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S1. Supplementary Data 

S1.1 A unified postseismic GPS position time series dataset for the 

1992 and 1999 events 

We consider GPS measurements within 300 km from the epicentral area of the two 

Mojave earthquakes, spanning the 1992-2010.26 period (until 4 April 2010 Mw7.2 El Mayor-

Cucapah earthquake). We do not consider the post-El Mayor-Cucapah GPS data in the 

Mojave region, because postseismic transients of the 2010 event have disturbed those data 

(Dickinson-Lovell et al., 2017).  

The spatial and temporal coverage of GPS measurements have improved dramatically 

as the GPS networks expanded, in particular since 2000. The continuous GPS (cGPS) sites 

initially belong to the Southern California Integrated GPS Network (SCIGN, 

http://scecinfo.usc.edu/education/k12/learn/scign1.htm) and later the Plate Boundary 

Observatory GPS network (http://pboweb.unavco.org). To monitor postseismic deformation 

of the 1992 Landers earthquake, the U.S. Geological Survey established a GPS profile (the 

USGS Emerson transect) consisting of 10 campaign GPS sites across the Emerson fault 

(Savage and Svarc, 1997). 

Several groups have focused on and processed different subsets of the data (Shen et 

al., 2011). Here, we use GPS time series from the Geodesy Group of the Southern California 

Earthquake Center (CMM4, Crustal Motion Map Version 4) (Shen et al., 2011) and from the 

Nevada Geodetic Lab (NGL, geodesy.unr.edu/gps_timeseries/tenv/NA12/, access date: 27 

March, 2020). The CMM4 GPS data are mainly derived from 1992-2004 campaign GPS 

measurements in Southern California (Figures DR1-DR2). The NGL GPS dataset includes 

additional data from stations in the Yucca Mountain region and is mainly derived from post-

Hector Mine continuous GPS observations (Figure DR2). 
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In this study, the CMM4 (1992-2004) and NGL (1999-2010) datasets are divided into 

three categories: (1) post-Landers and pre-Hector Mine CMM4 GPS data (GPS stations are 

shown in Figure DR1a), (2) post-Hector Mine CMM4 near-field campaign GPS data (GPS 

stations are shown in Figure DR1b), and (3) post-Hector Mine NGL cGPS data (GPS stations 

are shown in Figure DR1b). The CMM4 GPS data end before 2004.74, and NGL GPS data 

are post-Hector Mine observations up to the April 4, 2010 Mw 7.4 El Mayor-Cucapah 

earthquake whose co- and post-seismic deformation extended across the Mojave Desert 

region. Because postseismic displacements after the 1999 Hector Mine earthquake are 

consistent at the co-located sites from the CMM4 and NGL solutions, time series from both 

solutions (CMM4 and NGL) can be combined to extend the time span at several GPS sites 

(e.g., SDHL). For the other co-located sites, GPS time series with the longer time span (from 

the NGL solution) are chosen in the subsequent modeling. 

s1.1.1 Subsampling NGL GPS time series 

We transform the original NGL daily position time series after the first three months 

into multi-day combination time series by averaging several days' positions. Here, we 

uniformly set the 1-sigma uncertainties to 2 mm for the horizontal component, which is 

comparable to those of the CMM4 solution in which time correlated errors have been 

thoroughly explored. The 1-sigma uncertainties of the vertical component are uniformly set 

to 4 mm, consistent with the minimum value of the corresponding 1-sigma uncertainties in 

the CMM4 solution. 

s1.1.2 Correcting residual postseismic transients 

The difference between the observed position time series and the steady motion at the 

background rates represents the postseismic relaxation signals. The accuracy of postseismic 

relaxation time series depends on how well the nominally interseismic GPS velocities 

represent the background rates. However, the published interseismic velocity fields rely on 
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how well the apparent postseismic transients are removed from post-earthquake GPS 

observations. As shown in a previous study that considers preseismic triangulation and 

trilateration data (Liu et al., 2015), residual postseismic transients are not negligible in the 

nominally interseismic CMM4 and NGL GPS velocities in the southern Mojave. Thus, we 

have to correct the interseismic GPS velocities, which would otherwise give us biased 

postseismic relaxation time series. We use the velocities predicted from a block model 

constrained by pre-Landers triangulation and trilateration data as well as far-field GPS 

velocities (Liu et al., 2015) instead of the original CMM4 and NGL GPS velocities in the 

southern Mojave, and retain the CMM4 and NGL GPS velocities outside the southern 

Mojave. 

GPS velocities in Southern California may have been disturbed by other large 

historical (e.g., the 1857 Mw 7.9 Fort Tejon and 1872 Mw 7.4 Owens Valley earthquakes) 

and pre-historical earthquakes (Johnson et al., 2007; Pollitz et al., 2008). The pre-Landers 

rates may include effectively steady motion associated with the long-term viscoelastic 

relaxation following these events. As both spatial and temporal deformation gradients from 

these events are likely very modest across the region, we do not attempt to correct for them.  

s1.1.3 Combining GPS time series 

The CMM4 and NGL GPS time series at co-located GPS sites can be combined, 

because (1) the reference frame misalignment between CMM4 and NGL solutions is minor, 

and (2) postseismic relaxation time series from both solutions are consistent during the 

common observation period from 1999 to 2004. More specifically, post-Hector Mine CMM4 

time series can be used to extend the time span of NGL time series at a few sites (e.g., SDHL) 

which lack data for the early rapid postseismic transients; for the other co-located cGPS sites, 

NGL GPS time series are retained which afford us post-Hector Mine postseismic transient 

until 2010.26. 
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s1.1.4 New GPS time series 

The CMM4 and NGL postseismic position time series, after the interseismic velocity 

correction (Liu et al., 2015), feature enduring late-stage postseismic transients after 2006 in 

the epicentral area of the two Mojave earthquakes (Figure DR2). The major patterns are 

consistent with a solution which is based on a suite of postseismic deformation models 

(Pollitz, 2015), but ours are better because of the use of pre-Landers data.  The GPS data used 

in most previous studies, however, suggest that the late-stage postseismic transients were 

possibly complete by 2006 (Herbert et al., 2014). In our new solution, post-Landers 

postseismic deformation is still active after 1999 and hence the post-Hector Mine time series 

describe postseismic deformation associated with both earthquakes. This can be clearly seen 

by a transition from northward to southward postseismic motions at the sites located in 

between the coseismic ruptures (AGMT, HCMN, TROY, OPRD, OPCL, and SDHL), after 

2006-2007.  

s1.2 Postseismic GPS position time series dataset for the 2019 

event 

The Ridgecrest earthquake sequence primarily consists of a Mw7.1 right-lateral 

strike-slip faulting on a NW-SE striking fault on 5 July 2019 preceded by a Mw6.4 left-

lateral strike-slip faulting on a NE-SW striking fault on 4 July 2019. The epicentral area 

belongs to the central ECSZ north of the Garlock fault, ~180 km northwest of the epicentral 

areas of the 1992 and 1999 Mojave earthquakes in the southern ECSZ (Mojave ECSZ). 

Here we consider the first year post-Ridgecrest GPS time series from the Nevada 

Geodetic Lab (geodesy.unr.edu/gps_timeseries/tenv/NA12/, access date: 11 August, 2020) 

and Scripps Orbit and Permanent Array Center (SOPAC, ftp://sopac-

ftp.ucsd.edu/pub/timeseries/measures/ats/WesternNorthAmerica, access date: 11 August, 
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2020) to gain estimates of the transient viscosity of the upper mantle. Because an accurate 

estimate of the transient viscosity requires well-processed GPS data (beyond the near field), 

our estimate that relies on preliminarily processed data is not highly precise, but it allows us 

to make a distinction between the order-of-magnitude difference, for example, 1017 Pa s, 1018 

Pa s, and 1019 Pa s.  Consequently, this test also enables us to explore the consistency of the 

transient rheology of the upper mantle beneath the central and southern ECSZ. 

s2. Supplementary Methods 

Coseismic faulting alters the stress field in the crust and upper mantle. The 

earthquake-induced stress dissipates with time as several physical processes, such as afterslip, 

poroelastic rebound, and viscoelastic relaxation, occur in response to the stress redistribution, 

resulting in time-dependent and observable surface deformation. Both the near-field and far-

field GPS observations are influenced by viscoelastic relaxation in the upper mantle (Freed et 

al., 2007; Pollitz, 2015). The near-field GPS signals include additional contributions from 

shallower deformation processes, including afterslip (Shen et al., 1994; Savage and Svarc, 

1997; Pollitz, 2015), poroelastic rebound (Peltzer et al., 1998; Fialko, 2004a), and 

viscoelastic relaxation in the lower crust (Deng et al., 1998). We therefore have to explore the 

relative importance of afterslip, poroelastic rebound, and viscoelastic relaxation when 

interpreting the post-earthquake GPS observations. 

We use layered half-space coseismic slip models of the Landers (Fialko, 2004b) and 

Hector Mine (Simons et al., 2002) earthquakes as the sources that drive both poroelastic 

rebound in the crust and active postseismic viscoelastic flow in the viscoelastic substrate. We 

reduce the deep slip at 10-15 km depth in Fialko’s model by 30%, because the coseismic slip 

solution could include a portion of early afterslip, due to delayed GPS and InSAR 

measurements recorded after the quake and used to constrain the coseismic slip model. The 

patterns of the estimated deep slip >2 m along the 60 km long main rupture are also less 
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reliable owing to the low resolution of slip at depth. For the modified slip model, the deep 

slip peaks at ~4.4 m, and most deep patches have slip <2 m. The slip model still fits well the 

GPS-observed coseismic displacements, especially those in the intermediate field (Figure 

DR3), suggesting that our modification does not omit too much the coseismic stress change 

in the lower crust which affects the postseismic deformation modeling results. Based on this 

model, the inferred lower crustal steady-state viscosity is ~8.0×1019 Pa s when only 

viscoelastic relaxation (Burgers rheology) is considered, but it increases to ~2×1020 Pa s 

when both stress-driven afterslip and viscoelastic relaxation are considered. We also test 

other scenarios by allowing more reduction of the deep slip (e.g., reducing 50%). The 

modified model systematically underestimates the intermediate-field coseismic displacements 

by ~20%, and is therefore not adopted.   

To ensure consistency, we use the seismic velocity structure model of the Mojave 

Desert of Jones and Helmberger (1998)—the same as that used to derive the coseismic slip 

models (Simons et al., 2002; Fialko, 2004b)—throughout our modeling of kinematic afterslip, 

poroelastic rebound, and distributed viscoelastic relaxation. To explore how the derived 

viscosities of the lower crust and upper mantle vary, we also consider other combinations of 

coseismic slip models and earth structures. For the 2019 Ridgecrest earthquake sequence we 

use a coseismic slip model constrained by GPS and InSAR (Wang et al., 2020) to drive the 

viscoelastic relaxation. The seismic velocity model is the same as the one for the Mojave case. 

s2.1 Poroelastic rebound 

We use the software package PEGRN/PECMP (Wang and Kümpel, 2003) to model 

the time-dependent fluid flow in the porous upper crust in response to coseismic pressure 

changes. In this model, some elastic parameters (e.g., bulk modulus of the rock matrix) are 

determined from the seismic velocity model. The other parameters to be determined are the 

hydraulic diffusivity (D), Skempton's coefficient (B), and Poisson's ratio under undrained and 
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drained conditions. The amplitude of deformation is mainly dictated by Poisson's ratio under 

undrained and drained conditions, similar to the case for the fully relaxed state (Peltzer et al., 

1998), and the rate of decay is dictated by the hydraulic diffusivity. In the model 

implementation, we need to consider the trade-off between the contribution from changes in 

Poisson's ratios and the depth range of fluid flow (controlled by the depth-dependent 

hydraulic diffusivity). Typically, the permeability (and hence the hydraulic diffusivity) 

decreases with depth following a power law and perhaps only the very shallow portion hosts 

active porous flow at the time scale of our observations, with high permeabilities on the order 

of 10-13-10-14 m2 (Townend and Zoback, 2000; Jónsson et al., 2003). Another end-member 

case is that the entire upper crust is abundant in pores and inter-connected fluids and hence 

hosts poroelastic rebound after the coseismic stress loading (Fialko, 2004a). 

In our model implementation, for the layer(s) hosting active fluid flow, the 

Skempton's coefficient (B) is set to 0.6; the undrained and drained Poisson's ratios are 0.31 

and 0.27, respectively, consistent with previous studies (Peltzer et al., 1998; Fialko, 2004a); 

the candidate hydraulic diffusivities (D) are 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 m2/s; and the end-

member depth range of porous flow are 0-2.5 km and 0-16 km, respectively. 

s2.2 Viscoelastic relaxation 

We use the software package PSGRN/PSCMP (Wang et al., 2006) to model 

distributed viscoelastic relaxation. Despite geodetic and geophysical evidence of 

heterogeneous lithosphere beneath Southern California (Pollitz, 2015), for simplicity, we 

only consider laterally homogeneous models. The layered viscoelastic structures tested in this 

study have a 16-km-thick elastic layer overlying a 12-km-thick viscoelastic lower crust 

underlain by a viscoelastic half space (Figure DR4). 

We first consider rheological models with Burgers rheology for both the lower crust 

and upper mantle, because (1) Burgers and Maxwell rheologies macroscopically characterize 
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creep deformation due to dislocation and diffusion creep, respectively (Bürgmann and Dresen, 

2008), (2) dislocation creep may prevail in the entire viscoelastic substrate, (3) Burgers 

rheology yields non-linear deformation patterns similar to the observed postseismic 

deformation characterized by rapid exponential decay in the first year and more gradual 

change afterwards (Pollitz, 2003), and (4) the observed transient deformation in the Yucca 

Mountain region (250 km away from the epicentral regions) indicates that biviscous (e.g., 

Burgers) or stress-dependent rheology must be considered for the upper mantle (Freed et al., 

2012). However, linear diffusion creep may also occur, and therefore we also consider the 

case with Maxwell rheology for the lower crust and Burgers rheology for the upper mantle. 

For comparison, we also consider the simplest case with Maxwell rheology for both layers. 

For the Burgers rheology in our models, the steady-state shear modulus μMB and bulk 

modulus k are determined from the previously established layered P-wave velocity, S-wave 

velocity, and density (Figure DR4). The yet-to-be-determined parameters are the transient 

shear modulus μKB, transient viscosity ηKB, and steady-state viscosities ηMB of the Burgers 

body. To reduce the number of unknown parameters (considering the resolving power of 

GPS data), we fix some of the parameters and only explore the steady-state viscosities of the 

Burgers body (ηMB) using a grid search. The ratio of the transient viscosity to the steady-state 

viscosity (ηKB/ηMB) is fixed at 0.1, consistent with previous studies (Freed et al., 2012; Pollitz, 

2015). We also test other values of ηKB/ηMB less than 0.1 (e.g., 0.02, 0.05, and 0.075). We 

find that the estimates of the steady-state viscosities (ηMB) are not sensitive to ηKB/ηMB if 

ηKB/ηMB is less than or equal to 0.1. We find that ηKB/ηMB should be 0.1 for the upper mantle, 

otherwise the models fit the far-field data worse. We also find that the preferred ηKB/ηMB is 

smaller than 0.1 but greater than 0.02 (e.g., 0.05) when only viscoelastic relaxation is 

considered for modeling the near-field data. To estimate the effects of transient rheology, we 

also consider the models constrained by GPS time series in different time periods (the first 1 
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month, 1 year, and the full 18 years for the Mojave case; the first 1 month and 1 year for the 

Ridgecrest case.). The ratio of the fully relaxed shear modulus (μMBμKB/(μMB+μKB)) to 

unrelaxed shear modulus (μMB), parameterized by a in PSGRN, also influences the amount of 

early rapid transient deformation. We examine a between 0.1 and 0.9 in 0.1 increment (the 

optimal a is ~0.7). 

Because the chosen viscoelastic rheology is linear, the modeled viscoelastic relaxation 

for both earthquakes can be summed up. However, if power-law rheology applies, the 

effective viscosity is stress-dependent, and the post-Landers GPS-derived viscosities would 

differ from those from post-Hector Mine GPS data. Our modeling results show that the 

rheological structures constrained separately by the post-Landers and post-Hector Mine data 

are slightly different but consistent, which suggests that the earthquake-induced stress 

changes are not significantly larger than the background stress. This is an open question that 

should be further addressed in follow-up studies. 

s2.3 Other coseismic slip models and seismic velocity structures 

How the estimates of the effective viscosities of the lower crust and upper mantle 

vary is mainly dictated by the patterns and magnitudes of deviatoric stress change induced by 

the coseismic rupture, which is determined by the choice of coseismic slip model and seismic 

velocity model.  For that reason, we also consider the coseismic slip models in homogeneous 

half-space earth model (Wald and Heaton, 1994; Jónsson et al., 2002) and other seismic 

velocity models such as the one used in Pollitz’s previous studies (Pollitz, 2003, 2015) and 

the 1D seismic velocity model (Figure DR4) for the Mojave region that is derived from the 

3D SCEC Southern California Community Velocity Model Version 4 (SCEC CVM4, 

http://scedc.caltech.edu/research-tools/3d-velocity.html). The coseismic slip models in 

layered half-space earth model have ~20% larger deep slip than those in homogeneous half-

space earth model. The excess of slip at depth for the coseismic slip models in the layered 
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earth model provides a greater deviatoric stress change to drive viscoelastic relaxation in the 

lower crust and upper mantle (we find that the choices of coseismic slip models do matter for 

modeling the near- and intermediate-field post-Landers and post-Hector Mine deformation 

field due to viscoelastic relaxation). The shear modulus of the 1D CVM4 agrees with that of 

the model used in Pollitz’s previous studies (Pollitz, 2003, 2015), except for a difference less 

than 15% in the upper crust (<16 km depth, Figure DR4); the shear modulus of the lower 

crust is ~19% greater than that of the JH1998 model for the Mojave region. To test the effects 

of the choice of coseismic slip model and seismic velocity model, we use the post-Landers 

and post-Hector Mine GPS data to constrain the viscoelastic relaxation models. First, we test 

the case based on coseismic slip models in layered half-space earth model and the JH1998 

earth structure, which serves as the reference case. Second, we test the case based on the 

coseismic slip models in layered half-space earth model and 1D CVM4 earth structure. When 

compared to the results of the reference case, the estimated viscosities of the lower crust 

increase by a factor of ~1.5, but the viscosities of upper mantle retain at approximately the 

same level. Third, we test the case based on the coseismic slip models in homogeneous half-

space earth model and 1D CVM4 earth model. When compared to the reference results, the 

estimated viscosities of the lower crust decrease by a factor of 1.0-1.5, but the viscosities of 

upper mantle retain at approximately the same level. 

s2.4 Afterslip 

s2.4.1 Stress-driven afterslip 

We consider stress-driven deep afterslip at 16-34 km depth that is simulated using the 

software package Unicycle (Barbot et al., 2009; Barbot et al., 2017).  Rate-strengthening 

friction applies and the initial slip velocity, V, is determined by 

                                                 2 ∆ ⁄                                                                

(s1) 
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in which V0 is a reference velocity, Δτ is coseismic shear stress change, σ is effective normal 

stress, and a is the friction parameter. We test V0 in the range 10-4-100 m/yr and a in the range 

10-5-100. The data constraints are the residual time series from the viscoelastic relaxation 

modeling, with steady-state viscosities allowed to range from 1×1018 to 1×1022 Pa s.	

Stress-driven afterslip is dictated by the coseismic stress change and the two free 

model parameters V0 and aσ, thus the number of free parameters is usually much less than 

that of kinematic afterslip models (see Table DR1). Therefore, stress-driven afterslip models 

generally fit the data worse than the kinematic afterslip model. However, kinematic afterslip 

models are often physically implausible because the distribution of afterslip is not related to 

the available stress change. In this study, our preferred combined model is the joint inversion 

of stress-driven afterslip and viscoelastic relaxation.	

s2.4.2 Kinematic afterslip 

We also estimate the distribution of afterslip on and below the coseismic rupture 

plane(s) following a kinematic slip inversion approach. The kinematic slip model serves as 

independent references to our stress-driven afterslip model. In the kinematic afterslip 

inversion, the observed data d are related to afterslip s by Green's functions G for rectangular 

dislocations in a layered half-space (Wang et al., 2003). To regularize the inversion problem, 

the second order Laplacian operator L is applied to smooth the afterslip distribution. These 

can be represented by the following equation 

                                                              	                                                                  

(s2) 

where ε denotes data errors that are assumed to follow a Gaussian distribution, e 

characterizes the uncertainties applied to the smoothing constraints (equivalent to pseudo-

observations) that are uniformly set by λ. The trade-off between data misfit and roughness of 
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the afterslip should be explored in this optimization, which is determined by choosing an 

optimal λ from the data misfit versus model roughness curve. 

We subtract viscoelastic response (as described in the Section s3.2-3.4) from the GPS 

position time series, fit the residual time series by logarithmic function (characteristic times 

are 10 days for both the post-Landers and post-Hector Mine data), obtain the 5-year 

cumulative displacements, and invert the cumulative displacements for the distribution of 

afterslip. We choose the time span of post-Hector Mine CMM4 GPS measurements—5 

years—as the time window for afterslip inversion. How we set the characteristic time of the 

logarithmic function affects the estimates of  steady-state viscosities of the lower crust and 

upper mantle. We will discuss this issue in joint inversion of afterslip and viscoelastic 

relaxation in the subsequent sections.  

For the afterslip model of the 1992 Landers earthquake, the fault geometry at 0-34 km 

depth is discretized into 884 3×2 km rectangular patches. For the 1999 Hector Mine 

earthquake, we estimate afterslip on 1164 3×1.5 km rectangular patches at 0-34 km depth. 

The post-Landers GPS data is influenced by afterslip related to the 1992 event. 

Therefore, we invert the 1992-1997 cumulative displacements (based on the residual time 

series as mentioned before) for the distribution of afterslip on and below the 1992 rupture. 

The post-Hector Mine GPS data is not only influenced by afterslip related to the 1999 event 

but also by potential afterslip related to the 1992 event. Therefore, we invert the 1999-2005 

cumulative displacements, with correction for the contribution from the 1992 Landers 

afterslip models, for the distribution of afterslip on and below the 1999 rupture. 

We first invert separately the post-Landers (but pre-Hector Mine) and post-Hector 

Mine data for the distribution of afterslip for the 1992 and 1999 events, respectively. 

However, given that both the post-Landers (pre-Hector Mine) and post-Hector Mine data 
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have limitations in spatial and temporal coverage, we also use all the data to constrain the 

distribution of afterslip for both events. 

How well the afterslip is resolved by the available GPS data? To address this issue, 

we invert the 5-year cumulative displacements (derived from the residual time series) for the 

distribution of afterslip, using least square method, and we check the trade-off between the 

resolution and data misfit. No matter how the rheology is used (Maxwell or Burgers rheology) 

to model the contribution from viscoelastic relaxation, the sums of diagonal terms of the 

resolution matrix are ~15 for afterslip inversion of both the 1992 and 1999 events, when the 

data is modestly fitted by the models (based on the trade-off curves).  When compared to the 

number of fault patches (884 and 1164 for the 1992 and 1999 events, respectively), the values 

of the sums of diagonal terms of the resolution matrix being ~15 suggest that patterns of 

afterslip distributed over large region are reliable (perhaps at dimension of ~20×10 km for the 

deep afterslip).  

We impose positivity constraint to get right-lateral slip in afterslip inversion. When 

the viscosities of the viscoelastic layers are small such that the model predicted fault-parallel 

motion from viscoelastic relaxation exceed the observed magnitudes, the residual time series 

(observed minus modeled) require left-lateral slip, which does not make sense. In that case, 

afterslip is not allowed to occur. For the other cases, however, right-lateral afterslip is 

required to fit the data. We choose the extent of smoothing constraint applied in the inversion 

by examining the trade-off curves between slip roughness and data misfit. According to the 

trade-off curve, a unified value of the smoothing parameter can be used in all the joint 

inversions. When the smoothing parameter varies around the optimized value, the inferred 

viscosities almost do not change, but the magnitude of peak afterslip may change a bit (e.g., 

when λ doubles, the estimated afterslip is rougher, with peak slip increasing by less than 

100%, but the estimated viscosities remains at approximately the same values). 
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s2.5 Fitting criterion 

We choose the best-fit models that minimize weighted residual sum of squares 

(WRSS) of the GPS position time series: 

                  ∑ ∑ ∑                                        

(s3) 

where the summation is over Ns stations (j=1,Ns) whose east-west (i=1) and north-south (i=2) 

components have Nt epochs of data (k=1,Nt, each station has a different Nt),   and  

are the observed and modeled displacements, respectively, ijk is the 1-sigma uncertainty, and 

 is the offset to align  with  that is estimated from the misalignments ( - ) by 

least-squares. As an alternative to estimating  from - , we estimate  from , 

which compulsively align  with  in the early period; the resultant overall data misfit is 

worse (increasing WRSS by a factor of ~4) and the estimates of viscosities of the lower crust 

decrease by a factor of 1.0-1.3. 

 

s3. Supplementary Results 

s3.1 Poroelastic rebound 

Are the signals induced by poroelastic rebound discernable by post-Landers campaign 

GPS and post-Hector Mine cGPS measurements? To address this issue, we first obtain the 

best-fit viscoelastic relaxation and stress-driven afterslip models and then test whether the 

addition of poroelastic rebound helps to reduce the data misfit (both horizontal and vertical 

components). We test two scenarios of poroelastic rebound (Figure DR5A): (1) one in the 

shallow 2.5 km of the upper crust and (2) the other one throughout the upper crust (0-16 km).  

First, we test the model whether the inclusion of poroelastic rebound reduce the misfit 

to horizontal component of data. When poroelastic rebound and the viscoelastic relaxation 
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model with Burgers rheology are used to fit the data, we find that the scenario (1) (blue 

circles in Figure DR5B) fit the data better than the scenario (2) (red circles in Figure DR5B). 

We also find that the scenario (1) may help to reduce the data misfit of the models with only 

viscoelastic relaxation (data misfit is shown by the green line in Figure DR5B), if the 

hydraulic diffusivity is greater than 0.5 m2/s.  For the scenario (2), the predicted deformation 

is distributed more than 20 km from the coseismic rupture (Figure DR5A), and although the 

predicted fault-perpendicular motion can be used to remedy model misfit (due to viscoelastic 

relaxation) to the observed fault-perpendicular motion, the predicted fault-parallel motion 

will deteriorate the model fit to the data. When the viscoelastic relaxation model with 

Maxwell rheology is first used to fit the data, the addition of poroelastic rebound does reduce 

the data misfit (dashed green line versus red and blue squares in Figure DR5B-5C).	

The addition of shallow poroelastic rebound also helps to explain the observed 

vertical deformation in the first two years following the 1992 (Figure DR6) and 1999 (Figure 

3 in the main text) events. The optimal stress-driven afterslip and viscoelastic relaxation 

model cannot give a perfect match to the observed vertical deformation within ~10 km from 

the fault (Figure 3D and Figure DR6D). The spatial patterns of the mismatch are opposite to 

model predictions of shallow poroelastic rebound (Figure 4A and Figure DR6A). When 

combined with additional contribution from shallow poroelastic rebound, the combined mode 

fits the post-Landers CMM4 campaign GPS and post-Hector Mine cGPS data better at the 

99.9% and 89.4% confidence level. Therefore, consideration of shallow poroelastic rebound, 

stress-driven afterslip, and viscoelastic relaxation can explain the spatial patterns of the 

observed vertical deformation (Figure 4E and Figure DR6E). Note that the major patterns of 

the modeled shallow poroelastic rebound do not vary (Figure DR7), even though coseismic 

slip models with better resolution on the distribution of shallow slip are considered (Xu et al., 

2016). 
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How the poroelastic rebound-induced deformation decays with time is mainly 

dictated by hydraulic diffusivity. We examine the case with poroelastic rebound and the 

viscoelastic relaxation model with Burgers rheology. We test several candidate values of 

hydraulic diffusivity: 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 m2/s. For the cases with poroelastic 

rebound in the shallow 2.5 km, the goodness of fit is best when hydraulic diffusivity is ~2.5 

m2/s, but the data misfit is essentially equivalent when the hydraulic diffusivity varies from 

1.0 m2/s to 2.5 m2/s (blue squares in Figure DR5C). 

In summary, GPS measurements, although sparsely distributed, support shallow 

poroelastic rebound, rather than the upper crustal scale poroelastic rebound (Fialko, 2004a), 

for the Mojave case. InSAR data with better spatial coverage along the 1992 and 1999 

ruptures (in particular the stepovers) is required for a better understanding of how poroelastic 

rebound developed after the two earthquakes. The following models with viscoelastic 

relaxation include a contribution from poroelastic rebound in the upper 2.5 km with a 

hydraulic diffusivity of 1.0 m2/s. However, the viscosity estimates are not sensitive to 

whether the shallow poroelastic rebound is considered.	

s3.2 Univiscous lower crust and biviscous upper mantle  

We consider the cases with Maxwell rheology for the lower crust and Burgers 

rheology for the upper mantle (the ratio of the transient viscosity to the steady-state viscosity 

is fixed at 0.1), because (1) the microscale physical processes responsible for ductile 

deformation may be diffusion creep and dislocation creep for the lower crust and upper 

mantle, respectively, and (2) the observed transient deformation in the Yucca Mountain 

region (250 km away from the epicentral regions) support biviscous (e.g., Burgers) or stress-

dependent rheology for the upper mantle (Freed et al., 2012).	

The steady-state viscosity of the lower crust can be ~1.0×1020 Pa s, less than three 

times that of the upper mantle, in a joint inversion of both kinematic/stress-driven afterslip 
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and viscoelastic relaxation (Figure DR8 and Table DR1). The estimated stress-driven 

afterslip lasts for more than 4 years and does not exhibit rapid early transients within the first 

year (Figure DR9). The best-fit models fit all the 18-years GPS data worse than the 

corresponding best-fit models with Burgers rheology for the lower crust (see Section s3.3) at 

the 99% confidence level.  

We also test the effects of the ratio of the transient viscosity to the steady-state 

viscosity (Burgers rheology for the upper mantle). When that ratio is less than 0.1 (e.g., 0.02, 

0.05, and 0.075), the best-fit models with only viscoelastic relaxation fit the data (both the 

near-field and far-field data, in particular, the far-field data) worse than the best-fit model 

with that ratio being 0.1. The data do not allow us to make a distinction between the models 

with that ratio being 0.1 and 0.075, because data misfits are statistically comparable at the 

55.55% confidence level. However, the models with that ratio ≤0.05 fit the data worse than 

the model with that ratio being 0.1 at >95.00% confidence level.  Note that the estimates of 

the steady-state viscosity are not sensitive to the tested ratios of the transient viscosity to the 

steady-state viscosity (similar conclusions apply to the Section S3.3).	

s3.3 Biviscous lower crust and upper mantle  

We consider the cases with Burgers rheology (the ratio of the transient viscosity to the 

steady-state viscosity is fixed at 0.1) for both the lower crust and upper mantle, because 

dislocation creep might occur in both layers. The rheological parameters are presented in the 

Table DR1. Shown in Figure DR10 is misfit to GPS data in the time period 1992-1999, 1999-

2010, and 1992-2010. Shown in Figure DR11 are the distribution of afterslip of the 1992 and 

1999 events.  Shown in Figure DR6 is the model predicted vertical displacements in the first 

two years after the 1992 Landers earthquake. Shown in Figures DR12-DR13 are the near-

field deformation predicted by the best-fit model with poroelastic rebound and viscoelastic 
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relaxation. With additional contribution from stress-driven afterslip, the model predictions 

are shown in Figures DR14-DR15. 

When additional contribution from stress-driven afterslip is considered (Figure DR10-

DR11), the best-fitting steady-state viscosity of the lower crust is ~2×1020 Pa s (Table DR1), 

~5 times of that of the upper mantle. The stress-driven afterslip induces early rapid 

deformation and ends within the first 3 years (Figures DR14-DR15). Viscoelastic relaxation 

in the lower crust and upper mantle induce the slowly decaying but long-lasting 

displacements in the near field.	

When additional contribution from kinematic afterslip is considered (Figure DR10-

DR11), the steady-state viscosity of the lower crust can be ~9×1020 Pa s (Table DR1), an 

order of magnitude larger than that of the upper mantle. That does not indicate that the 

relaxation of the lower crust has not come into play in the first two decades. We believe that 

the role of the derived kinematic afterslip is exaggerated and the effects of viscoelastic 

relaxation in the lower crust are underestimated. That is because: (1) The derived kinematic 

afterslip lasts for at least one decade (in particular for the afterslip associated with the 1992 

event, see Figure DR11) and induces steady-deformation that should be attributed to bulk 

viscoelastic relaxation. (2) The distribution of afterslip is not dictated by the coseismic stress 

loading (especially for the kinematic afterslip of the 1999 Hector Mine event, see Figure 

DR11G). 

We also test the effects of the ratio of the transient viscosity to the steady-state 

viscosity. When that ratio is less than 0.1 (e.g., 0.05 and 0.075) but greater than 0.02, overall, 

the best-fit models with only viscoelastic relaxation fit the data better than the best-fit model 

with that ratio being 0.1, at >94.25% confidence level (The data misfit decreases as that ratio 

decreases until when the ratio is 0.02. When the ratio is 0.05, the model fit the data better at 

the 99.47% confidence level.). The relevant models with smaller values of that ratio fit the 
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near-field data better, but fit the far-field data worse. However, F-test shows that the far-field 

data misfits are statistically comparable at the <71% confidence level, when that ratios are in 

the range from 0.05 to 0.1. The transient viscosity of the lower crust constrained by all the 

1992-2010 data is estimated to be ~1×1019 Pa s, less than 4 times that of the upper mantle. 

The transient viscosity of the lower crust is estimated to be ~1×1018 Pa s and ~3×1018 Pa s 

from the GPS data in the first month and in the first year following the two earthquakes, 

respectively.  These modeling tests, together with other tests in this section, reveal that 

transient deformation in the lower crust is not negligible after the two Mojave earthquakes.	

s3.4 Transient rheology inferred from post-Ridgecrest GPS 

measurements  

To obtain a first estimate of the transient viscosity of the upper mantle, we first use a 

coseismic slip model of the Ridgecrest sequence constrained by GPS and InSAR 

measurement (Kang Wang, personal communications) and our preferred model for the 

Mojave case (the transient and steady-state viscosities are 4×1018 Pa s and 4×1019 Pa s for the 

upper mantle, and 2×1019 Pa s and 2×1020 Pa s for the lower crust, respectively) to predict the 

postseismic displacements in the first month. We find that the model predictions are <10% of 

the observed far-field displacements, suggesting that the transient rheology of the upper 

mantle is perhaps an order of magnitude smaller. We next adjust the transient and steady-

state viscosities of the upper mantle to 3-5×1017 Pa s and 3-5×1018 Pa s, respectively. The 

model predictions fit the far-field data well but still underestimate the near-field data by 

~20%-50% (Figure DR16), which suggests (1) that afterslip is required to remedy the near-

field data misfit and (2) that the transient viscosity of the upper mantle should be on the order 

of  1017 Pa s in the first year.	

To obtain more precise estimates of the transient viscosity, we use the (12-month) 

post-Ridgecrest GPS time series to constrain viscoelastic relaxation models (Burgers 
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rheology for both the lower crust and upper mantle; the ratios of the transient viscosity to 

steady-state viscosity are 0.05 and 0.1). Based on the NGL (SOPAC) dataset, the transient 

viscosities of the lower crust and upper mantle are estimated to be 1-4×1018 Pa s (1-3×1018 Pa 

s) and ~4×1017 Pa s (~5×1017 Pa s), respectively. The steady-state viscosities are an order of 

magnitude larger, but are not well constrained by GPS data spanning less than 1 year. 

Therefore, we fix the steady-state viscosities at the optimal values derived from the 18-years 

of GPS data for the Mojave case, assuming that the “long-term” rheological structures should 

be consistent between the central and southern ECSZ.  In that case, the optimal transient 

viscosity of the upper mantle is ~3×1017 Pa s constrained by the data in the first month, ~33% 

of the corresponding value (~1×1018 Pa s) constrained by all the data in the first year. 	

To assess whether the estimates of viscosity for the Ridgecrest case are compatible 

with those of the Mojave earthquakes, we use 30 days of post-Landers and post-Hector Mine 

GPS data to constrain viscoelastic relaxation models with Burgers rheology for the upper 

mantle beneath the Mojave region (the ratios of the transient viscosity to steady-state 

viscosity are 0.05, 0.075, and 0.1). The transient viscosity of the upper mantle is estimated in 

the range ~5×1017-1×1018 Pa s. When the GPS data in the first year are considered, the 

transient viscosity of the upper mantle is estimated to be 1×1018-2×1018 Pa s (Burgers 

rheology) and 3×1018 Pa s (If Maxwell rheology is implemented instead, the transient 

viscosity can be better constrained, because only one parameter is required for each 

viscoelastic layer). Furthermore, the optimal transient viscosity of the upper mantle is 

~4×1017 Pa s and ~9×1017 Pa s in the first month and first year, respectively, if the steady-

state viscosities are fixed at the optimal values derived from the 18-year GPS data. Some of 

the previous studies considered primarily near-field GPS and InSAR data within the first 3 

years (Pollitz et al., 2001; Pollitz, 2003). Because of insufficient far-field data constraints, the 

transient viscosity of the upper mantle is not well constrained, but is estimated to be on the 
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order of 1017 Pa s. The data used in our test include more far-field GPS data, which provide 

robust constraint on the upper mantle rheology. We therefore believe that our estimates of the 

short-term upper mantle rheology are reliable. 	

To sum up, based on the data in the first 1 year, the transient rheology of the upper 

mantle beneath the Ridgecrest region is consistent with that of the upper mantle beneath the 

southern Mojave.  However, because that (1) depth-dependent rheology also gives time-

dependent deformation and (2) the estimate of the transient viscosity exhibits a time-

dependent pattern (the estimated viscosity increases with time, as the time span of 

postseismic data lengthens), more and better post-Ridgecrest GPS data are required to obtain 

conclusive inferences regarding the transient rheology of the upper mantle beneath the 

Ridgecrest region.	

s4. Supplementary Table 

Table DR1 | Misfit to the data 
 

Dataa  Time  Lower 
crust 

a  Viscosity 
(Pa s) 

Upper 
mante 

a  Viscosity 
(Pa s) 

       Misfit 
(WRSS|Chi2)b 

CMM4 
1992‐
1999 

Maxwell 

0.0  3.0×1019 

Burgers 

0.7  3.0×1019  9394.25  | 3.19c 

0.0  1.0×1021  0.7  3.0×1019  6005.87  | 2.06d 

0.0  7.0×1019  0.7  2.0×1019  9096.22  | 3.09e 

Burgers 

0.7  6.0×1019 

Burgers 

0.7  4.0×1019  9232.09 | 3.14c 

0.7  7.0×1020  0.7  4.0×1019  5555.76  | 1.91d 

0.7  1.0×1020  0.7  3.0×1019   8987.83  | 3.06e 

NGL 
1999‐
2010 

Maxwell 

0.0  7.0×1019 

Burgers 

0.7  3.0×1019  77508.29  | 1.30 

0.0  1.0×1020  0.7  3.0×1019  69237.24  | 1.16 

0.0  1.0×1020  0.7  4.0×1019  73600.13  | 1.24 

Burgers 

0.7  8.0×1019 

Burgers 

0.7  4.0×1019  74336.40 | 1.25 

0.7  9.0×1020  0.7  4.0×1019  68408.62 | 1.15 

0.7  4.0×1020  0.7  4.0×1019   72572.18 | 1.22 

CMM4 
+NGL 

1999‐
2010 

Maxwell 

0.0  7.0×1019 

Burgers 

0.7  3.0×1019  79881.34  | 1.32 

0.0  1.0×1020  0.7  3.0×1019  70985.80  | 1.17 

0.0  1.0×1020  0.7  4.0×1019  75558.32  | 1.25 

Burgers 

0.7  8.0×1019 

Burgers 

0.7  4.0×1019  76091.37 | 1.25 

0.7  9.0×1020  0.7  4.0×1019  69990.63  | 1.15 

0.7  4.0×1020  0.7  4.0×1019  74440.08 | 1.23 
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CMM4 
+NGL 

1992‐
2010 

Maxwell 

0.0  6.0×1019 

Burgers 

0.7  3.0×1019  90808.59  | 1.43 

0.0  1.0×1020  0.7  3.0×1019  77084.00  | 1.21 

0.0  1.0×1020  0.7  4.0×1019  88727.39  | 1.39 

Burgers 

0.7  8.0×1019 

Burgers 

0.7  4.0×1019  85390.44  | 1.34 

0.7  9.0×1020  0.7  4.0×1019  75573.06  | 1.19 

0.7  2.0×1020  0.7  4.0×1019  84946.31  | 1.33 

 
       a The number of data is 2949, 59515, 60694, and 63643 for the 1992-1999 CMM4, 
1999-2010 NGL, 1999-2010 CMM4+NGL, and 1992-2010 CMM4+NGL GPS time series. 

b Green and yellow shaded rows indicate the models with the same bulk rheology but 
constrained by different datasets. Maxwell and Burgers rheologies have 1 and 3 unknown 
parameters, respectively. Stress-driven afterslip inversion has 2 unknowns. Kinematic 
afterslip inversion for each event has ~15 well-resolved parameters. For the Burgers rheology, 
the ratio of the transient viscosity to the steady-state viscosity is 0.1. 

c Viscoelastic relaxation and shallow poroelastic rebound. The same applies to the first 
entry of the three entries for each modeling test. So do the second and third entries in d and e. 

d Kinematic afterslip and viscoelastic relaxation (+shallow poroelastic rebound). 
       e Stress-driven afterslip and viscoelastic relaxation (+shallow poroelastic rebound). 

Figure Captions	
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Figure DR1 | Map showing the distribution of (A) post-Landers (1992-1999) and (B) post-Hector 
Mine (1999-2010) GPS sites. In (A), green circles and blue squares indicate the near- and far-field 
CMM4 campaign GPS sites, respectively, and red diamonds indicate CMM4 cGPS sites. In (B), red 
circles, blue squares, and green squares indicate the near-field SCIGN cGPS, far-field SCIGN cGPS, 
and near-field CMM4 campaign GPS sites, respectively.	
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Figure DR2 | Postseismic displacement time series from the NGL solution for SCIGN cGPS sites 
(1999-2010). The blue dots are the position time series less the originally estimated interseismic 
motion as described by the NGL velocity estimate. The red dots are based on the new realizations of 
the secular velocities (Liu et al., 2015).	
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Figure DR3 | Observed and modeled coseismic displacements of the (A) Landers and (B) Hector 
Mine earthquakes. (A) Red vectors are the observed coseismic displacements; blue and green vectors 
are the modeled displacements in a layered Earth model, based on coseismic slip model in 
homogeneous half-space (Xu et al., 2016)  and a modified slip model in the same layered Earth model 
(Fialko, 2004b), respectively. (B) Blue and green vectors are the modeled displacements in a layered 
Earth model, based on coseismic slip model in homogeneous half-space (Xu et al., 2016)  and a 
modified slip model in the same layered Earth model (Simons et al., 2002), respectively.	
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Figure DR4 | Summary of elastic models. Elastic moduli (red and blue lines indicate the bulk and 
shear modulus, respectively) as a function of depth for JH1998 Mojave (Jones and Helmberger, 1998) 
(solid lines), CVM4 Mojave (dotted lines), and Pollitz Mojave (Pollitz, 2003, 2015) (dashed lines).  	
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Figure DR5 | (A) Horizontal displacements in the first two years resulting from poroelastic rebound 
only in the upper 2.5 km (blue vectors) and throughout the entire upper crust (red vectors). (B-C) Data 
misfit (WRSS, weighted residual sum of squares) to the horizontal component for the (B) NGL GPS 
and (C) both CMM4 and NGL GPS dataset as a function of hydraulic diffusivity. Green dashed and 
solid lines indicate the data misfit for the best-fit viscoelastic relaxation model with Maxwell and 
Burgers rheology, respectively. The squares and circles show how the data misfit for viscoelastic 
relaxation model with Maxwell and Burgers rheology, respectively, depend on the additional 
contribution from poroelastic rebound.  Blue and red symbols indicate the data misfit when additional 
contributions from poroelastic rebound at the shallow 0-2.5 km and 0-16 km depths are considered, 
respectively.  
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Figure DR6 | Observed and modeled vertical displacements (1992-1994). Color contours are for 
the modeled vertical deformation field due to (A) shallow poroelastic rebound, (B) stress-driven 
afterslip, (C) viscoelastic relaxation, (D) the sum of (B) and (C), and (E) sum of the (A), (B), and (C). 
The vectors are vertical displacements from NGL solution of SCIGN cGPS time series. 
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Figure DR7 | Observed and modeled vertical displacements. (A-B): post-Landers in the time 
period 1992-1994. (C-D): post-Hector Mine in the time period 1999-2002. Model predictions are 
from shallow poroelastic rebound based on coseismic slip models of (A) Fialko (2004b), (B) Xu et al. 
(2016), (C) Simons et al. (2002), and (D) Xu et al. (2016). 
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Figure DR8 | Model misfit to data (Maxwell rheology for the lower crust and Burgers rheology for the 
upper mantle). Data misfit to (A) post-Landers CMM4 GPS, (B) post-Hector Mine GPS, and (C) all 
the GPS data. Horizontal and vertical axes show the steady-state viscosity of the upper mantle (ηUM) 
and lower crust (ηLC), respectively. The colored lines show the statistical 95% confidence regions of 
the models with respect to the optimal models marked by the color-coded diamonds with only 
viscoelastic relaxation (Model 1, red contours), with additional contribution from stress-driven 
afterslip (Model 2, blue contours), and with additional contribution from kinematic afterslip (Model 3, 
green contours). The yellow diamond and contour are for Model 2 only constrained by vertical GPS 
data. The black diamond marks the optimal viscosities without afterslip and without considering the 
interseismic velocity correction (Liu et al., 2015). 
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Figure DR9 | Distribution of afterslip for the 1992 Landers and 1999 Hector Mine earthquakes from 
joint inversion of all the data for afterslip and viscoelastic relaxation (Maxwell rheology for the lower 
crust and Burgers rheology for the upper mantle). 1992 Landers earthquake: (A) Coseismic slip, (B) 
Kinematic afterslip (1992-1997), (C) Stress-driven deep afterslip (1992-1997), and (D) temporal 
evolution of afterslip at the selected patch that is marked by white rectangles in (B) and (C).  1999 
Hector Mine earthquake: (E-F) Coseismic slip, (G) Kinematic afterslip (1999-2006), and (H) Stress-
driven deep afterslip (1999-2005).	
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Figure DR10 | Model misfit to data (Burgers rheology for the lower crust and upper mantle). Data 
misfit to (A) post-Landers CMM4 GPS, (B) post-Hector Mine GPS, and (C) all the GPS data. 
Horizontal and vertical axes show the steady-state viscosity of the upper mantle (ηUM) and lower crust 
(ηLC), respectively. The colored lines show the statistical 95% confidence regions of the models with 
respect to the optimal models marked by the color-coded diamonds with only viscoelastic relaxation 
(Model 1, red contours), with additional contribution from stress-driven afterslip (Model 2, blue 
contours), and with additional contribution from kinematic afterslip (Model 3, green contours). The 
yellow diamond and contour are for Model 2 only constrained by vertical GPS data. The black 
diamond marks the optimal viscosities without afterslip and without considering the interseismic 
velocity correction (Liu et al., 2015).	
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Figure DR11 | Distribution of afterslip for the 1992 Landers and 1999 Hector Mine earthquakes from 
joint inversion of all the data for afterslip and viscoelastic relaxation (Burgers rheology for the lower 
crust and upper mantle). 1992 Landers earthquake: (A) Coseismic slip, (B) Kinematic afterslip (1992-
1997), (C) Stress-driven deep afterslip (1992-1997), and (D) temporal evolution of afterslip at the 
selected patch that is marked by white rectangles in (B) and (C).  1999 Hector Mine earthquake: (E-F) 
Coseismic slip, (G) Kinematic afterslip (1999-2006), and (H) Stress-driven deep afterslip (1999-2005).	
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Figure DR12 | Observed (blue dots) and modeled (red dots) displacements for the USGS Emerson 
Transect in the time period 1992-2004. Model predictions are from viscoelastic relaxation (Burgers 
rheology).	
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Figure DR13 | Observed (blue dots) and modeled (red dots) displacements for the post-Hector Mine 
GPS time series. Other details are the same as Figure DR12.	
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Figure DR14 | Observed time series (blue dots) at the USGS Emerson Transect in the time period 
1992-2004, model predictions from stress-driven afterslip (green lines) and viscoelastic relaxation 
(purple lines for the case with Burgers rheology for the lower crust and upper mantle), and the sum of 
model predictions from afterslip and viscoelastic relaxation (red lines).	
	



  38

	
Figure DR15 | Post-Hector Mine GPS time series (blue dots), model predictions from stress-driven 
afterslip (green lines) and viscoelastic relaxation (purple lines for the case with Burgers rheology for 
the lower crust and upper mantle), and the sum of model predictions from afterslip and viscoelastic 
relaxation (red lines).	
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Figure DR16 | Map showing the observed 30 days post-Ridgecrest displacement (blue vectors tipped 
with 70% confidence ellipses) and model predicted 30 days (red vectors) displacements from only 
mantle relaxation. The transient and steady-state viscosities of the upper mantle are 2×1017 Pa s and 
2×1018 Pa s, respectively. The observed displacements are not shown for some GPS sites that have no 
post-Ridgecrest observations. Note the differences in the scales of the vectors. Thick black lines show 
the surface rupture of the 2019 Ridgecrest sequence. 
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