
Extended Methods 

Sigmoid Fitting 

We used the following workflow to fit a sigmoid to the bar cross-sectional shapes 

(equation 1 in main text).  

1. Finds X0 as the central point on the interpolated bar surface

2. Finds L as channel depth set by the interpolation of channel bathymetry

3. Manually pick two points around 𝑋0 such that 
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 best represents the bar slope, which 

sets 
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Bayesian Analysis 

We use a Bayesian linear regression model to develop an empirical relationship between 

modern bar surface widths and bankfull channel widths. Bayesian linear regression assumes a 

probability distribution for the response variable, Bbf, and a prior distribution for relevant. We 

model: 

𝐵𝑏𝑓 =  𝛼𝑊𝑏𝑎𝑟 (S1) 

with the aim to constrain a single parameter, 𝛼. To apply the Bayesian regression, we 

transformed the response and explanatory variables such that equation (S1) becomes: 

𝑙𝑜𝑔10(𝐵𝑏𝑓) =  𝑙𝑜𝑔10(𝛼)+ 𝑙𝑜𝑔10(𝑊𝑏𝑎𝑟) (S2) 

The transformation is performed in order to assume that: 

𝑙𝑜𝑔10(𝐵𝑏𝑓,𝑖)|µ𝑖, τ ~ Normal(µ𝑖, τ) (S3) 

where µ𝑖 is the mean for each transformed observation, and τ is a precision where 

τ ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1000).  We assume a prior distribution for 𝛼,  𝛼 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1000). Both 

the posterior probability distribution of the parameter mean and the posterior predictive 

distribution of predicted 𝐵𝑏𝑓 measurements are generated through Markov Chain Monte Carlo 

(MCMC) sampling done through the PyMC Python package and its NUTS sampler. We also

modeled the data with two open parameters following the equation:

𝑙𝑜𝑔(𝐵𝑏𝑓) = log(𝛽) +  𝛾log (𝑊𝑏𝑎𝑟) (S4)

More in-depth treatments of these methods can be found in Christensen et al. (2011) and 

Trampush et al. (2014).  

Measuring Radius of Curvature 

Greenberg, E., Ganti, V., and Hajek, E., 2021, Quantifying bankfull flow width using preserved bar clinoforms 
from fluvial strata: Geology, v. 49, https://doi.org/10.1130/G48729.1



 We computed the radius of curvature by fitting a least squares circle to centerline 

coordinates that fall within the active point bars. This produced a single estimate of radius of 

curvature at the bend scale (Fig. DR1). We followed method as outlined in the “Least squares 

circle” SciPy Cookbook at:  

https://scipy-cookbook.readthedocs.io/items/Least_Squares_Circle.html 

Estimating Channel Depths 

 While we had published channel depths for 9 out of 11 rivers, we had to estimate channel 

depths for the Koyukuk and Nestucca Rivers to perform the bathymetric interpolation. We 

applied the aspect-ratio scaling relationship from Ielpi and Lapôtre (2019) to estimate channel 

depth following: 

ℎ𝑏𝑓 = (0.17) ± 0.05𝐵𝑏𝑓
(0.65±0.06) (S5) 

We validated the aspect-ratio scaling on the rest of our data set, and each published depth value 

falls within the range of uncertainty given in S5 (Fig. DR2). We used mean model parameters to 

estimate the Koyukuk and Nestucca channel depths. 

Code Availability 

 All code used in the analyses for this paper are openly available at:  

https://github.com/evan-greenbrg/BarWidth 
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Figure DR1: Example radius of curvature estimation from the Brazos River. The black curve is 

the unsmoothed river centerline and blue points are sampled point bar coordinates. The reported 

radius of curvature is calculated from the fit red circle following the methods outlined above. 

 

 

 

 

 

 

 

 



 

 

Figure DR2: Estimates of channel depth, hbf, following equation (S5). Colored circles are the 

rivers with published values of depth. Error bars are the upper, lower and mean estimates 

following equation (S5). We use the mean (S5) estimate for hbf of the Koyukuk and Nestucca 

rivers. 

 

 

 

 

 



 

Figure DR3: Comparison between three methods to estimate Bbf from channel dimensions. The 

Hayden (2019) method uses a linear scaling between Bbf and hbf, the Leeder (1973) method uses 

a power law scaling, and this study leverages the widths of bar clinoforms. White squares are the 

reach-averaged data reported in this study. R2 values and model precision both improve with the 

application of bar clinoform widths over aspect-ratio scaling. 
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