Szmihelsky, M., et al., 2021, Mixing of brine with oil triggered sphalerite deposition at Pine Point, Northwest Territories, Canada: Geology, v. 49, https://doi.org/10.1130/G48259.1

1	SUPPLEMENTARY MATERIALS FOR:
2	Mixing brine with oil triggered sphalerite deposition at Pine
3	Point, Northwest Territories, Canada
4	
5	Marko Szmihelsky ^{1,2} , Matthew Steele-MacInnis ¹ , Wyatt M. Bain ¹ , Hendrik Falck ³ , Robin
6	Adair ⁴ , Brandon Campbell ¹ , S. Andrew Dufrane ¹ , Ashley Went ^{1,} and Hilary J. Corlett ⁵
7	
8	¹ Department of Earth and Atmospheric Science, University of Alberta, 1-26 Earth Sciences
9	Building, Edmonton, Alberta, T6G 2E3, Canada
10	² Department of Earth Sciences, Memorial University, 9 Arctic Avenue, St. John's,
11	Newfoundland, A1B 3X5, Canada
12	³ Northwest Territories Geological Survey, 4601 52 Ave, Yellowknife, Northwest Territories, X1A
13	1K3, Canada
14	⁴ Osisko Metals Ltd., 1100 Avenue des Canadiens-de-Montréal (Bureau 300), Montréal, Québec,
15	H3B 2S2, Canada
16	⁵ Department of Physical Sciences, MacEwan University, Edmonton, Alberta, T5J 4S2, Canada
17	
18	ADDITIONAL INFORMATION ON METHODS
19	
20	Microthermometry of Fluid Inclusions
21	

22	Samples were prepared into doubly-polished sections with a thickness of 60 μ m. The
23	sections were mounted using an ambient-temperature, acetone-soluble glue to avoid any heating
24	of the samples prior to microscopy, so as to avoid any stretching of the contained fluid
25	inclusions. Petrographic analyses were conducted using a custom-built Olympus BX53
26	microscope at the University of Alberta, equipped for transmitted light microscopy in the visible
27	and near-infrared ranges, as well as reflected light and ultraviolet-light fluorescence.
28	Fluid inclusion microthermometry was conducted using a Linkam THGMS 600 heating-
29	freezing stage mounted on the aforementioned Olympus BX53 microscope at the University of
30	Alberta. Temperature of the stage was calibrated according to the triple point of CO_2 (-56.6 °C),
31	the triple point of pure H ₂ O (0.0 °C), and the critical point of pure H ₂ O (374.1 °C) using
32	synthetic fluid inclusion standards.
33	Primary and pseudo-secondary fluid-inclusion assemblages were identified according to
34	the criteria outlined by Roedder (1984). Specifically, assemblages were deemed primary when
35	they occurred along well-defined growth zones, whereas pseudo-secondary assemblage were
36	those that occurred along cross-cutting trails that were truncated by later growth zones.
37	Because the brine inclusions analyzed here had very low volume fractions of vapor at
38	ambient temperature (Fig. 2), we were cautious to avoid artificially high homogenization
39	temperatures resulting from accidental stretching (Roedder, 1984). Therefore, during
40	microthermometry, the samples were first heated to measure the homogenization temperatures,
41	prior to freeing to measure the melting temperatures.
42	Whenever possible, we used the combination of ice-melting and hydrohalite-melting
43	temperatures in an inclusion to estimate both total salinity and Ca:Na ratio the model system
44	H ₂ O-NaCl-CaCl ₂ (Steele-MacInnis et al., 2011). In cases where only one or the other melting

45	temperature was observed, we estimated salinity in terms of equivalent weight percent NaCl
46	(Steele-MacInnis et al., 2012).

48 Laser Raman spectroscopy

49

Raman analyses were conducted at MacEwan University using a Bruker SENTERRA
spectrometer and a 532 nm Ar+ laser, focused to a 1 µm spot through a 100x objective mounted
on a standard petrographic microscope. All spectra were acquired on unoriented grains using a
laser power of 20 mW and two to three, 5-20s exposures summed to the final reported spectra.
Baseline subtraction and background reduction were applied using the Fityk[™] software
packages. Spectra were interpreted using the RRUFF database (Lafuente et al., 2016; mineral
species), Frezzotti et al. (2012; hydrocarbons), and Walter et al. (2016; Brine sulfate).

58 Laser ablation inductively coupled plasma mass spectrometry

59

60 The elemental composition of the fluid inclusions was analyzed at the Canadian Center 61 for Isotopic Microanalysis at the University of Alberta using a Thermo Scientific ICAP-Q 62 quadrupole inductively coupled plasma mass spectrometer (ICP-MS) coupled with a New Wave 63 UP-213 laser ablation system. Helium (0.5 L/min) gas transported ablated particles from the 64 ablation cell to the argon plasma. The laser operated at 10 Hz and 70% power. Beam diameter 65 was adjusted as needed to fully ablate the fluid inclusions, between 25 μ m and 65 μ m. In 66 sphalerite crystals that showed poorer coupling with the laser (particularly, light-colored to 67 colorless sphalerite), we set the laser to 20 Hz and 80% power to improve ablation. We used both the NIST 610 and NIST 612 reference materials as external standards to calibrate sensitivity anddrift.

The ICP-MS was set to detect 18 elements: ⁴³Ca, ²³Na, ³⁹K, ²⁴Mg, ¹³⁷Ba, ⁸⁸Sr, ²⁰⁸Pb, ⁵⁷Fe, 70 ⁵⁵Mn, ⁷Li, ⁸⁵Rb, ¹³³Cs, ⁶³Cu, ⁶⁸Zn, ⁷³Ge, ¹¹¹Cd, ¹¹⁵In and ⁷⁵As, all at a dwell time of 10 ms. Of the 71 72 elements analyzed, Na, K, Mg, Ca, Sr, Rb, Ba, and Pb were detected in the inclusions; all other 73 elements were either below their respective detection limits, or masked by the sphalerite matrix 74 (particularly Zn and Fe). The LA-ICP-MS data were reduced using the SILLS software package (Guillong et al., 2008). The internal standard for the brine inclusions was either equivalent 75 76 weight percent NaCl (for inclusions in which only ice melting was observed), or the estimated 77 "true" NaCl concentration in terms of H₂O-NaCl-CaCl₂ (for inclusions in which both ice and 78 hydrohalite melting were observed; Schlegel et al., 2012; Steele-MacInnis et al., 2016). The 79 internal standard for the Oil inclusions was an estimated Na concentration of 100 ppm, based on 80 a survey of ICP-OES analyses of various crude oils (de Oliviera Souza et al., 2015). The Na 81 concentrations of natural crude oils show little variability, generally on the order of ~ 10 to < 20082 ppm (Wauquier, 1998). The calculated concentrations of metals in the oil inclusions will scale 83 proportionally to estimated Na concentration as internal standard. For example, if the specified 84 Na concentration of the oil is reduced by 50%, then the calculated Pb concentrations will be 85 similarly reduced by 50%. Based on available analytical data for Na concentrations of crude oils 86 (de Oliviera Souza et al., 2015), a value of 100 ppm was selected as a conservative estimate, and 87 the true Pb concentrations are expected to fall within the range of 0.1 to 2x the reported values 88 based on this internal standard.

DATA REPOSITORY REFERENCES CITED

93	de Oliviera Souza, M., Ribeiro, M.A., Carneiro, M.T.W.D., Athayde, G.P.B., de Castro, E.V.R.,
94	da Silva, F.L.F., Mathos, W.O., and de Queiroz Ferreira, R., 2015, Evaluation and
95	Determination of Chloridein Crude Oil Based on the Counterions N, Ca, Mg, Sr, and Fe,
96	Quantified by ICP-OES in the Crude Oil Brine Extract: Fuel, v. 154, p. 181–187.
97	Frezzotti M. L., Tecce F., and Casagli A., 2012, Raman spectroscopy for fluid inclusion analysis.
98	Journal of Geochemical Exploration, v. 112, p. 1–20.
99	Guillong, M., Meier, D.L., Allan, M.M., Heinrich, C.A., and Yardley, B.W.D., 2008, Appendix
100	A6: SILLS: A MATLAB-Based Program for the Reduction of Laser Ablation ICP-MS Data
101	of Homogenous Materials and Inclusions: Mineralogical Association of Canada Short
102	Course 40, p. 328-333, http://www.igmr.ethz.ch/research/fluids/software. (accessed July
103	2020).
104	Lafuente, B., Downs, R. T., Yang, H. & Stone, N., 2016, The power of databases: The RRUFF
105	project: Highlights in Mineralogical Crystallography, p. 1-29.
106	Roedder, E., 1984, Fluid inclusions: Reviews in Mineralogy, v. 12, 646 p.,
107	doi:10.1515/9781501508271.
108	Schlegel, T.U., Wälle, M., Steele-MacInnis, M., and Heinrich, C.A., 2012, Accurate and precise
109	quantification of major and trace element compositions of calcic-sodic brines in fluid
110	inclusions by combining microthermometry and LA-ICPMS analysis. Chemical Geology, v.
111	334, p. 144-153. doi:10.1016/j.chemgeo.2012.10.001
112	Steele-MacInnis, M., Lecumberri-Sanchez, P., and Bodnar, R.J., 2012, HokieFlincs_H2O-NaCl :
113	A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid

- 114 inclusions based on the PVTX properties of H₂O–NaCl: Computers & Geosciences, v. 49,
- 115 p. 334–337, doi:10.1016/j.cageo.2012.01.022.
- 116 Steele-MacInnis, M., Ridley, J., Lecumberri-Sanchez, P., Schlegel, T., and Heinrich, C.A.,
- 117 2016, Application of low-temperature microthermometric data for interpreting
- 118 multicomponent fluid inclusion compositions. Earth-Science Reviews, v. 159, p. 14-35.
- 119 doi:10.1016/j.earscirev.2016.04.011
- 120 Walter, B., Steele-MacInnis, M., and Markl, G., 2017, Sulfate brines in fluid inclusions of
- 121 hydrothermal veins: Compositional determinations in the system H₂O-Na-Ca-Cl-SO₄.
- 122 Geochimica et Cosmochimica Acta, v. 209, p. 184-203. doi:10.1016/j.gca.2017.04.027
- Wauquier, J.-P., 1998, Petroleum Refining, Volume 2, Separation Processes. Editions Technip,
 Paris, 704 pp.
- 125
- 126
- 127

128 DATA REPOSITORY TABLES

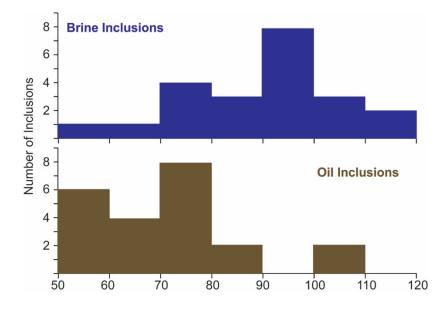
129 130 Table DR1: Samples and sample locations.

Sample Number	Location	Description
002.1	N38 (Main Trend)	Coarse sphalerite grown into open space filled by late-stage calcite.
006.3	L37 (Main Trend)	Series of cross-cutting "blue-vein" dolomite veins wherein coarse sphalerite postdates the "blue-vein" dolomite in each successive vein.
007	L37 (Main Trend)	Sphalerite plus dolomite grown into open space filled by late-stage calcite.
011.1	K77 (Main Trend)	"Blue-vein" dolomite vein containing coarse galena and sphalerite plus late-stage calcite.
22A2	N38 (Main Trend)	Breccia with incorporated fragments of carbonate wall rock and earlier-formed (now brecciated) fragments of coarse sphalerite.
22B2	N38 (Main Trend)	Breccia with incorporated fragments of carbonate wall rock and earlier-formed (now brecciated) fragments of coarse sphalerite.

Inclusion Number	Inclusion Type	T _H (°C)	T _{M Ice} (°C)	Salinity (eq. wt% NaCl)				
1	Brine	59.7	-39.7	35.9				
2	Brine	93.7	-26.6	26.6				
3	Brine	97.9	-34.3	31.5				
4	Brine	115.6	-33.9	31.2				
5	Brine	114.6	-38.8	34.3				
6	Brine	96.7	-38.0	35.1				
7	Brine	96.7	-43.8	40.0				
8	Brine	100.7	-43.8	40.0				
9	Brine	86.8	-34.0	31.3				
10	Brine	86.8	-34.0	31.3				
11	Brine	90.3	-21.7	34.1				
12	Brine	79.4	-38.0	36.4				
13	Brine	79.7	-34.9	34.3				
14	Brine	79.7	-34.9	34.3				
15	Brine	80.9	-35.7	35.0				
16	Brine	79.4	-38.0	36.4				
17	Brine	100.4	-38.8	35.0				
18	Brine	91.4	-40.1	36.4				
19	Brine	91.4	-40.1	36.3				
20	Brine	100.9	-40.3	36.4				
21	Brine	94.6	-32.6	30.3				
22	Brine	63.4	-19.6	22.1				

Inclusion Number	Inclusion Type	T _H (°C)	Т _М (°С)*
23	Oil	71.8	-
24	Oil	70.1	-
25	Oil	77.3	-
26	Oil	101.8	-
27	Oil	101.9	-
28	Oil	82.3	-
29	Oil	66.8	-
30	Oil	71.3	-
31	Oil	81.3	-
32	Oil	66.3	-
33	Oil	51.4	-
34	Oil	53.2	-
35	Oil	49.8	-
36	Oil	52.6	-
37	Oil	52	-
38	Oil	56.9	-
39	Oil	71.3	-
40	Oil	66.2	-
41	Oil	72.6	-
42	Oil	73.4	-
43	Oil	69.8	-
44	Oil	74.8	-

136 Table DR3: Microthermometry of Oil inclusions.


*Oil inclusions did not freeze.

140 141 142 143 144 145 146 147 148 149 150													
	Inc. Number	Inc. Type	Na (ppm)	Mg (ppm)	K (ppm)	Ca (ppm)	Mn (ppm)	Cu (ppm)	Ge (ppm)	Rb (ppm)	Sr (ppm)	Ba (ppm)	Pb (mqq)
	1	Brine	42885.2	11939.6	4694.7	62899.7	<0.7	12.1	404.3	11.6	1536.8	25.2	<0.009
	7	Brine	31709.6	9201.6	3982.1	45745.8	36.9	48.0	41.4	11.7	1156.7	28.1	336.3
	ę	Brine	30751.3	11735.8	18414.6	51955.7	<0.7	29.6	107.4	17.1	1163.0	21.8	333.1
	4	Brine	31808.2	10430.7	11862.2	55469.0	<8.0	<2.5	30.2	9.0	1219.8	11.7	318.2
	5	Brine	41277.0	11481.2	17451.5	55911.8	48.5	6.1	<3.7	10.1	1283.1	19.6	62.2
	9	Brine	46303.1	12988.0	20242.0	64160.2	20.7	3.9	211.7	10.4	1530.3	17.7	564.4
	7	Brine	48308.1	13598.1	18797.4	62180.5	<8.7	<2.5	31.8	21.0	1528.8	19.6	392.0
	8	Brine	26877.5	8798.9	4852.2	95790.2	159.3	<2.9	299.2	2.7	1987.9	20.1	116.2
	6	Brine	35535.1	9114.1	11241.8	55079.8	<17.2	362.9	26.8	5.0	1390.8	24.4	299.7
	10	Brine	38083.4	10884.0	11185.4	50040.1	<2.1	<0.5	<0.7	12.9	1235.0	22.7	<0.03
	11	Brine	37429.4	10908.8	8191.8	61591.8	26.7	587.2	55.8	4.3	1404.7	19.1	191.7
	12	Brine	41904.1	11805.1	7566.5	64263.4	8.5	243.4	<0.2	7.7	1548.4	19.6	129.2
	13	Brine	41815.0	11167.1	6893.4	58435.5	<1.8	203.2	<0.3	8.1	1475.1	25.5	<0.02
	14	Brine	32426.6	9472.9	5614.6	70139.1	74.3	160.4	<0.3	5.6	1325.8	19.0	<0.02
	15	Brine	44844.1	11423.8	8425.8	57210.2	90.9	<0.3	58.2	16.3	1438.3	16.2	486.0
	16	Brine	43241.8	12741.0	8230.3	61268.0	59.9	45.7	30.4	7.6	1482.4	22.1	<0.02
	17	Brine	27007.8	49543.6	4300.8	12493.5	91.3	<0.3	<0.4	41.0	<0.02	523.4	96.1
	18	Brine	17774.9	39224.5	29843.6	27215.6	246.7	6.0>	256.5	8.0	5219.1	179.1	2711.6
	19	Brine	14924.9	38092.6	30680.2	30706.3	1248.5	2183.7	5328.0	176.6	4193.0	16.7	900.7
	20	Brine	15648.3	30998.7	21457.8	47560.1	229.0	<1.6	<2.2	6.09	3396.1	191.3	<0.1
	21	Brine	32997.4	10514.0	6378.8	54020.8	<4.9	<1.2	288.1	33.9	1378.9	10.7	190.0
	22	Brine	25926.5	9601.4	6053.6	33873.4	<3.5	13.0	<1.1	<0.4	968.7	12.4	<0.07

Table DR4: LA-ICP-MS results

	51	Tab	le DF	R4, C	ontin	ued																
dq (mqq)	<0.02	0.9	<0.04	<0.02	1.5	<0.02	<0.02	<0.03	<0.02	<0.02	<0.01	5.2	0.5	0.01	17.8	<0.1	0.2	<0.02	0.2	0.3	<0.01	<0.01
Ba (ppm)	<0.05	0.05	<0.01	0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.04	0.1	0.1	0.04	0.1	0.7	<0.1	0.1	0.1	<0.4	0.04	0.04	0.1
Sr (ppm)	1.2	3.9	4.0	2.6	2.1	2.4	4.1	3.0	4.3	3.7	2.9	3.9	3.2	4.3	11.2	<0.1	3.1	3.5	7.9	3.3	3.4	2.9
Rb (ppm)	<0.1	<0.03	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.04	<0.2	<0.2	<0.02	<0.1	2.5	<0.1	<0.02	0.1	<0.5	<0.03	<0.05	<0.04
Ge (ppm)	<0.3	<0.1	1.5	1.5	<0.2	<0.5	0.9	<0.5	<0.3	<0.3	<0.1	1.5	0.6	<0.3	16.6	5.2	<0.7	<0.6	<2.1	<0.1	<0.2	<0.1
Cu (ppm)	0.4	<0.1	<0.4	<0.3	<0.2	<0.2	<0.3	<0.3	<0.2	<0.2	<0.1	<0.7	<0.1	<0.1	<0.9	0.2	<0.1	<0.3	<1.4	<0.1	<0.2	0.2
Mn (ppm)	<0.7	<0.3	<1.8	<1.2	6.0>	<1.0	<1.1	<1.5	6.0>	<0.8	<0.5	<2.9	<0.3	<0.7	23.0	11.7	0.3	<1.3	<6.0	<0.3	<0.7	<0.6
Ca (ppm)	199.7	163.1	<304.7	<204.6	201.3	<173.7	<189.2	267.4	392.1	<141.7	304.2	<494.7	94.8	191.2	3380.1	1871.0	132.7	<227.8	<1032.5	101.2	<114.6	119.5
K (ppm)	9.2	13.6	<i>e.</i> 7>	13.8	17.4	5.4	6.9	17.5	6.4	15.4	19.3	<14.2	14.6	15.0	71.3	<30.1	11.0	<6.4	<29.1	11.5	14.9	14.6
Mg (ppm)	34.2	27.7	28.9	19.6	19.2	19.8	26.2	13.9	6.8	23.6	35.4	27.1	25.7	43.4	71.8	<1.3	28.9	26.0	53.6	27.2	24.4	24.0
Na (ppm)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Inc. Type	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil
Inc. Number	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
1:	52																					

154 DATA REPOSITORY FIGURES

155 156

Figure DR1. Histograms of homogenization temperatures of brine (top) and oil (bottom)

158 inclusions.