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DETAILS OF METHODS 21 

Seismic Data 22 

Twelve post-stack time-migrated seismic reflection profiles are used in this study (Fig. DR1, 23 

DR2). The dataset was acquired in 2011 by Geology Without Limits (GWL) and ION GXT. 24 

Table DR1 provides information about the acquisition parameters and the processing steps 25 

carried out by GWL. 26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

Table DR1. Top) Summary of the 2D long-offset seismic reflection profiles acquisition 36 

parameters; bottom) GWL processing steps used to generate the post-stack time migrated 37 

profiles. 38 

39 

2011 Long-Offset - Acquisition parameters 

Source Streamer Recorder 

Array volume 5680 cu.in Length 10200 m Sampling rate 2.0 ms 

shot interval 50 m Channels 860 Record length 18 sec 

Depth 8 m ± 0.5 m Receiver spacing 12.5 m Filters LC 3 Hz 

Pressure 2000 PSI Depth 9 m ± 0.5 m Filters HC 200 Hz 

Offset min 149.5 m 

Offset max 10500 m 

Processing steps 

segy input and geometry application 

Spherical divergence correction 

Velocity analysis 

Predictive deconvolution 8 ms, 240 ms, wn 1% 

Radon demultiple 

Amplitude balancing 

NMO muting and stacking 

Kirchhoff migration 

BP filter 4-8-100-120 Hz 

Coherent filtering 

Amplitude balancing 
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We converted time migrated profiles into depth using interval velocities derived from GWL 40 

stacking velocities, combined with wide-angle tomographic velocities from Shillington et al. 41 

(2009). A comparison between the two velocity trends shows that velocities above basement 42 

reflection are similar, but stacking velocities are widespread across the study region and they 43 

better follow geological variations across seismic sections. Below basement, stacking velocities 44 

have a single, low-velocity, and linearly increasing trend, whereas wide-angle data show faster 45 

velocity trends with more realistic gradient changes, making them more reliable at depths below 46 

basement. 47 

Velocity model creation was performed on Petrel 2015 software. Seismically interpreted 48 

horizons, corresponding to main acoustic impedance contrasts, were used to define a four-layer 49 

model. Each layer was defined by a V0 velocity (top layer velocity) representing the averaged 50 

stacking/wide-angle velocities along the layer-bounding horizons. A mean velocity gradient was 51 

estimated between top and bottom layer velocities and applied to the model. Further information 52 

about the velocity model creation, and time-depth conversion steps is given by Monteleone et al. 53 

(2019). 54 

55 

Magnetic Anomaly Data 56 

We used the Earth Magnetic Anomaly Grid (EMAG2-v3, www.NOAA.gov) over the EBSB 57 

region (Fig. DR2), which is specified as a 2-arc-minute resolution grid of the total intensity 58 

magnetic anomaly at an altitude of 4 km above mean sea level, and it is compiled from satellite, 59 

marine, aero-magnetic and ground magnetic surveys (Maus et al., 2009; Meyer et al., 2017). 60 

A reduction-to-pole (RTP) transform was applied to the magnetic anomaly grid. RTP reduces the 61 

magnetic anomalies to the pole and corrects for variations in inclination and declination over the 62 
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83 

study area (Baranov, 1957). Declination, inclination, and magnitude of the modern Earth’s 

magnetic field were taken according to IGRF field (Thébault et al., 2015). RTP was applied to 

the total intensity magnetic map using a declination of 6° and an inclination of 61° at the center 

of the EBSB. 

Magnetic Anomaly Modelling 

Inverse modeling of magnetic anomalies is generally used when well-defined constraints are 

available (e.g., Parker and Huestis, 1974; Russell and Whitmarsh, 2003). Such inverse models 

result in calculated anomalies that match closely those observed, including those resulting from 

3D effects, and inverse models of 2D profiles will not normally match at profile crossings. To 

avoid over-fitting the data, and to ensure that models of crossing profiles are consistent with each 

other, we use a forward modeling approach. Due to the inherent non-uniqueness of such forward 

models, we kept them simple and made no attempt to produce perfect fits of the observed 

anomalies. Such a forward modeling approach has been used commonly along continental 

margins elsewhere (e.g., Bronner et al., 2011; Rippington et al., 2015). 

Forward modelling was undertaken using Geosoft software, Oasis Montaj V9.4 along the seismic 

profiles. These models were built from SEG-Y files of the seismic data and modelled against the 

gridded potential field data sampled along the corresponding sections. Our 2D models assume 

that there are no variations perpendicular to the profiles. However, because the observed 

anomaly results from 3D effects, we include the anomaly variations within about 15 km either 

side of the magnetic profiles (grey bands; Fig. DR2-DR7). The choice of a 15 km range is due to 

the high geological variability perpendicular to the magnetic profiles. Ranges > 15 km would 84 
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introduce anomaly trends from different crustal structures domains, especially along the NW-SE-

trending profiles. 

Magnetic anomaly profiles were extracted from the RTP EMAG2-v3 grid, and used to 

complement seismic sections (Fig. DR2-DR7). Modelling was constrained by the top basement 

reflection interpreted from seismic data. Because the sedimentary cover has a very low 

magnetization in the Black Sea region (e.g., Ross, 1978), modelling was done considering the 

upper boundary of the magnetized layer to coincide with the top basement. Crustal layers and 

magmatic bodies modelled along the top basement were assumed to have attained their 

magnetization during the Late Cretaceous and/or Early Cenozoic (e.g., Nikishin et al., 2015) at 

approximately their present latitude, so no paleo-latitude correction was applied in this study. No 

susceptibility data are available for the central EBSB, and little information is available from 

values of magnetic susceptibility of adjacent onshore samples (e.g., Rangin et al., 2002; 

Hippolyte et al., 2010). Thus, we were guided by average values of magnetization estimated for 

different type of magnetized rocks (e.g., Hunt et al., 1995). 

We started with the simplest possible model characterized by a non-magnetized sedimentary 

layer and a uniformly and weakly-magnetized crustal layer (0.05 A/m). For crustal thickness (top 

basement to Moho depth), we used results from both wide-angle data (Shillington et al., 2009) 

and gravity modelling (Graham et al., 2013). Studies of the Curie temperature (578° C - 

temperature above which magnetite loses its magnetic properties) in the Black Sea region show 

that the Curie depth is reached mainly below Moho but sometimes above it, in a depth range of 

24-36 km (e.g., Starostenko et al., 2014; Aydin et al., 2005; Maden, 2013). Since we are mostly 

concerned with regions where the Moho is shallower than 24 km, we assumed in this initial 

model that all the EBSB crust is magnetized. 107 
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A crustal magnetization of 0.05 A/m had a limited contribution to the calculated anomaly and the 

observed anomaly was mostly determined by higher magnetizations near the top of basement. 

Magnetic modeling is usually performed either assuming a fixed value of magnetization and a 

variable thickness for the magnetized layer, or a fixed layer thickness and variable magnetization 

intensities along it (e.g., Banerjee, 1984). In the EBSB, there are no available independent 

constraints on the thickness or the intensity of magnetic sources. Our strategy was to find a 

simple model that could be mechanistically justified and was able to simulate the observed 

magnetic anomaly (Fig. DR2-DR7). We limited the magnetizations to values representative of 

felsic to mafic igneous rocks (0.2-5.0 A/m; e.g., Hunt et al., 1995) and assumed a constant-

thickness magnetized layer subdivided into bands/blocks of variable magnetization, with its top 

coinciding with the seismically-inferred basement. This type of approach is common, 

particularly at rifted continental margins (e.g., Banerjee, 1984; Bronner et al., 2011; Collier et 

al., 2017). In oceanic domains, magnetic layer thicknesses of 0.5 km (e.g., Hussenoeder et al., 

1996; Searle et al., 2010), 1.0 km (e.g., Ozima et al., 1974; Searle et al., 1998), 1.5 km (e.g., 

Bronner et al., 2011), or 2.0 km (e.g., Collier et al., 2017) are generally used. Changes in 

magnetized layer thickness will affect the intensity of the magnetization inferred (almost 

inversely proportional to thickness), but will change little the overall trend of the modeled 

anomaly (e.g., Parker and Huestis, 1974). In this study, we exclude thin magnetized layers of a 

few hundred meters that would require anomalously high magnetizations to model the observed 

anomaly. We use a 1 km-thick layer in the oceanic domain because it is consistent with similar 

work elsewhere and allows us to generate a model with reasonable magnetizations. 

Since no independent constraints are available on the thickness of the magnetized layer over the 

structural highs (Shatsky Ridge and MBSH), and because these areas are only modeled to 130 
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provide lateral constraints for the central basin magnetic model, we decided to keep the same 131 

constant layer thickness in order to generate a simple and consistent model along the profiles. 132 

Volcanic bodies imaged in seismic reflection data (e.g., Nikishin et al., 2003, 2015), and high-133 

density bodies interpreted from gravity modelling (e.g., Starostenko et al., 2004), helped to 134 

constrain the distribution of these magnetized bodies and those along the basin margins during 135 

the main rifting phase. Based on these assumptions, we updated the starting model to fit 136 

adequately the observed field. 137 

138 

Magnetic Anomaly Filtering 139 

A low-pass filter was applied to the calculated anomaly to remove wavelengths shorter than a 140 

specified cut-off, thus removing the result of a short-wavelength crustal anomalies such as those 141 

caused by local variations of the top basement horizon picked along seismic profiles. We chose a 142 

low-pass wavelength cut-off of 25 km. This cut-off allows us to remove some short-period 143 

oscillations from the calculated anomaly without removing lateral variations that fall within the 144 

wavelength of the observed anomaly. A cut-off > 25 km was observed to remove information 145 

resolved by the magnetic anomaly grid (Fig. DR8). 146 

147 

Method Limitations and Data Dependency 148 

The non-uniqueness of the potential field problem requires introducing assumptions such as 149 

simplification of geometry, limits to size or depth, and range limits on 150 

susceptibility/magnetization values (Paterson and Reeves, 1985). Interpretation of magnetic 151 

anomaly may be ambiguous, as any given anomaly could be caused by several possible sources. 152 

For example, the amplitude and shape of an anomaly produced by a large body at great depth can 153 
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be similar to that of a small body closer to the surface. Changes in depth, shape, and position of 154 

the top basement horizon picked from seismic profiles and used as top boundary for the model 155 

creation can also affect the resulting calculated anomaly. In addition, attempting to model 156 

gridded magnetic data in 2D neglects the fact that the observed data could be affected by features 157 

that are out of the plane of the modeled section (3D effects) that make fitting these data very 158 

difficult at some locations (e.g., Rippington et al., 2015). 159 

Despite all its limitations, 2D forward magnetic anomaly modeling can provide a quantitative 160 

perspective to features visible on seismic data and aid the interpretation in areas where seismic 161 

imaging is difficult. The non-uniqueness of the magnetic problem can be reduced in several 162 

ways. For example, having an even distribution of seismic lines across the area helps ensuring 163 

that any interpretation made on either the seismic or magnetic datasets can be calibrated to and 164 

constrained by the other. By interpreting features that fit both independent datasets we can 165 

increase the confidence in that interpretation. Also, geological knowledge and literature 166 

information is required to produce a reasonable set of modelling parameters. 167 

Here magnetic anomaly modelling allows us to estimate regional scale variations in the 168 

magnetization character of crustal elements without specifically correlating small wavelength 169 

anomalies to a precise causative body. Although any conclusion inferred from magnetic 170 

modelling is strongly model dependent, because of the ambiguity in crustal affinity at the center 171 

of the EBSB shown by seismic reflection and refraction data, our magnetic modelling results 172 

provide additional and effective insights into crustal affinity and distribution in the center of the 173 

EBSB.174 
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Figure DR1. Comparison between crustal domains boundaries inferred in this study and crustal distribution from other studies using: (A) crustal thickness and 
lower crustal velocities from wide-angle seismic data (Shillington et al., 2009); (B) gravity anomaly modelling constrained by 2D long-offset seismic reflection 
profiles (Graham et al., 2013); (C) 2D long-offset seismic reflection profiles interpretation (Nikishin et al., 2015). Note that the extent of oceanic and transitional 
domains, and the nature of the transition, varies from study to study. In (A), an abrupt, 20-30 km transition from stretched continental to thick oceanic crust is 
attributed to an along-axis change from magma-poor to magma-rich margin (Shillington et al., 2009); in (B), an extremely abrupt transition zone surrounds the 
interpreted oceanic domain, and is associated to a ribbon of continental crust intruded by magmatic rocks (Graham et al., 2013); in (C), a wide area of highly-
stretched continental crust constitutes the transition to a narrow and elongated, NW-SE-trending oceanic domain (Nikishin et al., 2015). Background colors and 
colors used to plot crustal distribution/boundaries are explained in the legend. 13
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Figure DR2. Continued..
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Figure DR3. Magnetic anomaly modelling along seismic profile BS-180. Top panel (Fig. DR2 - D-D') shows the observed (black) and calculated 
(red) anomaly along this profile. Magnetic intensity is indicated with colored bands (color scale as shown in Fig. DR2). Bottom panel shows the 
BS-180 seismic profile. Top basement and fault systems interpreted are in overlay. This profile shows the transition from the tilted and faulted blocks 
of the stretched continental domain (Domain I), to the rough, non-faulted continental basement (Domain II), to the smooth oceanic basement affected 
by trans-tensional faults (Domain III). The striped shading over the two panels indicates a gap along the seismic profile. The location map at the 
bottom right corner shows the profile position, with colors associated to the interpreted continental (pink) and oceanic (blue) domains. Trans-tensional 
faults locations are also shown in the location map (OPf and TOf). (VE = 7) 
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Figure DR4. Magnetic anomaly modelling along seismic profile bp-91-109. Top panel (Fig. DR2 - C-C') shows the observed (black) and 
calculated (red) anomaly along this profile. Magnetic intensity is indicated with colored bands (color scale as shown in Fig. DR2). Bottom panel 
shows bp-91-109 seismic profile. Top basement and fault systems interpreted are in overlay. The location map at the bottom right corner shows 
the profile position, with colors associated to the interpreted continental (pink-purple) and oceanic (blue) domains. Trans-tensional fault locations 
are also shown in the location map (OPf and TOf). (VE = 7). 
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Figure DR5. Magnetic anomaly modelling along seismic profile BS-90. Top panel (Fig. DR2 - H-H') shows the observed (black) and 
calculated (red) anomaly along this profile. Magnetic intensity is indicated with colored bands (color scale as shown in Fig. DR2). 
Bottom panel shows the BS-90 seismic profile. Top basement and fault systems interpreted are in overlay. Moho depth comes from 
Graham et al. (2013) gravity modelling. No oceanic crust is inferred in the central basin (Domain II), where a rough basement is 
instead associated with stretched continental crust based on the presence of weakly-magnetized layers. The location map at the bottom 
right corner shows the profile position, with colors marking the interpreted continental (pink-purple) domain. Trans-tensional fault 
locations are also shown in the location map (OPf and TOf). (VE = 5) 
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Figure DR6. Magnetic anomaly modelling along seismic profile BS-100. Top panel (Fig. DR2 - I-I') shows the observed (black) 
and calculated (red) anomaly along this profile. Magnetic intensity is indicated with colored bands (color scale as shown in Fig. 
DR2). Bottom panel shows the BS-100 seismic profile. Top basement and fault systems are interpreted in overlay. Moho depth 
comes from Graham et al. (2013) gravity modelling. Domain III is interpreted as an oceanic type of crust, due to its smooth 
morphology and the strong and negative magnetization character, with intensity between 1.6 and 2.4 A/m. The location map at the 
bottom right corner shows the profile position, with colors marking the interpreted continental (pink-purple) and oceanic (blue) 
domains. Trans-tensional fault locations are also shown in the location map (OPf and TOf). (VE = 5) 
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Figure DR7. Magnetic anomaly modelling along seismic profile BS-110. Top panel (Fig. DR2 - J-J') shows the observed (black) 
and calculated (red) anomaly along this profile. Magnetic intensity is indicated with colored bands (color scale as shown in Fig. 
DR2). Bottom panel shows the BS-110 seismic profile. Top basement and fault systems are interpreted in overlay. Moho depth 
comes from Graham et al. (2013) gravity modelling. Domain III is interpreted as oceanic crust, due to its smooth morphology and 
the strong and negative magnetization character, with intensity between 1.1 and 3.8 A/m. The location map at the bottom right 
corner shows the profile position, with colors marking the interpreted continental (pink-purple) and oceanic (blue) domains. Trans-
tensional fault locations are also shown in the location map (OPf and TOf). (VE = 5) 
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Figure DR8. Magnetic anomaly modelling along seismic profile BS-170 (Fig. DR2 - B-B'). A smoothing > 25 km over the 
calculated anomaly removes some of the features resolved by the observed anomaly. 
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