablation duration	60 s
Time between analyses	60s
Repetition rate	4 Hz

Ablation sites were selected to overlap those of the corresponding concordant U-Pb analysis for each zircon.

Corrections for isobaric interference of Lu and Yb on ¹⁷⁶Hf were performed by monitoring ¹⁷⁵Lu (¹⁷⁶Lu/¹⁷⁵Lu = 0.026549) (Vervoort et al., 2004) and ¹⁷¹Yb (¹⁷⁶Yb/¹⁷¹Yb = 0.897145) (Segal et al., 2003). Yb isotope ratios were normalized to ¹⁷³Yb/¹⁷¹Yb = 1.130172 (Segal et al., 2003). Hf isotope ratios (¹⁷⁹Hf/¹⁷⁷Hf) were normalized to 0.7325 (Patchett and Tatsumoto, 1981).

Mass bias was corrected by exponential law (Fisher et al., 2011). Lu-Hf datasets were subsequently processed offline.

Measured average ¹⁷⁶Hf/¹⁷⁷Hf from four zircon standards, Mud Tank (MTZ), FC-1, Plešovice and 91500 were analysed concurrently with the unknowns to monitor instrumental accuracy and precision (Fisher et al., 2014). Uncertainties for unknowns and standards are given at two standard deviations. Four zircon references, Mud Tank (MTZ), FC-1, Plešovice and 91500 were analysed concurrently with the unknowns to monitor instrumental accuracy and precision. Normalized (S2) ¹⁷⁶Hf/¹⁷⁷Hf values for MTZ and FC-1 were 0.282494 \pm 11 and 0.282183 \pm 11 respectively.

Normalized (S3) 176 Hf/ 177 Hf values for MTZ, FC-1 and Plešovice were 0.282509 ± 15, 0.282166 ± 24 and 0.282478 ± 22 respectively. Normalized (S4) 176 Hf/ 177 Hf values for MTZ, FC-1, 91500 and Plešovice were 0.282505 ± 15, 0.282173 ± 25, 0.282285 ± 28 and 0.282478 ± 22 respectively.

The solution ¹⁷⁶Hf/¹⁷⁷Hf value of FC-1 employed is 0.282184 ± 16 (Woodhead and Hergt, 2005), and the solution ¹⁷⁶Hf/¹⁷⁷Hf value of MTZ, to which all unknown analyses were normalized, is 0.282507 ± 6 (Woodhead and Hergt, 2005). The solution ¹⁷⁶Hf/¹⁷⁷Hf value of 91500 is 0.282306 ± 8 (Woodhead and Hergt, 2005) and the solution ¹⁷⁶Hf/¹⁷⁷Hf value of Plešovice is 0.282482 ± 13 (Sláma et al., 2008).

Based on average ¹⁷⁶Hf/¹⁷⁷Hf MTZ values for each session, an individual normalization factor (calculated using the average ¹⁷⁶Hf/¹⁷⁷Hf value of MTZ relative for each session relative to the solution value) was applied to the unknown analyses (Fisher et al., 2014). Constants employed in these calculations were the chondritic uniform reservoir (CHUR) ¹⁷⁶Hf/¹⁷⁷Hf value of 0.282725 and the ¹⁷⁶Lu/¹⁷⁷Hf value of 0.0336 (Bouvier et al., 2008), and the ¹⁷⁶Lu decay constant of 1.867 ± 0.008 × 10⁻¹¹ yr⁻¹ published by Söderlund et al. (2004). Given ɛHf uncertainties in unknown analyses encompass analytical/instrumental drift errors added in quadrature with the reproducibility of MTZ.

Spurious results, such as those described below, were excluded from further interpretation.

- with uncertainties/errors > 1.5 EHf units
- with EHf unit values which plotted above the depleted mantle (DM) line
- with Lu¹⁷⁶/Hf¹⁷⁷ ratios > 0.003, indicating a high REE content. As a high REE zircon standard (e.g. R33) was not employed, any interference correction applied may have been insufficient.

References

Bouvier, A., Vervoort, J.D., & Patchett, P.J. (2008). The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chrondrites and implication for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters*, 273, 48-57.

Fisher, C. M., Vervoort, J. D., & DuFrane, S. A., 2014, Accurate Hf isotope determinations of complex zircons using the "laser ablation split stream" method. Geochemistry, Geophysics, Geosystems, 15(1), 121–139.

Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., Gray, C. M., & Blevin, P. L. (2009). Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia. *Earth and Planetary Science Letters*, 284, 455-466.

Næraa, T., Scherstén, A., Rosing, M. T., Kemp, A. I. S., Hoffmann, J. E., Kokfelt, T. F., & Whitehouse, M. J. (2012). Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. *Nature*, 485, 627-630.

Patchett, P.J., and Tatsumoto, M. (1981). A routine high-precision method for Lu-Hf isotope geochemistry and chronology. *Contributions to Mineralogy and Petrology*, 75, 263-267.

Segal, I., Halicz, L., and Platzner, I.T. (2003). Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure. *Journal of Analytical Atomic Spectrometry*, 18, 1217-1223.

Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1-35.

Söderland, U., Patchett, J.P., Vervoort, J.D., and Isachsen, C.E. (2004). The 176 Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. *Earth and Planetary Science Letters*, 219, 311-324.

Tucker, R. T., Roberts, E. M., Henderson, R. A., & Kemp, A. I. (2016). Large igneous province or long-lived magmatic arc along the eastern margin of Australia during the Cretaceous? Insights from the sedimentary record. *Bulletin*, 128, 1461-1480.

Vervoort, J.D., Patchett, J.P., Söderland, U., and Baker, M. (2004). Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry, Geophysics, Geosystems, 5.

Woodhead, J.D., and Hergt, J.M. (2005). A preliminary appraisal of seven natural zircon reference materials for in-situ Hf isotope determination. *Geostandards and Geoanalytical Research*, 29, 183-195.