Yang Wang, Benjamin Passey, Rupsa Roy, Tao Deng, Shijun Jiang, Chance Hannold, Xiaoming Wang, Eric Lochner, and Aradhna Tripati, 2020, Clumped isotope thermometry of modern and fossil snail shells from the Himalayan-Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions: GSA Bulletin, https://doi.org/10.1130/B35784.1.

Supplemental Material

Supplementary Table S1. Summary of temperatures calculated using carbonate clumped isotope thermometry on modern Tibetan freshwater snail shells.

Supplementary Table S2. XRD analysis results of fossil shells from the Tibetan Plateau.

Supplementary Table S3. Summary of temperatures calculated using carbonate clumped isotope thermometry on fossil shells from Tibetan Plateau.

Supplementary Table S4. Comparison of temperatures calculated using different equation.

Supplementary Figure S1. Comparison of analysis results for fossils (A–C) and modern shells (D) analyzed in different labs. The double arrows in (A) and (B) indicate the variation ranges of δ^{13} C and δ^{18} O values, respectively, of modern shells. Temperatures shown in (C) and (D) were calculated using the Henkes et al. (2013) calibration. The error bar indicates 1 standard deviation from the mean of replicated analyses of a sample. Some of the fossil samples analyzed at Caltech and John Hopkins University (JHU) were re-analyzed at University of Michigan (UM), yielding the same δ^{13} C and δ^{18} O values and similar Δ_{47} -derived temperature values for the same samples (A–C). Analysis of additional modern samples from two of the study lakes at UCLA also produced similar results to those from the JHU lab for the same lakes except two samples (D). The results from these two samples analyzed at UCLA were not used because their replicates yielded not only very large temperature ranges (much larger than the reported analytical uncertainty) but also unreasonably high temperatures (see text for explanation).

Supplementary Figure S2. Effect of mixing diagenetic calcite with pristine aragonite on the Δ_{47} -derived temperature of aragonite shell predicted using a simple two component mixing model. The model assumes that calcite was formed at near freezing temperatures (1°C) characterizing the present-day high elevation environment in the study area and the temperature of unaltered aragonite was the average temperature determined from the Δ_{47} values of our pristine fossil shells from Zanda Basin in southwest Tibet.

Supplementary Figure S3. Modeled Δ_{47} evolution at low temperatures using Eq. (3) in Staudigel and Swart (2016) and rates calculated by the Arrhenius Equation. The following Arrhenius parameters estimated by Staudigel and Swart (2016) were used to calculate the rate constants at different temperatures: Ea = 1.1×10^5 J/mol, and ln(ko) = 21.7. The initial Δ_{47} value used in the model was assumed to be 0.625 and the equilibrium or "annealing" values at different temperatures were calculated using the revised carbonate equation given in Zaarur et al. (2013): $\Delta_{47} = (0.0526 \pm 0.0025) \times 1000000/T^2 + (0.0520 \pm 0.0284).$

		Siluii	Shens												
Sample ID	Latitude, Longitude	Elev. (m)	δ ¹³ C (‰ vs. VPDB)	δ ¹⁸ O (‰ vs. VPDB)	Δ ₄₇ (‰) (Caltech) *	Δ47 (‰) (ARF)**	^a T (°C) (Henkes calibration)	Sample average T (°C) (Henkes calibration)	<u>+</u> 1σ (°C) #	$\begin{array}{c} \mbox{Calculated} \\ \delta^{18}\mbox{O of} \\ \mbox{water (\%} \\ \mbox{vs.} \\ \mbox{VSMOW)} \end{array}$	^b T (°C) (Eagle calibration)	Sample average T (°C) (Eagle calibration)	<u>+</u> 1σ (°C)#	$\begin{array}{c} \text{Calculated} \\ \delta^{18} \text{O of} \\ \text{water (} \% \\ \text{vs.} \\ \text{VSMOW)} \end{array}$	No. of replicate analyses
Samples a	nalyzed at JHU	:													
	N31°41'36.2020														
Cuo-er	", E88°42'10.811 "	4580	-0.1	-2.3		0.729	12.8	13		-3.3	18.0	18		-2.2	1
Nam1s-1	N30° 43′ 9.19", E90° 55′ 13.39"	4700	-11.0	-14.4		0.744	7.3	7		-16.6	13.3	13		-15.3	1
Nam1s-2	N30° 43' 9.19", E90° 55' 13.39"	4700	-11.0	-13.5		0.728	12.9	13		-14.5	18.1	18		-13.4	1
Nam1s-3	N30° 43′ 9.19", E90° 55′ 13.39"	4700	-10.5	-13.8		0.755	3.8	9	7	-15.7	10.3	15	6	-14.4	2
Nam1s- 3rp1			-10.4	-13.9		0.725	14.0				19.0				
Nam1s-4	N30° 43′ 9.19", E90° 55′ 13.39"	4700	-10.0	-13.3		0.717	17.0	16	1	-13.6	21.5	21	1	-12.6	2
Nam1s- 4rp1			-9.8	-13.4		0.721	15.4				20.1				
QGC-1	N31°50.33913', E88°20.26378"	4560	-1.0	-4.3		0.718	16.7	17		-4.5	21.3	21		-3.5	1
QGC-2	N31°50.33913', E88°20.26378'	4560	-0.3	-3.9		0.734	10.9	11		-5.3	16.3	16		-4.1	1
SLC-1	N31°47.63722', E88°27.01484'	4555	-4.0	-3.4		0.759	2.6	7	5	-5.6	9.2	13	4	-4.3	3
SLC-1rp1			-4.0	-3.5		0.728	12.9				18.0				
SLC-1rp2			-4.0	-3.5		0.746	6.7				12.8				
SLC-2	N31°47.63722', E88°27.01484'	4555	0.5	-7.0		0.734	10.7	9	2	-8.7	16.2	15	2	-7.5	2

Supplementary Table 1. Summary of temperatures calculated using carbonate clumped isotope thermometry on modern Tibetan freshwater snail shells

SLC-2rp1			0.5	-6.9	0.742	8.0				13.9				
Yam2s-1	N29.099777°, E90.375814°	4420	-7.7	-15.5	0.731	11.8	14	4	-16.1	17.1	19	3	-15.1	2
Yam2s- 1rp1			-7.7	-15.5	0.717	17.0				21.5				
Yam2s-2	N29.099777°, E90.375814°	4420	-9.6	-15.8	0.743	7.6	10	4	-17.3	13.6	16	3	-16.1	2
Yam2s- 2rp1			-9.6	-15.8	0.727	13.2				18.3				
Yam2s-3	N29.099777°, E90.375814°	4420	-9.6	-15.8	0.733	11.3	11		-17.1	16.7	17		-15.9	1
Yam2s-4	N29.099777°, E90.375814°	4420	-8.1	-15.4	0.729	12.6	11	2	-16.7	17.8	17	1	-15.6	2
Yam2s- 4rp1			-8.1	-15.4	0.736	10.2				15.8				
YXC-1	N34°17'12.8", E92°40'52.9"	4520	-1.5	-5.2	0.741	8.4	8		-7.2	14.2	14		-5.9	1
YXC-3	N34°17'12.8", E92°40'52.9"	4520	-0.9	-4.3	0.729	12.8	13		-5.3	18.0	18		-4.2	1
YXC-4	N34°17'12.8", E92°40'52.9"	4520	-0.6	-6.0	0.744	7.5	8		-8.1	13.5	13		-6.8	1
YXC-5-1	N34°17'12.8", E92°40'52.9"	4520	0.8	-5.6	0.750	5.3	1	4	-9.3	11.5	8	4	-7.7	3
YXC-5- 1rp1			0.8	-5.6	0.767	0.0				7.0				
YXC-5- 1rp2			0.6	-5.5	0.777	-3.2				4.2				
YXC-5-2	N34°17'12.8", E92°40'52.9"	4520	-0.8	-6.8	0.737	9.8	8	2	-8.8	15.4	14	2	-7.5	2
YXC-5- 2rp1			-0.8	-6.7	0.747	6.5				12.6				
YXC-5-3	N34°17'12.8", E92°40'52.9"	4520	-1.4	-6.2	0.733	11.2	7	6	-8.5	16.7	13	5	-7.1	2
YXC-5- 3rp1			-1.4	-6.3	0.757	3.2				9.8				
YXC-5-4	N34°17'12.8", E92°40'52.9"	4520	-0.9	-5.8	0.739	9.1	5	5	-8.5	14.8	12	4	-7.1	2
YXC-5- 4rp1			-0.9	-5.9	0.761	1.8				8.6				

TB07S-1	N30°43'54.7", E81°36'07.2"	4590	-4.3	-3.9	0.676		8.1	8	1	-6.1	13	13	1	-4.9	2
TB07S- 1(rpt.)			-4.3	-3.9	0.679		7.0				12				
TB07S-1a	N30°43'54.7", E81°36'07.2"	4590	-4.6	-4.1	0.666		11.5	11		-5.4	16	16		-4.3	1
Samples ar	nalyzed at UCLA	1 :													
YAM-16- 2-2	N29°05′52.6″ E90°22′44.4″	4430	-4.8	-7.8		0.742	8.1	8		-9.8	14.0	14		-8.5	1
YAM-16- 2-3, R1	N29°05′52.6″ E90°22′44.4″	4430	-7.79	-14.48		0.718	16.6	13	6	-15.5	21.2	18	5	-14.4	2
YAM-16- 2-3, R2			-7.77	-14.42		0.74	8.8				14.6				
YAM-16- 3-1, R1	N29°11′13.1″ E90°35′26.9″	4435	-0.32	-4.3		0.717	17.0	10	5	-5.8	21.5	16	4	-4.6	4
YAM-16- 3-1, R2			-0.25	-4.16		0.745	7.1				13.1				
YAM-16- 3-1, R3			-0.25	-4.15		0.749	5.7				12.0				
YAM-16- 3-1, R4			-0.24	-4.16		0.733	11.2				16.6				
YAM-16- 3-2, R1	N29°11′13.1″ E90°35′26.9″	4435	-0.18	-4.01		0.743	7.8	6	8	-6.4	13.7	12	7	-5.1	4
YAM-16- 3-2, R2			-0.18	-3.98		0.729	12.6				17.8				
YAM-16- 3-2, R3			-0.13	-3.87		0.784	-5.2				2.5				
YAM-16- 3-2 R4			-0.38	-4.39		0.734	10.9				16.3				
YAM-16- 3-3, R2	N29°11′13.1″ E90°35′26.9″	4435	-0.58	-4.87		0.72	15.9	16	5	-5.2	20.6	21	4	-4	3
YAM-16- 3-3, R3			-0.6	-4.93		0.707	20.8				24.7				
YAM-16- 3-3, R4			-0.85	-5.35		0.733	11.2				16.6				
YAM-16- 3-3, R1			-0.56	-4.83		0.691	27.2				30.1				4
T16-05G- 1, R1	N30°43′58.3″ E81°36′05.6″	4600	-3.590	-3.720		0.739	9.1	13	4	-4.7	14.8	18	3	-3.6	

T16-05G- 1, R2			-3.550	-3.630		0.729	12.6				17.8				
T16-05G-			-3.540	-3.710		0.717	17.0				21.5				
1, K3 T16-05G- 2 R1	N30°43′58.3″ E81°36′05.6″	4600	-3.19	-3.52		0.708	20.4	9	9	-5.4	24.4	14	7	-4.2	4
T16-05G- 2, R2	201 50 05.0		-3.15	-3.48		0.752	4.8				11.1				
T16-05G- 2, R3			-3.35	-3.96		0.765	0.6				7.5				
T16-05G- 2, R4			-3.19	-3.59		0.741	8.4				14.3				
T16-05G-3, R1	N30°43'58.3" E81°36'05.6"	4600	-4.53	-2.49		0.704	22.0	17	12	-2.6	25.7	21	10	-1.8	3
T16-05G-3, R4			-4.63	-2.86		0.771	-1.3				5.9				
T16-05G-3, R5			-4.42	-2.45		0.707	20.8				24.7				
T16-05G-3, R2			-4.45	-2.38		0.694	26.0				29.0				
T16-05G-4, R1	N30°43'58.3" E81°36'05.6"	4600	-3.87	-3.31		0.698	24.4	22	9	-2.3	27.7	26	7	-1.6	3
T16-05G-4, R2			-3.83	-3.29		0.728	13.0				18.1				
T16-05G-4, R3			-3.79	-3.32		0.685	29.8				32.1				
Holocene	and modern sl	hells an	alyzed l	by Huni	tington et	al. (2015)	:								
nrc10-107- 1		4830	-2.5	-9.1	0.679			7	3	-11.4		12	3	-10.2	
nrc10-114- 4		4830	-4.4	-12.1	0.660			14	3	-12.9		18	3	-11.9	
nrc10-108- 2		4810	-2.6	-7.5	0.660			14	2	-8.3		18	2	-7.3	
2507-06-5		4880	-4.2	-3.8	0.689			4	2	-6.9		9	2	-5.5	
DT 10-9-3		4550	-9.1	-7.8	0.626			27	4	-5.8		30	4	-5.3	
Zhongba 10-7-2		4570	-5.2	-15.3	0.664			12	3	-16.4		17	3	-15.4	

Zhongba 10-6b	4570	-7.6	-10.8	0.624	28	3	-8.7	31	3	-8.1
Zhongba 10-10a	4570	-5.8	-16.1	0.653	16	3	-16.3	21	3	-15.5
Tsangpo 27	4580	-4.0	-17.7	0.658	15	3	-18.3	19	3	-17.4

*Data reported relative to the previous 'Ghosh' scale (Ghosh et al., 2006). Uncertainty is $\pm 0.025\%$ (95% confidence interval).

**Data reported relative to the absolute reference frame (ARF) (Dennis et al., 2011). Uncertainty is ± 0.017‰ (95% confidence interval).

[#] One standard deviation from the mean of replicate analyses of the same sample.

^a Temperatures calculated from Δ_{47} values using the mollusk-specific calibration of Henkes et al. (2013): $\Delta_{47} = 32700/T^2 + 0.3286$ for new data (on ARF scale), and $\Delta_{47} = 31800/T^2 + 0.2737$ for Δ_{47} data on "Ghosh" scale. Uncertainty in reported temperatures is ± 6 °C (95% confidence interval).

^b Temperatures calculated from Δ_{47} using the 'Aragonitic bivalve mollusks' calibration of Eagle et al (2013): Δ_{47} =40700/T² + 0.2483 for new data in ARF; Δ_{47} =38300/T² + 0.2094 for data on the "Ghosh" scale.

Note: The last two samples (highlighted in italic) analyzed in the UCLA lab were not included in the calculation of the average Δ_{47} - temperature values for modern samples because replicate analyses of these two samples yielded not only a very large temperature range of 28°C (from -1.3 to 26°C) for T16-05G-3 and of 17°C (from 13 to 30°C) for T16-05G-4, both of which are much larger than the reported analytical uncertainty (<u>+6</u>°C), but also unreasonably high temperatures that exceed the observed maximum lake water temperature.

Sample ID	Туре	Locality	Estimated Ages	%Aragonite	%Calcite*
TD076 20.	broken whole	71	4.2.14	99.65	0.35
1B0/S-20a	shell	Zanda	4.2 Ma	00.88	0.12
1B0/S-20b	whole shell	Zanda	4.2 Ma	99.00	0.12
1B0/S-20c	whole shell broken whole	Zanda	4.2 Ma	99.84	0.10
TBo7S-24a	shell	Zanda	5.1 Ma	99.79	0.21
TBo7S-24b	whole shell	Zanda	5.1 Ma	99.80	0.20
TBo7S-24c	whole shell	Zanda	5.1 Ma	99.46	0.54
	broken whole		2716	99.11	0.89
ZD0/10/1B0/S-9	shell broken whole	Zanda	3.7 Ma		
TB07S-9a	shell	Zanda	3.7 Ma	99.48	0.52
	broken whole	7 1	2714	99.67	0.33
1B0/S-9b	shell broken whole	Zanda	3./ Ma		
TB07S-13a	shell	Zanda	3.3 Ma	99.60	0.40
TB07S-13b	whole shell	Zanda	3.3 Ma	99.46	0.54
TB07S-6	whole shell	Zanda	4 Ma	99.44	0.56
TB07S-6a	whole shell	Zanda	4 Ma	99.25	0.75
TB07S-6b	whole shell	Zanda	4 Ma	99.68	0.32
TB07S-6c	whole shell	Zanda	4 Ma	99.68	0.32
TB07S-6d	whole shell	Zanda	4 Ma	99.60	0.40
TD070 05	broken whole	7 1	5.2.14	99.64	0.36
1B0/S-25a	snell broken whole	Zanda	5.3 Ma		
TB07S-25b	shell	Zanda	5.3 Ma	99.34	0.66
TD070 10	broken whole		4 4 3 5	99.60	0.40
1B0/S-19a	shell	Zanda	4.4 Ma	00.85	0.15
180/8-196	whole shell broken whole	Zanda	4.4 Ma	99.05	0.15
TB07S-19c	shell	Zanda	4.4 Ma	99.65	0.35
	broken whole	7 1		99.81	0.19
TB07S-19d	shell	Zanda	4.4 Ma	00.74	0.26
1B0/S-21a	whole shell broken whole	Zanda	4.3 Ma	99.74	0.20
TB07S-21b	shell	Zanda	4.3 Ma	98.80	1.20
VI shall 1	mixture of several	Kunlun Dogg	2642Ma	00.51	0.40
KL-SHCH-1	shell fragments	Kulliuli I ass	5.0-4.2 Ma	<i>99.3</i> 1	0.49
	mixture of several	Kunlun Pass	3.6-4.2 Ma	N/A	
KLPS-15-shells	shell fragments	Quanti	Late Pleistocene	00.81	0.10
CD11031	whole shell	Quan-ji	Late Pleistocene	99.81	0.19
CD11031r		Quan-ji	Late Missionene	54.85	0.19
DT1304a	small shell (~0.8cm)	Nie-la-mu	Late Miocene	54.85	45.15
DII3040	shell fragment	Nie-ia-mu	Late Missens	99.21	0.79
Lun lo	shell fragment	Lunpola Basin	Early Miscene	00.00	0.00
Lun 1d	shell fragment	Lunpola Basin	Early Miccone	99.6U 00.20	0.20
Lun-le	shell fragment	Lunpola Dasin	Early Miccene	99.32 00 17	0.00
* The detection three	shold is 0.3-0.4%. Sam	bles with %calcite <0	.4% are considered p	ristine.	0.00

Supplementary Table 2. XRD analysis results of fossil shells from the Tibetan Plateau

Sample ID	Locality	Estimated Age (Ma)	%Calcite	δ ¹³ C (‰)	δ ¹⁸ O (‰)	Δ ₄₇ (‰) (Caltech)*	Δ ₄₇ (‰) (ARF)**	^a T (°C) (Henkes Cal)	Calculated δ^{18} O of water (‰)	^b T (°C) (Eagle Cal)	Calculated δ^{18} O of water (‰)	Note
KL-Shell-1	Kunlun Pass	3.6-4.2	0.49	1.3	-7.9	0.691		3	-11.1	9	-9.8	Analyzed at Cal Tech
KL-Shell-1 (rpt)	Kunlun Pass	3.6-4.2	0.49	1.3	-7.9	0.703		-1	-12.0	5	-10.6	Analyzed at Cal Tech
KLPS-15- shells	Kunlun Pass	3.6-4.2	NA	-0.9	-5.6	0.714		-4	-10.5	2	-8.9	Analyzed at Cal Tech
TB07S-25a	Zanda	5.3	0	1.0	-1.5	0.676		8	-3.6	13	-2.4	Analyzed at Cal Tech
TB07S-19a	Zanda	4.4	0.40	-0.5	-4.0	0.685		5	-6.8	11	-5.5	Analyzed at Cal Tech/Wang et al. (2013)
TB07S-6	Zanda	4	0.56	-0.6	-3.3	0.716		-5	-8.3	2	-6.7	Analyzed at Cal Tech/Wang et al. (2013)
TB07S-6a	Zanda	4	0.75	-2.4	-3.9	0.700		0	-7.8	6	-6.3	Analyzed at Cal Tech/Wang et al. (2013)
TB07S-9	Zanda	3.7	0.89	-0.1	-2.8	0.708		-2	-7.3	4	-5.8	Analyzed at Cal Tech/Wang et al. (2013)
TB07S-19b	Zanda	4.4	0	1.1	-2.5		0.707	21	-1.8	25	-1.0	Analyzed at JHU
TB07S-20b	Zanda	4.2	0	-0.3	-4.7		0.711	19	-4.4	23	-3.5	Analyzed at JHU
TB07S-20c	Zanda	4.2	0	-0.3	-2.7		0.737	10	-4.3	16	-3.1	Analyzed at JHU
TB07S-24a	Zanda	5.1	0	1.6	-1.0		0.719	16	-1.2	21	-0.3	Analyzed at JHU
TB07S-24b	Zanda	5.1	0	1.1	-1.1		0.738	10	-2.8	15	-1.6	Analyzed at JHU
TB07S-6b	Zanda	4	0	-1.2	-2.9		0.718	17	-3.1	21	-2.2	Analyzed at JHU
TB07S-9b	Zanda	3.7	0	-0.7	-2.2		0.736	10	-3.8	16	-2.6	Analyzed at JHU
TB07S-19b	Zanda	4.4	0	1.1	-2.6		0.730	12	-3.7	18	-2.6	Analyzed at UM
TB07S-19b	Zanda	4.4	0	1.1	-2.6		0.735	11	-4.1	16	-2.9	Analyzed at UM
TB07S-20b	Zanda	4.2	0	-0.3	-4.8		0.742	8	-6.8	14	-5.5	Analyzed at UM
TB07S-20b	Zanda	4.2	0	-0.3	-4.8		0.692	27	-2.9	30	-2.3	Analyzed at UM
TB07S-21b	Zanda	4.3	1.2	-2.7	-2.1		0.725	14	-2.8	19	-1.8	Analyzed at UM
TB07S-21b	Zanda	4.3	1.2	-2.8	-2.0		0.725	14	-2.7	19	-1.7	Analyzed at UM
TB07S-25b	Zanda	5.3	0.66	0.9	-2.0		0.722	15	-2.5	20	-1.5	Analyzed at UM
TB07S-25b	Zanda	5.3	0.66	0.9	-1.9		0.748	6	-4.4	12	-3.0	Analyzed at UM
TB07S-6a	Zanda	4	0.75	-2.3	-4.0		0.773	-2	-8.4	5	-6.7	Analyzed at UM
TB07S-6a	Zanda	4	0.75	-2.5	-4.1		0.744	7	-6.3	13	-5.0	Analyzed at UM

Supplementary Table 3. Summary of temperatures calculated using carbonate clumped isotope thermometry on fossil shells from Tibetan Plateau

ZD0710 (TB07s-9)	Zanda	3.7	0.89	-0.2	-3.0		0.749	6	-5.5	12	-4.1	Analyzed at UM
ZD0710 (TB07s-9)	Zanda	3.7	0.89	-0.1	-2.9		0.736	10	-4.5	16	-3.3	Analyzed at UM
2 SZ 51.5	Zanda	4.2	NA	-0.4	-2.3	0.673	0.73	9	-4.1	14	-3.0	Huntington et al. (2015)
1 SZ 32	Zanda	4.7	NA	1.5	-2.4	0.685	0.74	5	-5.1	11	-3.9	Huntington et al. (2015)
1 SZ 18	Zanda	4.9	NA	0.6	-2.8	0.692	0.75	3	-6.1	9	-4.7	Huntington et al. (2015)
0.4 SZ 14.9	Zanda	5.1	NA	-7.3	- 18.7	0.693	0.75	2	-22.0	8	-20.6	Huntington et al. (2015)
0.4 SZ 4.8	Zanda	5.2	NA	-1.8	-1.4	0.682	0.74	6	-3.9	12	-2.6	Huntington et al. (2015)
0.3 SZ 38.25A	Zanda	5.5	NA	-1.9	-6.8	0.685	0.74	5	-9.5	11	-8.2	Huntington et al. (2015)
0.3 SZ 22	Zanda	6.1	NA	-2.6	-8.0	0.669	0.72	10	-9.5	16	-8.4	Huntington et al. (2015)
0.1 SZ 4.5	Zanda	8.5	NA	-1.1	-2.2	0.684	0.74	5	-4.9	11	-3.6	Huntington et al. (2015)

Note: Given the XRD detection limit of 0.3-0.4%, samples with less than 0.4% calcite are considered pure aragonite.

*Data reported relative to the previous 'Ghosh' scale (Ghosh et al., 2006). Uncertainty is $\pm 0.025\%$ (95% confidence interval).

**Data reported relative to the absolute reference frame (ARF) (Dennis et al., 2011). Uncertainty is $\pm 0.017\%$ (95% confidence interval).

[#] One standard deviation from the mean of replicate analyses of the same sample.

^a Temperatures calculated from Δ_{47} values using the mollusk-specific calibration of Henkes et al. (2013): $\Delta_{47} = 32700/T^2 + 0.3286$ for new data (on ARF scale), and $\Delta_{47} = 31800/T^2 + 0.2737$ for Δ_{47} data on "Ghosh" scale. Uncertainty in reported temperatures is ± 6 °C (95% confidence interval).

^b Temperatures calculated from Δ_{47} using the 'Aragonitic bivalve mollusks' calibration of Eagle et al (2013): Δ_{47} =40700/T² + 0.2483 for new data in ARF; Δ_{47} =38300/T² + 0.2094 for data on the "Ghosh" scale.

Sample	δ ¹³ C (PDB)	δ ¹⁸ Ο (PDB)	∆ ₄₇ (CDES, 25C acid digestion equivalent)	∆ ₄₈ (vs. HG)	T($\Delta_{47}),$ Heneks et al	T(∆₄7), Bonifacie et al. 2017 eq. 3	T(D47), Kelson et al. 2017 , eq. 1	Petersen et al. (2019), Eq. 1
•								
Data_783 IPL-CI-0578 TB07S-25b	0.9	-2.0	0.722	0.3330	15	13	15	14
Data_785 IPL-CI-0583 TB07S-21b	-2.7	-2.1	0.725	0.2850	14	13	14	13
Data_786 IPL-CI-0584 TB07S-20b	-0.3	-4.8	0.742	0.2110	8	8	10	8
Data_787 IPL-CI-0585 TB07S-19b	1.1	-2.6	0.730	0.4200	12	11	13	12
Data_788 IPL-CI-0586 TB07S-6a	-2.3	-4.0	0.773	0.3720	-2	0	2	0
Data_789 IPL-CI-0587 ZD0710	-0.2	-3.0	0.749	0.2710	6	6	8	6
Data_838 IPL-CI-0633 TB07S-21b	-2.8	-2.0	0.725	0.2250	14	13	14	13
Data_840 IPL-CI-0634 TB07S-25b	0.9	-1.9	0.748	0.3360	6	6	8	6
Data_841 IPL-CI-0635 TB07S-20b	-0.3	-4.8	0.692	0.2330	27	22	24	24
Data_842 IPL-CI-0636 TB07S-19b	1.1	-2.6	0.735	0.1530	11	10	12	10
Data_851 IPL-CI-0650 ZD0710	-0.1	-2.9	0.736	0.2820	10	10	11	10
Data_855 IPL-CI-0655 TB07S-6a	-2.5	-4.1	0.744	0.2000	7	7	9	8

Supplementary Table 4. Comparison of temperatures calculated using different equation

Suppl Fig. 1. Comparison of analysis results for fossils (A-C) and modern shells (D) analyzed in different labs. The double arrows in (A) and (B) indicate the variation ranges of δ^{13} C and δ^{18} O values, respectively, of modern shells. Temperatures shown in (C) and (D) were calculated using the Henkes et al. (2013) calibration. The error bar indicates 1 standard deviation from the mean of replicated analyses of a sample. Some of the fossil samples analyzed at Caltech and John Hopkins University (JHU) were re-analyzed at University of Michigan (UM), yielding the same δ^{13} C and δ^{18} O values and similar Δ_{47} -derived temperature values for the same samples (A-C). Analysis of additional modern samples from two of the study lakes at UCLA also produced similar results to those from the JHU lab for the same lakes except two samples (D). The results from these two samples analyzed at UCLA were not used because their replicates yielded not only very large temperature ranges (much larger than the reported analytical uncertainty) but also unreasonably high temperatures (see text for explanation).

Suppl. Fig. 2. Effect of mixing diagenetic calcite with pristine aragonite on the Δ_{47} -derived temperature of aragonite shell predicted using a simple two component mixing model. The model assumes that calcite was formed at near freezing temperatures (1°C) characterizing the present-day high elevation environment in the study area and the temperature of unaltered aragonite was the average temperature determined from the Δ_{47} values of our pristine fossil shells from Zanda Basin in southwest Tibet.

Suppl. Fig. 3. Modeled Δ_{47} evolution at low diagenetic temperatures using Eq. (3) in Staudigel and Swart (2016) and rate constants calculated by the Arrhenius Equation. The following Arrhenius parameters estimated by Staudigel and Swart (2016) were used to calculate the rate constants at different temperatures: Ea = 1.1×10^5 J/mol and ln(ko) = 21.7. The initial Δ_{47} value used in the model was 0.625 and the equilibrium or "annealing" values were calculated using the revised carbonate equation given in Zaarur et al. (2013): Δ_{47} =(0.0526±0.0025)×1000000/T²+(0.0520±0.0284).