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Supplemental Material 
 
Supplementary Materials I: Figures S1 to S3 

Figure S1. Representative cathodoluminescence images of zircon grains from the biotite 
granites, granite porphyry dykes and MMEs. 

Figure S2. Major oxide versus loss on ignition (LOI) diagram for the granite porphyry dykes. 

Figure S3. Sn versus Rb/Sr diagram for the biotite granites and granite porphyry dykes. 

 

Supplementary Materials II: Tables S1 to S7 

Table S1. Information about selected samples. 

Table S2. LA-ICP-MS zircon U–Pb data for the biotite granites, granite porphyry dykes and 
MMEs. 

Table S3. LA-ICP-MS zircon trace element compositions (ppm). 

Table S4. Representative electron microprobe analyses of feldspar from the biotite granites, 
granite porphyry dykes and MMEs. 

Table S5. Representative electron microprobe analyses and structural formula of biotite from the 
biotite granites and granite porphyry dykes. 

Table S6. Whole-rock Sr-Nd isotopic data for the biotite granites, granite porphyry dykes and 
MMEs. 

Table S7. In situ zircon Hf and O isotopic data for the biotite granites, granite porphyry dykes 
and MMEs. 

 

Supplementary Materials III: Methodology 

1. Zircon O isotopes 
 

Zircon grains were separated from crushed rock using a combination of heavy liquid and 
magnetic techniques. Representative zircon grains were handpicked under a binocular 
microscope, mounted in epoxy resin, and polished down to near half sections to expose the 
internal structures. An optical microscope was used to image these zircon grains under 
transmitted and reflected light. Cathodoluminescence images (Fig. S1) were taken using a Zeiss 
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Supra 55 field emission SEM equipped with a MonoCL4 cathodoluminescence detector. These 
images were used as guides to target the spot analyses for trace elemental and isotopic 
measurements. 

Zircon oxygen isotopic analyses were carried out with a Cameca IMS-1280 ion 
microprobe. The 133Cs+ primary ion beam was accelerated at 10 kV, with an intensity of ca. 2 
nA, and rastered a 20-µm domain. A normal incidence electron flood gun was used to 
compensate for sample charging during analysis. Oxygen isotopes (16O and 18O), were 
determined simultaneously using multi-collection mode. Measured 18O/16O ratios were 
normalized by Vienna Standard Mean Ocean Water (VSMOW, 18O/16O = 0.0020052), and then 
corrected for instrumental mass fractionation using the Penglai zircon standard (18O = 5.31 ± 
0.10 ‰, Li et al., 2010). Detailed analytical procedures were similar to those described by Li et 
al. (2010). The internal precision of 18O/16O ratio for a single analysis was generally better than 
0.2 ‰ (1 standard error). The Qinghu zircon, used as the unknown sample, yielded a weighted 
average 18O value of 5.43 ± 0.23 ‰ (2) which is identical to the recommended value within 
analytical errors (5.4 ± 0.2 ‰, Li et al., 2013). 
 
2. Zircon U–Pb ages and trace elements 
 

U–Pb isotopic and trace elemental analyses of zircon were performed using an Agilent 
7900 ICP-MS coupled with a Resonetics RESOlution S-155 ArF-Excimer laser ( = 193 nm). 
The laser was focused to produce a spot diameter of 29 µm, using a repetition rate of 8 Hz with 
an energy density of 4 J/cm2. Detailed operating conditions were illustrated in Li et al. (2012). 
NIST SRM 610 glass and Temora zircon (416.75 ± 0.24 Ma, Black et al., 2003) were used as 
external standards, and 91Zr was selected as internal standard. The raw ICP-MS data were 
exported in CSV format and processed using the ICPMSDataCal 10.1 software (Lin et al., 2016). 
Concordia diagrams and weighted mean calculations were made using Isoplot/Ex_ver3 (Ludwig, 
2003). Data errors of single spot were 1 and those of weighted mean 206Pb/238U ages were 2. 
To monitor the accuracy of the LA-ICP-MS U–Pb measurements, the Plešovice zircon was 
analyzed as the unknown sample. Twelve analyses yielded a weighted average 206Pb/238U age of 
339.4 ± 2.2 Ma (2, MSWD = 2.6), consistent with the recommended age of 337.13 ± 0.37 Ma 
(Sláma et al., 2008). 
 
3. Zircon Lu–Hf isotopes 
 

Lu–Hf isotopic analyses of zircon were carried out using a Neptune MC-ICP-MS 
equipped with a RESOlution M-50 laser ablation system. A 45-µm beam at 8-Hz repetition rate 
was applied during spot analyses. Analytical spots lie in the equivalent sites where zircon U–Pb 
dating was performed. Penglai zircon was used as the reference standard, with a recommended 
176Hf/177Hf ratio of 0.282906 ± 0.000010 (2SD) (Li et al., 2010). Instrumental conditions and 
data acquisition were comprehensively described by Wu et al. (2006). 
 
4. Whole-rock major and trace elements 
 

Major elements were analyzed using a Rigaku RIX 2000 X-ray fluorescence 
spectrometer (XRF) on fused glass beads. Calibration lines used in quantitative analyses were 
produced by bivariate regression of 36 standard materials overlapping a wide range of silicate 
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compositions (Li et al., 2005). Analytical uncertainties were mostly between 1% and 5%. Whole-
rock volatiles, including F, Cl and B, were determined by ion activity meter, XRF spectrometer 
and direct reading spectrometry, and the corresponding detection limits for F, Cl and B analyses 
were 0.02 wt.%, 20 ppm and 1.6 ppm, respectively. The Fe2+ analyses were conducted using 
dichromate titration. 

Trace elements were analyzed using a Perkin-Elmer Sciex ELAN 6000 ICP-MS, using 
analytical procedures described by Li (1997). About 50 mg of powder for each sample was 
dissolved in high-pressure Teflon bombs using a HF+HNO3 mixture. Rh was used as internal 
standard to monitor the signal shift during counting, and the USGS rock standards GSR–1, GSR–
2, GSR–3, AGV–2, BHVO–2 and SARM–4 were chosen for calibrating element concentrations 
of analyzed samples. Analytical uncertainties were generally better than 5%. 
 
5. Whole-rock Sr and Nd isotopes 
 

Sr and Nd isotopic analyses were measured using a Micromass IsoProbe multi-collector 
ICP-MS. Details of analytical procedures were described by Li et al. (2004) and Wei et al. 
(2002). Sr and REE were separated using cation columns, and Nd fractions were further 
separated using HDEHPcoated Kef columns. In order to correct mass fractionation, 87Sr/86Sr 
ratios were normalized to 87Sr/86Sr = 0.1194, and 143Nd/144Nd ratios were normalized to 
143Nd/144Nd = 0.7219, respectively. The reported 87Sr/86Sr and 143Nd/144Nd ratios were adjusted, 
respectively, to the NBS SRM-987 standard 87Sr/86Sr = 0.71025 and the Shin Etsu JNdi-1 
standard 143Nd/144Nd = 0.512115. 
 
6. Electron microprobe analysis 
 

Mineral chemistry analyses were obtained from polished thin sections for biotite and 
feldspar using a JEOL JXA-8100 electron microprobe. The conditions for element 
determinations include 5-m beam size, 15-kV accelerating potential voltage, and 20-nA probe 
current. The accuracy of the reported values for the analyses was 1–10% depending on the 
abundance of the element. 
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