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1. MODEL PARAMETERS

Temperature dependent thermal conductivities 

Crust (Whittington et al., 2009): 

𝑘(𝑇 < 846𝐾) = 2700 ∗
199.5 + 0.0857 ∗ 𝑇 − 5 ∗ 106 ∗ 𝑇−2

0.21178
∗

(567.3 ∗ 𝑇−1 − 0.062)

106

𝑘(𝑇 > 846𝐾) = 2700 ∗
229.32 + 0.0323 ∗ 𝑇 − 47.9 ∗ 10−6 ∗ 𝑇2

0.22178
∗

(0.732 − 1.35 ∗ 10−4 ∗ 𝑇)

106

Mantle (McKenzie et al., 2005): 

𝑘(𝑇) =
5.3

1 + 0.0015 ∗ (𝑇 − 273)
+ 1.753 ∗ 10−2 − 1.0365 ∗ 10−4 ∗ 𝑇 + 2.2451 ∗ 10−7 ∗ 𝑇2

− 3.4071 ∗ 10−11 ∗ 𝑇3

Luo, Y., and Korenaga, J., 2021, Efficiency of eclogite removal from continental lithosphere and its implications for 
cratonic diamonds: Geology, v. 49, https://doi.org/10.1130/G48204.1.



Radiogenic heat production in cratons (calculated based on Rudnick et al., 1998) 
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 Present Heat Production 

(μW m-3) 

Bulk continental crust 4.9*10
-3 

0.70 3.0 1.2 0.51 

Lithospheric mantle 2.6*10
-4 

0.037 0.14 0.043 0.028 

 

The continental crust is divided into upper, middle, and lower one thirds, with 60%, 34%, and 

6% of total crust heat production, respectively. 

 

Dislocation creep constants (Jain et al., 2019) 

Model OL-DB2 for dry diffusion and dry dislocation is used. 

For diffusion, 𝑝 = 2.11 ± 0.15, 𝐸 = 370 ± 15 kJ/mol, 𝐴 = 107.86±0.15. 

For dislocation, 𝑛 = 3.64 ± 0.99, 𝐸 = 424 ± 23 kJ/mol, 𝐴 = 102.10±0.20. 

The mean value is used for each parameter. Preexponential factors 𝐴 listed above are calibrated 

at 1523 K and 0.3 GPa with activation volume 𝑉 = 0. We recalibrated the preexponential factor 

for every activation volume tested in this study as follows: 

 𝐴𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐴𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

𝑉 = 10 𝑐𝑚3 107.78 102.20 

𝑉 = 20 𝑐𝑚3 107.89 102.31 

𝑉 = 30𝑐𝑚3 107.99 102.41 

 

 

 



2. SUPPORTING FIGURES 

 

Figure S1. Calculated current, 1 Ga, 2 Ga, and 3 Ga geotherms are plotted with current and 3 Ga 

adiabat lines. Dashed rectangle represents the constraints from the geothermometry of cratonic 

diamonds, 1174 ± 99 ℃ at 55 ± 8 kbar (Stachel and Harris, 2008). 

 

 

  



 

Figure S2.  The ratio of the time scale for a segment to descend over the time scale for the 

growth of necking instability is plotted as a function of segment height ℎ. The descent time scale 

is based on eq. (8) in the main text. The time scale for necking instability is estimated as 

𝑡 = ((𝑛 − 1) ∗ 𝜖̇)
−1

 based on eq. (6) in Zuber and Parmentier (1986). 𝜖̇ is the strain rate 

generated by differential velocity, and 𝑛 is the stress exponent of the material, where we use 

𝑛 = 3.5 for eclogite (Zhang and Green, 2007). Necking instability grows exponentially from 

infinitesimal perturbations, and segmentation would take place when the ratio >> 1.  

 

 

 

 



 

Figure S3. Descent velocities calculated with a range of segment heights are normalized 

regarding to the result of 20 km height, with other parameters fixed at 𝐿 = 2500 km, 𝑤 = 7 km, 

𝜂 = 2 ∗ 1030 N∙m, and Δ𝜌 = 200 g/cm
3
. 

 

 

 

 

 

 

 

 

 



 

Figure S4. The depth of oceanic crust fragments with different incorporation ages and starting 

depths is plotted as a function of the time elapsed after incorporated into CLM. An activation 

volume 𝑉 of 20 cm
3
/mol for the dislocation creep regime and a segment height ℎ of 20 km are 

used for this plot. Each of the curves in this plot corresponds to a point in Figure 3, and the time 

elapsed until the curst fragments descend to 250 km is the escape time shown in Figure 3. 
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