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Summary

This Supplementary Information contains two movies (details follow) and a simple mathematical
explanation for how models of physical erosion can be simplified to very few parameters. The
simple (few parameter) model is amenable to a straightforward, computationally inexpensive,
exploration of parameter space at much larger scales. For example, Figure 2 shows the results
of running the model where the evolution of 105 blocks is predicted for 105 time steps, which
takes 50 s using a 2.6GHz Intel Core i7 processor. Finally, results showing the effect of changing
the critical threshold value, c, are given in Figure 3 of this document. Results are described in
the main manuscript and the movies help to show the time dependent behaviour.

Movies

Movie 1 shows the time dependent evolution of solutions to Equation (3) in the main manuscript
for constant critical toppling height, c. The upper panel and inset show the evolution of the
river coloured by timestep. The inset panel shows the region contained within the black box
shown in the main panel. The rectangular panels below show relief along the river as a function
of time, ∆z, and relief greater than the critical value for toppling. The square panels below
show frequency (black bars) and cumulative frequency (red curves) of relief. Solutions for the
same model are also shown in Figure 1d-i of the main manuscript and as red solid and dotted
curves in Figure 3b of this document. Movie 2 shows the distribution of relief generated by
running this model 100 times with random (but uniformly distributed) starting conditions.

Simplifying a physical model of block toppling

The following describes how physical models of erosion along rivers can be described as a con-
sequence of thresholds. The resultant simple models have very few parameters. In the main
manuscript a simple (few parameter) model is explored for insights into the evolution of fluvial
landscapes from very small (meter) to large (tens to hundreds of kilometres) scales.

Physical erosion is a consequence of body or surface forces (F ) being sufficiently large that
erosional thresholds, c, are exceeded. More formally, in discrete notation, at any position along
a river, x, elevation will change as function of time, t, such that

zxt+1 =

{
zxt if F ≤ c
zxt −∆z if F > c,

(1)

where ∆z is change in elevation, which can be set by, for example, the size of the rock mass
(e.g. pebble, basalt column, fractured schist) being moved between time t and t + 1. This
simple description could be expanded to incorporate, for example, shear stresses or drag and
critical thresholds for sliding, saltation, toppling or fracturing. The simple model appears to be
a universal description of physical erosion along rivers. This supplementary document shows
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one way in which a simple physical model of blocks toppling (e.g. Lamb & Dietrich, 2008;
Stucky de Quay et al., 2019), which appears to be a reasonably description of fluvial erosion
in regions of exposed bed rock, can be reduced to a simple model in which erosion occurs if
rock column height exceeds a critical value for toppling (i.e. ∆z > c). It is straightforward
(and computationally efficient) to expand this model so that the consequences of local physical
erosion for fluvial erosion at much larger scales can be explored. Simplification of other well
known erosional models (wear; transport-limited erosion) are also examined.

In the simple scheme explored here, the propensity of columns of rock to topple is estimated as
a function of drag, shear stress, rock mass and buoyancy. The force generated by drag on the
(unit width) column of rock can be expressed as

Fd =
1

2
ρwCdu

2h1, (2)

where ρw is density of water, Cd is the dimensionless drag coefficient, u is water velocity, h1 is
height of the column exposed to flowing water. For reasonable values of parameters (see Table
1) in Equation (1), Fd is O(103 − 106) N for a column of unit width. The force generated by
shear at the top of the unit width column can be expressed as

Fτ ≈ ρwgh2
dz

dx
L, (3)

where g is gravitational acceleration, h2 is depth of the flowing water, dz/dx is channel bed
slope, and L is width of the column. Fτ is expected to be O(10 − 103) N for slopes between
O(10−3 − 10−2). The buoyancy force generated as a result of water displaced by the column of
unit width rock can be expressed as

Fb = ρwgLh3, (4)

where h3 is depth of the water at the base of the column. Fb is expected to be up to O(105) N.
The force exerted by the column of unit width rock is

Fg = ρrgLH, (5)

where ρr is density of the rock column. Fg is expected to be up to O(105) N.

Calculating moments (see Figure 1) generated by application of these forces indicates that the
column of rock will topple if

2HFτ + Fd (2H − h1) + LFb ≥ LFg. (6)

Substituting Equation (4) into (6) and rearranging to make column height the subject yields

H
[
2Fτ + 2Fd − L2ρrg

]
≥ h1Fd − LFb. (7)

If 2Fτ + 2Fd ≥ L2ρrg, the column will topple if,

H ≥ h1Fd − LFb
2Fτ + 2Fd − L2ρrg

. (8)

If 2Fτ + 2Fd < L2ρrg, the column will topple if,

H ≤ h1Fd − LFb
2Fτ + 2Fd − L2ρrg

. (9)
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The right hand side of Equation (9) is less than unity for the parameter values given in Table
1. In other words blocks are likely to be stable if 2Fτ + 2Fd < L2ρrg. We therefore focus on
Equation (8). It is desirable to recast this equation in terms of elevation, z. For simplicity, if
we assume that the right hand side of Equation (8) is constant, c, the evolution of longitudinal
river profile elevations can then be expressed as

zxt+1 =

{
zxt if ∆z ≤ c
zxt −∆z if ∆z > c,

(10)

where H = ∆z (i.e. change in relief between adjacent columns; ∆z = zxt − zx−1
t ), and x is

position along the river. Solutions to Equation (10) are shown in the main manuscript and
below for different starting conditions and distributions of c.

Examples of simplifying alternative erosional models

There are many ways in which river beds lower including by removal of alluvium or abrasion
of bedrock. It seems likely that many erosional processes can be recast in a similar form to
Equation (10). For example, if we consider erosion by wear, following Lamb et al. (2008)’s
recasting of Cutter’s (1960) classic impact wear model, the volume of bedrock eroded due to
wear can be expressed as Vi = Vpρsw

2/2ε. Vp, ρs and w are the respective volume, density and
impact velocity of particles (normal to the bed; e.g. saltating sediment). ε is the ‘deformation
wear factor’, in other words the amount of energy required to remove a unit volume of eroded
rock by wear, which incorporates the capacity of bedrock to store energy elastically. Note that,
following Lamb et al. (2008), in this example there is no threshold kinetic energy for erosion
to occur, except that the kinetic energy (Vpρsw

2/2) must be greater than zero. For this simple
scheme Equation (10) can be rewritten as

zxt+1 =

{
zxt if Vpρrw

2/2 ≤ c
zxt −∆z if Vpρrw

2/2 > c,
(11)

where c is 0 and ∆z is Vi/A; A is the area of eroded bed rock removed. Clearly some of the
scalings in this model are different to those considered in the block toppling model, however,
the overarching rule (i.e. lowering occurs once a threshold has been exceeded) remains the same.

Perhaps more speculatively, if we consider transport-limited erosion, e.g. lowering of river
profiles by movement of alluvium currently at rest, we can recast Equation (10) as

zxt+1 =

{
zxt if τ < c

zxt −∆z if τ ≥ c,
(12)

where c = (ρr−ρw)gD, i.e. we assume movement initiates at the Shields number, τ∗ = τ/c. An
important complexity is that ∆z is likely to scale with shear stress and at short timescales it
is expected to be a fraction of the diameter of the characteristic particle being moved, D (e.g.
Wong & Parker, 2006).

All of these schemes can be made more complex (complete), for example, we might combine
them, consider angular impingement of water or rock particles on bed rock, cohesive strength of
joints, disentrainment of sediment, etc. It seems likely that in many models of physical erosion
there is a critical threshold to overcome for erosion to initiate, which indicates that Equation
(1) is perhaps a reasonable general representation of fluvial erosion.
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Figure 1: Schematic block toppling. (a) H and L = height and length of rock column. Fd
= drag force on column exerted over length h1. Fτ = shear force; h2 = depth of water flowing
across top of column. Fg = body force exerted by rock column. Fb = buoyancy force; h3 =
depth of displaced water at base of column. ◦ = pivot for moments calculations. (b) Schematic
for torque calculation.

Table 1: Parameters and their values used for moments calculations.
Parameter Notation Value Unit

Density of water ρw 1 ×103 kg m−3

Drag coefficient Cd O(1) Dimensionless
Velocity of water u O(1–10) m s−1

Height of column facing water h1 O(1–10) m

Gravitational acceleration g 9.81 m s−2

Depth of flowing water h2 O(1–10) m
Average slope dz/dx O(10−3 − 10−2) Dimensionless

Width of rock column L O(1) m

Displaced water h3 O(1–10) m

Density of rock ρr 2–3 ×103 kg m−3

Height of rock column H O(1–10) m

Elevation z O(1–1000) m
Change in elevation between adjacent columns ∆z O(1–10) m
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Figure 2: Example of a ‘large’ model run. (a) Red = Random uniformly distributed
elevations, z(x), added to the the linear slope shown in panel (d) to generate the starting
condition, note that only first 100 m are shown for clarity. Black = local relief, i.e. ∆z =
zxt − zx−1

t . (b) Power spectrum (from Fast Fourier Transform) of elevation (red circles) used to
generate the random noise in the starting condition and relief (black circles). Note elevation
spatial series has a white noise spectrum (solid red line), consistent with short wavelength (. 100
km) spectra of some real rivers (Roberts et al. 2019; Wapenhans et al., 2021). Black solid line
= power ∝ k2, where k is wavenumber. (c) Histogram showing distributions of elevations (red)
and relief in the starting condition (black). (d) 100-km-long river profile, containing 105 (1 m
wide) blocks, evolving for 105 time steps. Thick black line = starting condition, thin lines =
predicted profile every 104 time steps. Threshold, c = 0.5 m in this example. If block toppling
occurs at a rate of 1 /year to 1 /century this model represents 105 to 107 years of evolution.
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Figure 3: Changing critical threshold, c, values. (a) Distribution of relief as a function
of time for simple linear model shown in Figure 1d–i of main manuscript; box and whiskers
show extrema, median, 1st and 3rd quartile. Pink = distribution at first time step. (b) Solid
curves shows percentage of knickpoints moving as a function of time relative to the number of
knickpoints moving at first time step. Curves show results for different distributions of c; gray
box and whiskers show distribution of values for constant value of c and 100 random distributions
of starting condition (panel a and Figure 1d-i in main Ms); green/red = results for high/low
constant value of c; blue = c ∝ 1/x; orange = results for random uniform distribution of c(x, t).
Dotted curves = number of knickpoints moving as percentage of all relief measurements.
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