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SUPPLEMENTAL FILE 
40Ar/39Ar Radiometric Dating 

Four samples with dense, crystalline groundmass were collected from the three tholeiitic 
basalt lava flows (one from the basalt of Tennant, one from the basalt of Dry Lake and two from 
the basalt of Hammond Crossing) for dating by the 40Ar/39Ar method. Each sample was crushed 
in a roller mill, washed in an ultrasonic bath, and sieved to the 250–355 μm size fraction. 
Approximately 150 mg of fresh groundmass was separated using a LB-1 Barrier Frantz magnetic 
separator and handpicked to remove undesirable phases (e.g., phenocrysts, glass shards, altered 
groundmass). Groundmass separates were packaged in Cu foil along with Bodie Hills sanidine 
monitor minerals (9.797 Ma, equivalent to Fish Canyon sanidine at 28.106 ± 0.012 Ma; Fleck 
and Calvert, 2016), and enclosed in quartz vials wrapped in 0.5 mm thick Cd foil to shield 
samples from thermal neutrons during irradiation. Samples were irradiated for 1 hour in the 
central thimble of the U.S. Geological Survey TRIGA reactor in Denver, Colorado at a power 
level of 1 MW (Dalrymple et al., 1981). The reactor vessel was rotated continuously and 
oscillated vertically during irradiation to minimize vertical and lateral neutron flux gradients. 

Argon isotopic measurements were conducted at the U.S. Geological Survey in Menlo 
Park, California using a MAP216 single-collector mass spectrometer with a Baur-Signer source 
and a Johnston MM1 electron multiplier. Argon was extracted from Bodie Hills fluence monitor 
sanidines in a single heating step (i.e., total fusion) using a New Wave CO2 laser, whereas Ar 
was extracted from groundmass separates of unknown age in 7–10 temperature steps (typically 
spanning 550–1450°C) using a Mo shielded custom resistance furnace with a Mo crucible. 
Extracted Ar was exposed to a 4 A tungsten filament, -150°C cold finger, and two SAES St-175 
getters (one at 300°C, one at room temperature) to remove active gases. Prior to measurement, 
samples were degassed at 500°C until troublesome gases (e.g., water, nitrogen, hydrocarbons as 
measured by a Granville-Phillips 835 VQM) were reduced to acceptable levels. Instrumental 
mass discrimination was calculated by repeated measurement of air, assuming atmospheric 
40Ar/36Ar = 298.56 ± 0.31 (Lee et al., 2006). Ages were calculated using the decay constants of 
Steiger and Jäger (1977). Uncertainties are reported at 1 unless otherwise stated and include 
propagated uncertainties in counting statistics and J values. Table 1 includes all relevant data for 
the 40Ar/39Ar analyses, and the full age spectra are provided in Figures S1–S4 (pink boxes 
indicate temperature steps used to calculate the plateau and isochron ages, whereas gray boxes 
indicate temperature steps excluded from calculating the plateau and isochron ages). 

Paleomagnetic Analysis 
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Paleomagnetic samples were collected, processed and interpreted from 33 sites (18 from 
the basalt of Tennant, 11 from the basalt of Dry Lake and 4 from the basalt of Hammond 
Crossing) using standard protocols (McElhinny, 1973). Eight, 10-cm-long cores were drilled at 
each site using a portable, hand-held, gasoline-powered, water-cooled, diamond-coring drill and 
were oriented in the field using a sun compass. A 2.5 cm long specimen from each core was 
measured using a cryogenic magnetometer. All specimens were subjected to alternating-field 
(AF) demagnetization to remove secondary components of magnetization. An isothermal 
remanent magnetization resulting from nearby lightning strikes was a significant secondary 
magnetization source for some cores from most sites. The mean characteristic direction of 
remanent magnetization for each site was calculated using peak AF ties of 20–30 mT to generate 
line fits on vector-component diagrams or plane fits on equal-area diagrams. Line fits were 
averaged using conventional Fisher statistics. Some specimens failed to reveal their characteristic 
remanent magnetization through AF demagnetization and instead were fit with great-circle 
planes matching their progressive cleaning behavior. As a result, these sites were calculated 
using the intersection of planes data or a mixture of lines and planes data. Most sites have mean 
directions with 95% confidence limits between 1–3°. Site mean directions of magnetization for 
each group, including 95% confidence limits, are provided in Table S1. 
 
X-Ray Fluorescence Spectrometry and Instrumental Neutron Activation Analysis 

Chemistry was used for correlations and determining if the magmas that fed these 
eruptions are related. Back-arc tholeiitic basalts (also commonly referred to as low-K olivine 
tholeiites or high-Al olivine tholeiites) in northern California have a unique chemical signature 
for each eruption, most likely controlled by degree, depth, and mineral composition of the 
melting metasomatized mantle lithosphere. To characterize these tholeiitic basalts, the major-
oxide and trace-element abundances from 58 representative samples were compiled and 
examined. Of these samples, major-oxide and trace-element chemistry for 39 samples were 
analyzed as part of this study and 19 samples are provided in Donnelly-Nolan (2008). Table S2 
provides a compilation of all samples analyzed as part of this study and from Donnelly-Nolan 
(2008). 

All samples were chipped to ≤5 mm size and altered pieces were removed by hand. 
Samples were analyzed for major-oxide and trace-element abundances by wavelength-dispersive 
X-ray fluorescence (WD-XRF) spectrometry using the methods of Johnson et al. (1999). Fresh 
rock chips (50 g) were powdered in an Al ring mill, diluted with a flux of di-lithium tetraborate 
(Li2B4O7) at a 2:1 ratio of flux to rock and fused into a bead at 1000°C. After cooling, the bead 
was powdered, refused and polished to provide a smooth surface for analysis of 10 major oxide 
and 19 trace elements. Nine of the samples were analyzed by this method on a ThermoARL 
Advant’XP+ sequential XRF spectrometer at the GeoAnalytical Laboratory at Washington State 
University in Pullman, Washington (https://environment.wsu.edu/facilities/geoanalytical-
lab/technical-notes/xrf-method/), whereas seven samples were analyzed by this method on a 
Thermo-ARLPerform’X XRF spectrometer at the Hamilton Analytical Laboratory at Hamilton 
College in Clinton, New York (https://www.hamilton.edu/academics/analytical-
lab/instrumentation). 

Major-oxide analyses of 42 samples (19 from Donnelly-Nolan, 2008) were performed on 
pressed powder pellets by WD-XRF spectrometry at the U.S. Geological Survey Analytical 
Laboratory in Lakewood, Colorado (Taggart et al., 1987). Trace-element abundances were 
analyzed by energy-dispersive X-ray fluorescence (ED-XRF) spectrometry at the U.S. 



Geological Survey in Menlo Park, California (Webb et al., 1990). Precision has been determined 
by repeated analysis of internal standards (Bacon and Druitt, 1988). 

Trace-element abundances for a suite of four samples (from Donnelly-Nolan, 2008) were 
measured by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey in 
Reston, Virginia (Baedecker and McKown, 1987). Duplicate analysis of samples in both the U.S. 
Geological Survey and Washington State University laboratories show comparable accuracy. 
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