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Appendix I – Contextural geological map and stratum contour construction on 
base of Clachtoll Megablock 
 

 

 

Figure I.1) Larger context map of geology. Red lines marked A-A’ and B-B’ denote the lines of section used to 

construct the cross sections found in Fig. 1c of main paper. Location of northern margin of Laxfordian CSZ 

after Attfield (1987). 



 
Figure II.2) Image on left shows structural contours (solid black lines) drawn on the basal contact of 

the Clachtoll Megablock. The topographic contours taken from the DEM are 2m spacing. Image on 

left shows cross-section view A-A’. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix II – Additional field photographs of Group B and C sediment-filled 

fractures 

 

 
Figure II.1) Map of sediment-filled fractures and location of Figs B2-4. 

 



 

Figure II.2) Forcefully intruded Group B sediment filled fractures on the west side of the Clachtoll 

Megablock. (A) Fracture containing stoped wall raft, (B) Fracture wall parallel banding with 

sediment fill. 



 

Figure II.3) Forcefully intruded Group B type sediment filled fractures on the west side of the 

Clachtoll Megablock, showing complex networks and occasional laminations parallel to fracture wall. 

Note that the central lower image is Fig 3b in the main paper. 

 



 

Figure II.4) Wide aperture Group C type fracture on the west side of the Clachtoll megablock with 

several smaller Group C type injections coming off it. These fractures appear to follow a set of 

(apparently) conjugate, non-sediment filled fractures. Note that the upper right image is Fig.3c in the 

main paper. 

 

 

 

 

 

 

 

 



Appendix III –  The solid collision equations 

 

I.1. Model/hypothesis 

 

Our hypothesis is that the Clachtoll Megablock (CM) represents a fallen block that impacted fluid-

laden sediment causing a transient, dynamic pressure surge of that fluid and the consequent 

hydrofracturing of the overlying block. The impact-generated stress waves would also have reached 

the top surface of the block, generating tensile fractures there, but to a lesser extent than at the base (as 

observed), where the additional fluid pressure aided the tensile fracturing and the forceful injection of 

wet sediment. The top fractures were later gravitationally filled by sediment as the block was 

progressively buried (see Fig. 4c in the main paper). Stratum contours (Appendix I) suggest that the 

block has a flat or gently curviplanar base.  

The premise that we wish to explore is that impact led to injection of wet sediments into the 

fallen block of gneiss. This is dependent on the impact generating sufficient overpressure to overcome 

the tensile strength of the fallen block. If this process is mechanically feasible, we then wish to 

determine the minimum height from which the block had to fall to achieve this and whether this is 

geologically plausible for the terrestrial Stoer Group basin setting.   

 

II.2. Problem outline and assumptions 

 

In order to simplify the problem to allow numerical calculations to be undertaken, several simplifying 

assumptions are necessary. Firstly, we assume a simple, vertical free fall of the block, neglecting 

rotations or translations that have occurred in addition to the vertical displacement. We also assume the 

block itself to be homogeneous. Finally, we assume a flat impact of the block, where all of the 

underlying surface impacts the ground at the same time. 

Impact consequences can be analysed globally (i.e. in terms of the conversion of kinetic energy 

from whole colliding mass) or locally (i.e. in terms of waves generated in the vicinity of the object 

boundaries immediately after impact). In terms of dynamic fracturing, initiation and propagation will 

occur at a local scale within short time intervals, in the immediate vicinity of the impact surface. Thus 

the second approach is applied here. 

Usually such an analysis is used in cases where both objects are solid elastic and have similar 

impedance. Here we extend the analysis to collision of media with contrasting properties – elastic 

stress wave on the impacting object and acoustic pressure waves on the target medium. Since the 



sandstone matrix of the breccia-conglomerate is assumed to be saturated – as it has just been deposited 

- we describe the propagation of an acoustic wave using the properties of water incompressibility and 

density. 

At the time of impact, we can reduce analysis to one dimension – considering any point where 

the waves diffracted from the outer borders of the object, and propagating laterally, have not yet 

arrived. For a megablock of linear dimension 15 m, the centre of the impact surface will be reached by 

lateral waves only at times of the order of ൎ 1 ms after impact. Later developments of the stress 

wavefield will be more complex, but after about 1 ms, dynamic tension fractures will already have 

nucleated and propagated up to a few metres within the boulder (Fig. 4c, main paper). 

Our analysis also considers sections of the impacting object whose surface is parallel to the 

ground, and we assume that the ground is relatively planar. Under those assumptions, the elastic strain 

within the block, immediately after impact, will be reduced to shortening parallel to the vertical (fall) 

direction. The Poisson expansion is suppressed during this initial one-dimensional (vertical) 

compression, therefore there is no lateral dilation. This results in an additional compressive stress term 

which will work against the tensile fracture, and this should be accounted for in the calculation.  Both 

stress and pressure waves, within the impacting magablock and underlying saturated sediment, 

respectively, will propagate away from the impact surface at a velocity equivalent to typical P-waves 

in the rock (ca. 5000 m/s) and acoustic waves in water (ca. 1500 m/s). 

 

III.3. Equations describing the solid collision 

 

We start our analysis with the classic problem of the collision between two elastic solid bodies of 

identical impedance (Fig. III.1, upper diagram). In the case of a rockfall, this may equate to a rock 

boulder falling on a solid rock surface of the same composition.  

It is known that the initial wave due to the impact will produce a constant displacement 

gradient  

ݑ߲
ݖ߲

ൌ
െݒ௕
௉ܸ
  (C1) 

in the target object, within the thickness reached by the propagating wave, i.e., ݖ௖ ൌ ௉ܸݐ at time ݐ after 

impact. Here ݒ௕ is the displacement velocity of the target surface due to impact. If the projectile and 

the target share the same impedance, then ݒ௕ is half the projectile velocity. ௉ܸ is the longitudinal (P) 

wave velocity, ݑ is the particle displacement perpendicular to the boundary with respect to the 

unstrained position, and ݖ is the collision direction (vertical for a falling block). Equation (C1) can be 



readily derived: displacement of the boundary at time ݐ after impact is given by ݑ ൌ ௕ݒ ൈ  Away from .ݐ

the boundary, points will only start to move when the wave from the impact reaches them, at a time 

ᇱݐ ൌ ݖ ௉ܸ⁄ . The displacement at any point ݖ will therefore be ݑሺݖሻ ൌ ௕ݒ ൈ ሺݐ െ ᇱሻݐ ൌ ௕ݒ ቀݐ െ
௭

௏ು
ቁ. This 

results in the displacement gradient డ௨
డ௭
ൌ

ି௩್
௏ು

. 

Using positive compressive stress convention, the stress due to unidirectional compression 

along ݖ is 

௭௭ߪ ൌ െሺߣ ൅ ሻߤ2
ݑ߲
ݖ߲

ൌ ሺߣ ൅ ሻߤ2
௕ݒ
௣ܸ
  (C2) 

And, in the absence of horizontal strain, 
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ݑ߲
ݖ߲

ൌ ߣ
௕ݒ
௉ܸ
ൌ

ߣ
ߣ ൅ ߤ2

௭௭ߪ , ሺ3ܥሻ  (C3) 

where ߤ ,ߣ are Lame’s parameters for an isotropic elastic solid. Generation of fractures may then be 

diagnosed as a function of ݒ௕ using the two stress components and rock tension or shear fracturing 

stress, or, assuming pre-existing cracks, using material toughness values. 

 

III.4. Matching traction and displacement for mixed media collision 

 

We will treat the water-saturated sediment as a fluid with the properties of water. Matching traction 

and displacement continuity produces the well-known result that traction perpendicular to the impact 

boundary (ߪ௭௭ for the solid, pressure ܲ for the water saturated sediment) will be the same, i.e. ߪ௭௭ ൌ ܲ. 

However, if the impedance of the block (projectile) and the sediment (target) are unequal, the 

boundary displacements with respect to unstrained conditions of either objects will be unequal. 

Therefore, instead of a unique boundary velocity ݒ௕, we should define ݒ௥ as the boundary deflection 

with respect to the unstrained rock of the boulder, and ݒ௪ as the boundary deflection with respect to 

the unstrained sediment (note that ݒ௥ and ݒ௪ are in different kinematic referentials). In terms of wave 

propagation analysis, ݒ௥ corresponds to the reflected particle velocity inside the boulder, and ݒ௪ 

corresponds to the transmitted particle velocity in the sediment. 

After impact (but before any rebound), the boundary will be joined, so we have to match the 

block falling velocity ݒ௜ and the respective boundary velocities in each medium referential such that: 

|௜ݒ| ൌ |௪ݒ| ൅  ௥| (Fig. III.1, lower diagram). Adopting a referential in each media which is pointing awayݒ|

from the boundary (positive z up in the block, positive z down in the sediment) and recalling that ݒ௪, 

௜ݒ ௥ are defined relative to the unstrained positions of both media, we can writeݒ ൌ ௪ݒ ൅ ௥ݒ  



 

 

Figure III.1. Explanation of the boundary conditions between water saturated sediment and the gneiss 

block. 

 

Proceeding in similar fashion as for equations (C2 and C3), we can equate pressure in the 

unconsolidated sediment to 

ܲ ൌ ܭ
௭ݑ߲
ݖ߲

ൌ ܭ
௪ݒ
௪ܸ
  (C4) 

where ܭ is water incompressibility (bulk modulus) and ௪ܸ is the pressure wave velocity in the water-

saturated sediment.  Now matching ܲ and ߪ௭௭ for traction continuity, we obtain 

ܲ ൌ ௭௭ߪ ൌ
ܭ

௪ܸ
௪ݒ ൌ

ሺߣ ൅ ሻߤ2

௉ܸ
௥ݒ   (C5) 

This equates to 

௪ܼ௪ݒ ൌ ௥ܼ௥ݒ   (C6) 

where we define the specific impedances ܼ such that ܼ௪ ൌ ඥߩ௪ܭ ൌ ܭ ௪ܸ⁄  and ܼ௥ ൌ ඥߩ௥ሺߣ ൅ ሻߤ2 ൌ
ఒାଶఓ

௏ು
 

and the wave velocities as ௉ܸ ൌ ට
ఒାଶఓ

ఘೝ
 and ௪ܸ ൌ ට

௄

ఘೢ
 where ߩ௥ and ߩ௪ are mass densities for rock and 

water respectively. 

Using the  ݒ௜ ൌ ௪ݒ ൅  ௥, equation (C5) and the impedances, we can now derive a direct relationݒ

between P and impact velocity vi: 

Material A 

Material A 

Material A 

Material B 

௜ݒ  

௜ݒ  
௥ݒ  

 ௪ݒ

1
2
 ௕ݒ

1
2
 ௕ݒ

௜ݒ ൌ  ௕ݒ

 

|௜ݒ| ൌ |௪ݒ| ൅  |௥ݒ|

௜ݒ ൌ ௪ݒ ൅ ௥ݒ  
 

 



ܲ ൌ ௭௭ߪ ൌ ܼ௪
ܼ௥

ܼ௥ ൅ ܼ௪
௜ݒ ൌ

ܼ௪ܼ௥
ܼ௥ ൅ ܼ௪

 ௜ݒ

ܲ ൌ
1

ܼ௥
ܼ௪ܼ௥

൅
ܼ௪
ܼ௪ܼ௥

 ௜ݒ

ܲ ൌ ൬
1
ܼ௪

൅
1
ܼ௥
൰
ିଵ

௜ݒ  

If we now define the harmonic mean of the specific impedances as ߞ ൌ ଵ

ଶ
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 we can write 

௭௭ߪ ൌ ܲ ൌ ௜ݒߞ2  

௫௫ߪ ൌ ௬௬ߪ ൌ
ߣ

ߣ ൅ ߤ2
 ௜ݒߞ2

(C7) 

 

 

III.5. Hydrofracturing criterion 

 

Following impact, the block will compress in the vertical direction and want to expand in the 

horizontal direction. Immediately after impact, particles away from the edges of the block are confined 

by surrounding particles and are therefore unable to undergo this lateral extension, thereby setting up a 

horizontal stress that opposes extension. Extension first occurs at the edges of the block where the 

particles are unconfined, then migrates inwards. This means that the pressure required for 

hydrofracturing to occur should not only exceed the tensile strength of the gneiss, but also the 

horizontal stress. Hence if the dynamic tensile strength of gneiss is T, we can write as a 

hydrofracturing criterion 

ܲ ൐ ܶ ൅  ௫௫ߪ (C8) 

which after substitution from equation (C7) results in  

௜ݒߞ2 ൐ ௖ߪ ൅
ߣ

ߣ ൅ ߤ2
௜ݒߞ2   (C9) 

If we single out vi we can now obtain an expression for the minimum impact velocity to generate 

hydrofracturing: 

 

(C10) 



Once the value of the initial velocity, ݒ௜ has been obtained, this value can be put into the free fall 

equation  

௜ݒ ൌ ඥ2݄݃  (C11) 

where ݄ is the fall height and ݃ is acceleration due to gravity, to determine the minimum height the 

block must fall from to provide a pressure great enough to overcome the tensile strength and the 

horizontal stress. 

 



Appendix IV – Calculation results 

 

Brazilian disc testing was used to find the tensile strength of the gneiss (Appendix V). This accounts 

for just one parameter required to ultimately calculate the fall height of the block. In addition, the shear 

modulus (ߤ), the first Lame parameter (ߣ), and the P wave velocity ( ௉ܸ) of the gneiss must be known, 

along with the acoustic wave velocity ( ௪ܸ) and the bulk modulus (ܭ) of the liquid substrate, here 

assumed to have the properties of water. The acoustic wave velocity of water is known to be 1500 m/s. 

A value of 2200 MPa for the bulk modulus of water was also easily obtained (Engineering ToolBox 

2004). 

Ascertaining the Lame parameters of the gneiss has proved much more challenging, as it is 

typically only reported for rocks at depth. Ji et al. (2010) report a ߣ value for felsic-intermediate gneiss 

of  25 – 50 GPa at pressures of 600 MPa (20-25 km depth). This value decreases to 11 – 12 GPa at 

surface pressures (Ji et al. 2010, their figure 1c). ߤ is also reported for rocks at depth, and no sources 

were found that allowed a value to be extrapolated to surface pressures. Ji et al. (2010) give a ߤ ⁄ߣ  ratio 

of 1.057 for felsic rocks, or ߤ ൎ  plots in their figures 8 and 9. It was ߣ-ߤ supported by the trend of ,ߣ

therefore decided to let ߤ ൌ  .ߣ

This leaves the P-wave velocity of the gneiss. Once again, this value is reported in the literature 

for rocks at depth. Hall & Al-Haddad (1976) give a ௉ܸ value of 5.28 ± 0.23 km/s for the Lewisian 

gneiss in their ‘Boundary region’, the nearest location to Clachtoll. They also report a velocity gradient 

of ~0.1 km/s/km in the uppermost crust. Levander et al. (1994) report a ௉ܸ of 6.10 – 6.24 km/s 

corrected to 250 MPa at 140 °C, i.e. a depth of ~10 km. Using the velocity gradient of Hall and Al-

Haddad (1976), this extrapolates to 5.10 – 5.24 km/s at the surface, though it may not be reasonable to 

assume that this gradient is linear. Christensen (1965) gives average velocities of 5.1 and 4.8 km/s for 

their gneiss samples 3 and 4 respectively – those which most closely resemble the Lewisian gneiss at 

Clachtoll in terms of mineralogy and grainsize. They also report no clear relationship between P-wave 

velocity and P-wave direction relative to foliation orientation, effectively allowing us to assume the 

gneiss is seismically isotropic. Averaging the values obtained from these sources gives a P-wave 

velocity of 5.1 km/s. 

Another way to obtain a P-wave velocity for the gneiss is to substitute the ߣ and ߤ values into 

the equation ௉ܸ ൌ ට
ఒାଶఓ

ఘ
 using a ߩ value of 2700 kg/m3. 

⇒ ௉ܸ ൌ ඨ
ܽܲܩ12 ൅ 2 ൈ ܽܲܩ12

2700
ൌ 3650݉ ⁄ݏ  

 



Whilst significantly lower than the values in the literature, this does not seem unreasonable for a P-

wave velocity at the surface when compared to the ߣ- ௉ܸ plots in Ji et al.’s (2010, their figure 6). 

In the light of the above, we decided to perform the calculation twice, using ௉ܸ values of both 

5100 m/s and 3650 m/s. ܭ ,ߤ ,ߣ, ௉ܸ and ௪ܸ can be used to find ܼ௪ and ܼ௥, where ܼ௪ ൌ
௄

௏ೢ
 and ܼ௥ ൌ

ఒାଶఓ

௏ು
. 

These values can be used to define the harmonic mean  ߞ ൌ ଵ

ଶ
ቀ
ଵ

௓ೝ
൅

ଵ

௓ೢ
ቁ
ିଵ

 and, once values are known 

for T (the tensile strength of the gneiss), to compute the impact velocity according to (C10): ݒ௜ ൌ
்

ଶ఍ቀଵି
ഊ

ഊశమഋ
ቁ
 

From ݒ௜ and the free-fall equation, we can compute the minimum height from which the block 

must have fallen. The results are shown in Table VI.1.  

For a tensile strength of the gneiss of 9 MPa, and a ௉ܸ value of 3650 m/s, the minimum fall 

height is 5.7 m, or 6.3 m with a ௉ܸ of 5100 m/s. Ultimately, 6 m is a best estimate for the height from 

which the block must fall to generate sufficient overpressure to fracture the gneiss. Given the 

dimensions of the block, it also seems feasible that the block wouldn’t significantly disaggregate over 

such a distance. 

  

Table VI.1. Values of parameters (left side of table) required to calculate the impact velocity and fall 
height of the Clachtoll megablock (right side of table). Values of T were obtained using Brazilian Tests 
(see Appendix E). 

 

 

 

 

 



 

Appendix V –  Brazilian tests 

 

Determining the fall height of the block using the free fall calculation requires the tensile strength of 

the gneiss as an input parameter. In order to ascertain the tensile strength of the specific gneiss from 

the Clachtoll Megablock, Brazilian disc tests were performed on a selection of cores, using the 

methodology outlined in Part 2 of Bieniawski & Hawkes (1978). The test measures the indirect 

uniaxial tensile strength of a specimen. Measuring the indirect strength is important for realistically 

modelling the impact event – it is the downward motion being impeded by impact that results in the 

opening of tensile fractures (indirect), rather than an active pulling apart of the block (direct). 

 

E.1 - Experiment methodology 

1. Apparatus 

 

(i) A pair of steel loading jaws intended to grip a disc-shaped specimen at diametrically-

opposed surfaces (Fig. V.1). 

(ii) A machine appropriate for the application and measurement of compressive loads 

applied to the specimen, preferably with a fitted load/displacement recorder. Here, the 

biaxial loading apparatus in Durham University’s Rock Mechanics Laboratory was 

utilised.  

(iii) A high speed camera was used to verify that rupture initiated in the centre of the 

specimen, not the perimeter. The latter would arise due to edge effects and wouldn’t 

give a true tensile strength. In addition to the high speed camera, a bright lighting set-up 

is required to sufficiently illuminate the specimen, given the high frame rate of the 

camera. 

 



 

Figure V.1. Set-up for loading jaws, specimen and loading cell. Following Bieniawski and Hawkes 

(1978), the critical dimensions are: the radius of curvature of the jaws (1.5 x specimen radius); the 

clearance and length of the guide pins coupling the two jaws (they must not permit rotation of one jaw 

relative to the other out of plane by more than 4 x 10-3 rad); and the width of the jaws (1.1 x specimen 

thickness). 

 

2. Specimens 

 

A compositionally representative sample of the Lewisian gneiss was taken from the hillside 

approximately 100 m southeast of the CM. Four cores with a diameter of 20 mm were taken from the 

sample, two parallel to the foliation of the gneiss, and two perpendicular. These cores were then sliced 

to obtain discs with a thickness varying from 13 to 20 mm. In total, four discs were made with the axes 

of the core running parallel to foliation (P1-P4), and four perpendicular (O1-O4) (Fig. V.2. and Table 

V.1). The remaining core was designated ‘spare’. As required by the method detailed by Bieniawski & 

Hawkes (1978), the cylindrical surfaces were free from tool marks, and irregularities across the 

thickness of the specimen did not exceed 0.025mm. End faces were flat to within 0.25mm and square 

and parallel to within 0.25°. 

 

Table V.1. Specimen orientations (relative to foliation in sample) and dimensions. Each specimen’s 
diameter and length were measured three times using digital callipers to calculate a mean value. 

 

Specimen Diam. 1 Diam. 2 Diam. 3 Diam. Mean Length 1 Length 2 Length 3 Length Mean

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

P1 20.04 20.06 20.05 20.05 15.55 15.51 15.53 15.53

O1 19.97 19.98 19.99 19.98 20.89 20.91 20.90 20.90

P2 20.18 20.15 20.06 20.13 13.56 13.56 13.53 13.55

P4 20.05 20.02 20.07 20.05 18.95 18.89 18.93 18.92

P3 20.04 20.06 20.06 20.05 17.46 17.49 17.45 17.47

O2 19.99 19.98 19.99 19.99 14.42 14.43 14.43 14.43

O4 20.01 19.82 19.77 19.87 15.47 15.41 15.42 15.43

O3 19.99 19.99 19.99 19.99 13.13 13.11 13.17 13.14



3. Procedure 

 

(a) The test specimens were cut and prepared using clean water, then stored in a sealed plastic 

bag until use.  

(b) The loading jaws, with the first specimen in place were squarely positioned in the biaxial 

loading apparatus, such that the load was applied to the specimen diametrally (Fig. V.3). 

Upon inserting the specimen into the jaws, the orientation of its foliation relative to the 

loading direction was recorded (Fig. V.4).  

(c) The high speed camera and appropriate lighting were then set up and the camera focused.  

(d) A continuous load was then applied to each specimen in turn, at a constant rate, until failure 

occurred. The load/displacement recorder was used throughout to precisely determine the 

load at primary fracture. 

(e) After each test, the footage captured by the high speed camera was reviewed to ensure that 

the fracture nucleated in the centre of the specimen (Fig. V.6).  

 

4. Conversion of results to tensile strength 

 

The following formula is used to determine the tensile strength of the specimen: 

 

௧ߪ ൌ ܨ0.636 ⁄ݐܦ  

Where ߪ௧ is tensile strength, ܨ is the load at failure (N), ܦ is the diameter of the specimen (mm) 

and ݐ is the thickness of the specimen (mm). 

 

 



 

Figure V.2. Specimens prepared for testing. (a) Specimens O1 – O4, with cores cut orthogonal to 

foliation in gneiss – circular surface of cylinder displays plane of foliation; (b) Specimens P1 – P4, 

with cores cut parallel to foliation in gneiss – circular surface of cylinder cross-cuts foliation. 

 

 

 

Figure V.3. Apparatus set-up for Brazilian test. Note that although the loading apparatus is capable of 

loading a specimen biaxially, this is unnecessary for performing a Brazilian test, and the specimens 

were only uniaxially loaded. 

 



 

Figure V.4. Specimen loading orientations. Orientations are noted in two parts, each part of which 

can either be parallel or orthogonal. The first part refers to the orientation of the foliation with respect 

to the core cutting direction of the sample, whilst the second part refers to the orientation of the 

foliation with respect to the loading direction. Thus specimens O1 – O4 are all designated 

Orthogonal-Parallel, whilst samples P1 – P4 can either be loaded such that they are Parallel-Parallel 

or Parallel-Orthogonal. 

 

V.2 - Results 

 

1. Calibration 

Prior to testing of the specimens, a known load was applied to the loading cell and jaws and the 

resulting voltage recorded so that a slope for load vs volts could be calculated (Fig. V.5). This 

relationship can then be used to ascertain the load for each test, given the voltage recorded at failure.  

 

 

Figure V.5. Experiment calibration, applying a load of 0 to 2 kN at 0.5 kN intervals yielded a slope of 

342.52. 

 

y = 342.52x ‐ 5.1322
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Load (kN) 0 0.5 1 1.5 2 0
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2. Verification of initial fracture rupture location 

To be sure that a true tensile strength was found, it was necessary to verify that a Mode I fracture 

nucleated in the centre of the test specimen. In order to do this, the high speed camera footage was 

carefully reviewed after each test to identify the location of fracture nucleation. An example of images 

from this process, for each of the three possible specimen orientations, is shown in Figure V.6. 

Example (A) is of interest because it contains a pre-existing weakness oriented approximately 

perpendicular to both the foliation and the loading direction. Fracturing did initially occur in the centre 

of the specimen, but was immediately followed by fracturing around the edges of the sample, in the 

vicinity of, and parallel to this existing weakness.  

Also of note, was the difference in the fracture sets generated in specimen P1 and P4. Both 

specimens were oriented parallel-parallel, but whilst P1 failed along multiple parallel fractures, P4 

failed along one, centrally located, discrete fracture (Fig. V.7). Inspection of the specimens indicates 

that this difference in failure behaviour is likely due to the relative abundance of micaceous minerals in 

P1, defining numerous planes of anisotropy when compared to P4. 

 

3. Results and conversion to force and stress 

The initial results of the Brazilian tests are shown in Table V.2. Two steps were required to convert 

these results to tensile strength. The first step uses the results of the experiment calibration to convert 

the recorded voltages to force, using the following equation (multiplying by 10ଷ converts from kN to 

N): 

ܨ ൌ ݁݌݋݈ݏ ൈ ሺܸ݇ܽ݁݌ െ ሻܸ݋ݎ݁ݖ ൈ 10ଷ 

The second step uses the equation outlined in the experimental methodology to convert from force to 

stress: 

ߪ ൌ ܨ0.636 ⁄ݐܦ  

The load vs time graphs recorded during the tests are presented in Figure V.8. The variable 

responses observed in the stress drop curves are considered to be a result of heterogeneities in fabric 

spacing, mineral modalities and grain size within the specimens, rather than being due to specimen 

orientation or experimental effects. It is expected that with a larger sample size, patterns would emerge 

that would more clearly identify variable responses in relation to the specimen orientation.  

In some cases, after an initial stress drop, taken as the point of failure, stress then continues to 

rise. This is to be expected, given that the specimen should theoretically fail along its weakest layer. It 

then follows that the resulting two halves will each then individually be stronger than the original 

whole, having eliminated the weakest layer. 



 

Figure V.6. High speed camera stills of fracture initiation. (A) shows an example of fracture initiation 

in a parallel-parallel oriented specimen, (B) a parallel-orthogonal oriented specimen, and (C) an 

orthogonal-parallel oriented specimen. The first column shows the specimens in their pre-failure state. 

The second column shows the frame recorded in which fracturing is first observed, denoted by the 

white arrows. Here, specimen (A) has three white arrows, highlighting a diffuse whitening of the 

sample in specific localities which then formed obvious fractures in one frames time (column 3).  

 

 

 

Figure V.7. High speed camera stills of fracture development in specimens P1 and P4, along with 

photos of the specimens after the experiment. P1 clearly shows fracturing along numerous parallel 

fractures, whilst P4 failed along one main foliation parallel fracture. 

 

 

 

 



Table V.2. Brazilian test results. // denotes a parallel-parallel specimen orientation, T a parallel-
orthogonal orientation, and – an orthogonal-parallel orientation. 

 

 

The mean tensile strength was calculated for each of the three possible specimen orientations (Table 

V.3).  

As expected, the parallel-parallel specimens had the lowest tensile strength, being optimally 

oriented to form fractures parallel to foliation. The orthogonal-parallel specimens are, in our view, the 

most accurate representation of the CM, with fractures forming parallel to the maximum principal 

stress, but orthogonal to the foliation. It was therefore initially decided to input this measurement into 

the fall height calculation. However, given the similarity in mean tensile strength of the orthogonal-

parallel and parallel-orthogonal specimens, and their overlap when considering error, it was decided to 

group these specimen orientations so that a result could be used that derived from a larger sample size.  

 

Experiment # Video file Specimen Orientation Diam. Mean Length Mean Zero V Peak V Force Stress

name (mm) (mm) (V) (V) (N) (Mpa)

1 Z01 P1 // 20.05 15.53 0.0131 0.0177 1575.58 3.21566

2 Z02 O1 ‐ 19.98 20.90 0.0164 0.0296 4521.24 6.89284

3 Z03 P2 T 20.13 13.55 0.0148 0.0231 2842.90 6.60751

4 Z04 P4 // 20.05 18.92 0.0124 0.0236 3836.20 6.42148

5 Z05 P3 T 20.05 17.47 0.0136 0.029 5274.78 9.58781

6 Z06 O2 ‐ 19.99 14.43 0.0135 0.0331 6713.35 14.81216

7 ‐ O4 ‐ 19.87 15.43 0.0138 0.0211 2500.38 5.13719

8 Z07 O3 ‐ 19.99 13.14 0.0144 0.0273 4418.48 10.70663



 

Figure V.8. Stress drop curves for each test. Red dots indicate failure of the specimen. Both parallel-

parallel specimens showed relatively minor stress drops at failure. The parallel-orthogonal specimens 

showed more obvious stress drops, whilst the orthogonal-parallel specimens were much more variable 

in their behaviour. 

 

 

 

 



Table V.3. Mean tensile strength calculations. 
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Specimen Stress // T ‐ T and ‐

P1 3.21566 
O1 6.89284  
P2 6.60751  
P4 6.42148 
P3 9.58781  
O2 14.81216  
O4 5.13719  
O3 10.70663  

Mean σ  (Mpa) 4.8186 8.0977 9.3872 8.9574

Standard deviation 2.26685 2.10739 4.29944 3.52460

Mean tensile strength  (MPa) 5 ± 2 8 ± 2 9 ± 4 9 ± 3


