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Appendix S1: Geologic Map Data Sources 

The geologic map of the Mount Diablo region in Figure 1B was assembled by stitching 

and digitizing 23 maps at 1:24,000 scale (Dibblee and Minch; 2005a–m, 2006a–i). Additionally, 

the 1:75,000 scale map of Graymer et al. (1994) was used to crosscheck map units and complete 

missing areas. References are found below. 
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wet/dry sandpaper, followed by 6 µm, then 1 µm diamond powder slurries) on a Struers LabPol5 

rotary polisher, and coated with roughly 10 nm high-purity gold in a Denton sputter coater before 

analysis. 

U-Pb Geochronology Analysis by LA-ICP-MS (University of Arizona LaserChron Center)

U-Pb geochronology of zircons was conducted by laser ablation multicollector inductively

coupled plasma mass spectrometry (LA-MC-ICPMS) at the Arizona LaserChron Center (Gehrels 

et al., 2006, 2008). The analyses involve ablation of zircon with a Photon Machines Analyte G2 

excimer laser using a spot diameter of 30 microns. The ablated material is carried in helium into 

the plasma source of a Nu HR ICPMS, which is equipped with a flight tube of sufficient width that 

U, Th, and Pb isotopes are measured simultaneously. All measurements are made in static mode, 

using Faraday detectors with 3x1011 ohm resistors for 238U, 232Th, 208Pb-206Pb, and discrete 

dynode ion counters for 204Pb and 202Hg. Ion yields are ~0.8 mv per ppm. Each analysis consists 

of one 15-second integration on peaks with the laser off (for backgrounds), 15 one-second 
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Appendix S2: Sample Preparation and Analytical Methods 

Mineral Separation for Detrital Zircon Analysis (Stanford University Earth Materials Lab) 

Rock samples were crushed and disaggregated using a Bico-Braun chipmunk jaw crusher 

and Bico-Braun disk grinder. Disaggregated samples were individually hydrodynamically 

processed on a Gemini table to concentrate heavy sand fractions. Heavy sand fractions were rinsed 

in acetone to prevent grains from rusting and then were oven-dried. Less magnetic minerals were 

concentrated using a sloped Frantz magnetic separator set at a 10° incline and 100 volts at 0.4 

angstroms (Å), 0.8 Å, and 1.2 Å. Separates were then run through methylene iodide (MEI) heavy 

liquid (ρ=3.32 g/cm3) to collect the final nonmagnetic heavy fraction. Sample separates were sent 

to the University of Arizona LaserChron center to be mounted individually in a 2.54 cm (1 inch) 

epoxy mount with fragments of primary (FC–Z5, 1099 Ma; Paces and Miller, 1993), Sri Lanka 

(SL-Mix and SL-F; 563.5 Ma; Gehrels et al., 2008) and secondary (R33, 419 Ma; Black et al., 

2004) standard zircons. Mounts were polished to half of mean grain thickness (~20 µm) for 

imaging with a back-scattered electron (BSE) detector, using a Hitachi 3400N scanning electron 

microscope (SEM). The mounts were then polished to expose the zircon grain cores (1500 grit 



U-Pb Geochronology Data Reduction (University of Arizona LaserChron Center)

U-Pb geochronology analyses by LA-ICP-MS were reduced at the University of Arizona
LaserChron Center following standard methods (after Gehrels et al., 2006, 2008; 

https://sites.google.com/a/laserchron.org/laserchron/). Only grains with <20% discordance and 

<5% reverse discordance are included in interpretations. Final ages are based on 206Pb/238U if 

younger than 900 Ma, and 207Pb/206Pb for ages >900 Ma. Data reduction was performed with an 

in-house Python decoding routine and a Microsoft Excel spreadsheet (NUagecalc). Analytical 

data is available in (Table S1). 
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integrations with the laser firing, and a 30 second delay to purge the previous sample and prepare 

for the next analysis. The ablation pit is ~15 microns in depth. 

For each analysis, the errors in determining 206Pb/238U and 206Pb/204Pb result in a 

measurement error of ~1-2% (at 2-sigma level) in the 206Pb/238U age. The errors in measurement 

of 206Pb/207Pb and 206Pb/204Pb also result in ~1-2% (at 2-sigma level) uncertainty in age for grains 

that are >1.0 Ga, but are substantially larger for younger grains due to low intensity of the 207Pb 

signal. For most analyses, the cross-over in precision of 206Pb/238U and 206Pb/207Pb ages occurs at 

~1.0 Ga. Instrument setup, tuning, run parameters, standard-unknown bracketing, and data 

reduction followed that of Gehrels and Pecha (2014).  

Common Pb correction is accomplished by using the Hg-corrected 204Pb and assuming an 

initial Pb composition from Stacey and Kramers (1975). Uncertainties of 1.5 for 206Pb/204Pb and 

0.3 for 207Pb/204Pb are applied to these compositional values based on the variation in Pb isotopic 

composition in modern crystal rocks. For each sample, the uncertainty in determining 206Pb/207Pb 

and 206Pb/238U ages result in generally 1-2% (2-sigma) for both. Concentrations of U and Th are 

calibrated relative to our Sri Lanka zircon, which contains ~518 ppm of U and 68 ppm Th. 
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