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SUPPLEMENTARY METHODS 

Airborne lidar point cloud differencing. To calculate topographic change, we used the 
Multiscale Model to Model Cloud Comparison (M3C2) point cloud change detection algorithm, 
which incorporates both dataset alignment uncertainty and the uncertainty associated with repeat 
sampling of rough surfaces (Lague et al., 2013). Analysis of point clouds maximizes spatially 
variable data resolution, avoids artifacts from gridding or interpolation procedures, and faithfully 
represents data gaps in the ground-classified point cloud. 

The three airborne lidar datasets we analyzed were collected by different operators, with 
different instruments, and registered with different ground control (Table DR1), and thus 
preprocessing and alignment was required prior to change detection analysis. We projected the 
June 2009 and 2015/2016 lidar point clouds into the same coordinate system as the September 
2009 dataset, which was the most robust of the three surveys due to the absence of vegetation 
following the 2009 Station Fire. To minimize systematic registration errors between the datasets, 
we divided the lidar point clouds into 3 km x 3 km tiles, and for each of the resulting tiles we 
aligned the ground-classified points of the June 2009 and 2015/2016 datasets to the ground-
classified points of the September 2009 dataset using iterative closest point alignment as 
implemented in the software CloudCompare (version 2.10; https://www.cloudcompare.org). 
Last, we subsampled the ground-classified September 2009 point cloud to a minimum point 
spacing of 0.5 m to reduce computational costs and avoid bias in areas with high point density. 

Using the M3C2 algorithm, we calculated the significant vertical topographic change 
between each ground point in the subsampled September 2009 dataset and the June 2009 and 
2015/2016 ground-classified point clouds. We used a projection scale of 3.5 m to calculate 
surface change, which corresponds to the diameter of a cylindrical search window projected 
vertically from each point. This scale was chosen based on the smallest projection diameter for 
which 95% of the calculations include at least 4 data points from each point cloud, as 
recommended by Lague et al. (2013) to ensure robust roughness-based uncertainty estimates. For 
each point in the subsampled September 2009 point cloud, a mean vertical difference between 
the September 2009 point cloud and both the June 2009 and 2015/2016 point clouds was 
calculated over the scale of the projection window. To determine whether this change was 
significant or not, we calculated separately the slope-normal change compared to the slope-
normal surface roughness using the M3C2 algorithm, including an additional registration error of 
20 cm that incorporates positional uncertainty and range uncertainty at each point (~5–30 cm; 
Table DR1). Each point in the subsampled September 2009 point cloud was thus assigned one of 
three potential values: the mean vertical elevation change if the change was significant; “0” if 
change was not significant; or “no data” if there were no data points sampled from the compared 
dataset within the 3.5 m diameter projection window. 

Although the resulting point clouds of significant change detection most faithfully 
represent the variable data coverage for each lidar survey, calculating catchment-scale sediment 
budgets is most straightforward using regularized grids. Thus, we rasterized each point cloud of 
significant change (June 2009–September 2009 and September 2009–2015/2016) using a grid 
size of 1 m. A scale of 1 m was chosen to best preserve the spatial resolution of the change 
detection map while minimizing data gaps in the area burned by the Station Fire. For unburned 
areas, vegetation cover limits the density of ground-classified points in some places to less than 1 
pt m-2, resulting in more data gaps. Inspection of the 1 m resolution change detection raster 
suggests that this resolution is sufficient to characterize spatial patterns of change in areas with 
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high ground-classified point density (>2 pts m-2). We see evidence of channel fill, erosion, 
roadwork, reservoir fill, and landslides that are well-resolved through comparison of gridded 
slope and hillshade maps (Figs. DR3–DR4). There is also noise associated with poor 
classification of dense vegetation on unburned hillslopes (Fig. DR4), which has the potential to 
bias spatially averaged estimates of erosion or deposition. To limit the effect of this noise on 
hillslopes and focus on change detection in channels, we filtered the change detection data using 
a 15 m wide buffer along the channel network, which we defined using a threshold accumulation 
area of 1.25 x 103 m2 (50 pixels in a 5 m digital elevation model used for calculating flow 
accumulation). 

To visualize large-scale patterns in topographic change between September 2009 and 
2015/2016, we delineated 397 headwater catchments (0.1 – 2.0 km2) that are not affected by 
major roads or other anthropogenic disturbance, and calculated the average erosion, 𝜀, according 
to: 

𝜀
∑ ∆

, (1) 

where 𝑑𝑥 is the raster grid size (1 m), 𝐴 is the total catchment area, and ∆𝑧  is the 
vertical change from September 2009 to 2015/2016, which is summed over the area within the 
channel buffer, 𝐴 . As an assessment of how robust this estimate of catchment erosion is, we 
calculated the fraction of “no data” pixels within the channel buffer area, 𝑓 , defined by: 

𝑓 , (2) 

where 𝑛 is the number of “no data” pixels within the channel buffer area, 𝐴 . The degree of data 
coverage along channel networks is higher for burned catchments due to higher density of 
ground return points. For unburned regions (difference Normalized Burn Ratio 𝑑𝑁𝐵𝑅 < 0.1), the 
mean value of 𝑓  is 0.6. For burned catchments (𝑑𝑁𝐵𝑅 > 0.1) the mean value of 𝑓  is 0.9. We 
highlight in Fig. 1 areas where 𝑓  < 0.8 to indicate greater uncertainty in catchment volume 
estimates here. We assume that overall channels are being eroded, with minimal redeposition in 
the headwater catchments we analyze. Thus, we interpret our reported erosion values as 
conservative estimates of channel erosion. 

 

Slope calculation. We calculated the local slope across our study area using the dip of a plane fit 
to all points within a 15 m diameter window around each point in a 3 m-resampled ground-
classified point cloud of the 2015/2016 lidar dataset. The resulting values were then rasterized to 
a 3 m grid, and the mean slope was calculated for each analyzed catchment. We used the 
2015/2016 dataset for this calculation to minimize the effect of low-sloping channel fills 
prevalent in the September 2009 lidar data. 

 

Burn severity metric calculation. We estimated burn severity using the difference Normalized 
Burn Ratio (𝑑𝑁𝐵𝑅) calculated from Landsat 5 scenes taken before and after the Station Fire 
(August 6, 2009 and November 26, 2009). We calculated 𝑑𝑁𝐵𝑅 using band 4 (𝑁𝐼𝑅, 0.77-0.90 
μm wavelength) and band 7 (𝑆𝑊𝐼𝑅, 2.08–2.35 μm wavelength), according to: 
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𝑑𝑁𝐵𝑅 . (3) 

For each analyzed catchment we calculated the mean value of 𝑑𝑁𝐵𝑅, defining areas with 𝑑𝑁𝐵𝑅 
< 0.1 as “unburned” and areas with 𝑑𝑁𝐵𝑅 > 0.1 as “burned” (Key and Benson, 2006). 

 

Debris basin data. We used debris volume data from water years 2010 and 2011 (Los Angeles 
County Department of Public Works, 2011; 2012a) to independently compare total observed 
sediment yields to our catchment erosion estimates based on topographic differencing of the 
September 2009 and 2015/2016 lidar data. For each of 20 burned watersheds containing a debris 
basin at their outlet, we divided the reported debris volumes by the upstream contributing area to 
determine debris basin sediment yield (Fig. 1 and Fig. 3A), which often encompasses multiple 
individual debris flow events (Kean et al., 2011). We assumed for simplicity no change in 
density between eroded channel deposits and material accumulated in debris basins and that all 
debris basin volumes are accurate reflections of the total mass export. We assigned uncertainty to 
these estimates based on the reported practice of clearing unburned debris basins once they reach 
25% of their capacity and recently (past 5 years) burned debris basins once they reach 5% of 
their capacity (Los Angeles County Department of Public Works, 2012b). Thus, we assumed that 
all basins were less than 25% full prior to the 2009 Station Fire, and less than 5% full in fall 
2014. Based on analysis of rainfall and runoff data highlighting the severe drought conditions 
from 2012-2016 (Fig. DR1), we assumed that minimal erosion or deposition occurred between 
fall 2014 and the time of the 2015/2016 lidar flights. 

 

Vegetation storage model. We used a vegetation storage model calibrated to the San Gabriel 
Mountains (DiBiase and Lamb, 2013; Lamb et al., 2013) to estimate the potential dry ravel 
storage capacity for each catchment prior to the 2009 Station Fire. Based on laboratory tilt-table 
experiments, the volume of sediment stored behind vegetation per unit area, 𝑉,  is characterized 
by: 

𝑉 𝐶
.

. ,  (4) 

where 𝐶 is the vegetation areal density, 𝑊 is plant width, 𝑆  is the tangent of the angle of repose 
of sediment, 𝑆  is the (static) friction slope of sediment, and 𝑆 is the local surface slope 
determined from lidar topography (Lamb et al., 2013). Following DiBiase and Lamb (2013) and 
Lamb et al. (2013), we assumed 𝐶 = 0.5 plants/m2, 𝑊 = 1 m, 𝑆  = 0.76, and 𝑆  = 0.58. We 
assumed similar vegetation cover for all catchments analyzed, based on inspection of pre-fire 
aerial imagery (Figs. DR8 and DR9). In general, vegetation cover depends mainly on local 
topographic position and aspect, and does not systematically vary across the study area. Slopes 
less than 30° (𝑆 < 0.58) were assumed to have a stable continuous soil mantle and areas with 
slopes steeper than 45 degrees were assumed to be bare rock with sparse vegetation (DiBiase et 
al., 2012; DiBiase and Lamb, 2013). Mean volumetric storage per area was then calculated for 
each watershed draining to a monitored debris basin and plotted on Fig. 3A. 
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Ravel routing model. To predict landscape scale patterns of dry sediment loading, we used the 
2D ravel-routing model of DiBiase et al. (2017), which is a particle-based model that routes 
sediment down lidar topography of steep hillslopes using a modified Coulomb friction law 
approximation for particle acceleration: 

𝐴 𝑔 sinθ tanφ cos θ κ|𝑉|, (5) 

where 𝐴 is downslope particle acceleration, 𝑉 is particle velocity, g is gravitational acceleration, 
θ is the local topographic slope determined from lidar topography, φ is an effective (dynamic) 
friction angle between the particle and hillslope, and κ is a dimensional shock term coefficient 
that reflects momentum loss due to particle collisions. The effective friction slope, tanφ, is a 
stochastic variable that depends on the relative roughness of the particle and the hillslope 
surface, such that: 

tanφ pdf tanμ exp
µ

, (6) 

where pdf tanμ  indicates an exponential probability distribution of the random variable tanμ 
and tan µ is the mean effective friction slope. 

Particle motion is initiated at a given cell with an initial downslope velocity 𝑉 , and is routed 
downslope with each model time step 𝑖 via a series of “hops” until coming to rest: 

𝑉 𝑉 𝐴 ∆𝑡, (7) 

where 𝐴 is calculated according to Eqn. 5 above, and ∆𝑡 is a timestep that scales with hop 
distance. The model is implemented by releasing particles and tracking their transport pathway 
and stopping locations, resulting in spatially distributed predictions of post-wildfire dry sediment 
accumulation for comparison with our lidar-derived topographic change detection measurements. 

We implemented two scenarios of the 2D ravel routing model. In the first case, we 
assumed a uniform source for dry ravel (DiBiase et al., 2017). For the second case, we weighted 
the sources according to a vegetation storage model calibrated to pre-fire conditions in the San 
Gabriel Mountains (DiBiase and Lamb, 2013; Lamb et al., 2013), as described above. All other 
parameters were held equal and calibrated based on field experiments (DiBiase et al., 2017): 𝑔 = 
9.8 m s-2; tan µ = 0.5; κ = 1.4 m s-1; 𝑉  = 2 m s-1; ∆𝑡 = 0.3 s. Because we found no significant 
difference in the pattern of sediment loading from the uniform and vegetation storage weighted 
models (Fig. DR6), we used the uniform source model for all other analysis. 

To compare the results from our particle-based ravel routing model with our topographic 
differencing data, we focused on the network-scale pattern of sediment loading predicted by the 
model. This was accomplished qualitatively by comparing maps of modeled relative deposit 
thickness (Fig. 2B and Fig. DR6) or the distribution of modeled deposits thicker than a critical 
value (Fig. DR2). We quantified the network-scale deposition patterns by comparing the slope 
and drainage area of landscape pixels with modeled sediment accumulation thicker than a critical 
value (Fig. 2F and Fig. DR2). 
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Table DR1. Airborne lidar dataset properties. 
 2009 Pre-fire lidar 2009 Post-fire lidar 2015/2016 lidar 

Data Source U.S. Geological Survey 
National Center for Airborne Laser 

Mapping 
Los Angeles County/ 

U.S. Geological Survey 

Collection date range June 2–June 22, 2009 September 29–October 1, 2009 September 2015–October 2016 

Ground-classified point density 0.9–1.9 pts m-2 
(mean 1.3 pts m-2) 

0.6–3.7 pts m-2 
(mean 2.3 pts m-2) 

0.7–2.5 pts m-2 
(mean 1.4 pts m-2) 

Positional uncertainty 0.06–0.2 m 0.05–0.3 m Not provided 

Original projection NAD1983 UTM ZONE 11N 
[EPSG:26911] 

NAD1983 UTM ZONE 11N 
[EPSG:26911] 

CA State Plane V NAD83 
[EPSG:2229] 

Original vertical datum NAVD88 Geoid 03 
[EPSG:5703] 

NAVD88 Geoid 03 
[EPSG:5703] 

NAVD88 Geoid 12B 
[EPSG:5103] 
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Figure DR1. Hydrograph showing daily rainfall data from Big Tujunga Dam (Los Angeles 
County Department of Public Works, 2011; 2012; 2013; 2014; 2015; 2016; 2017) and mean 
daily runoff from Arroyo Seco (USGS site 11098000). Vertical colored bars indicate dates of 
lidar surveys and main growth period of the 2009 Station Fire.  
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Figure DR2. Comparison of network structure for areas experiencing dry ravel accumulation 
and subsequent erosion. A: Slopeshade map of Brown Mountain region (Fig. DR3C), showing 
location of regions predicted to have high ravel deposition (orange, from Fig. DR6B); areas that 
showed accumulation of >0.5 m of dry ravel based on differencing of June 2009 and September 
2009 lidar datasets (red); and areas that showed >0.5 m of erosion based on differencing of 
2015/2016 and September 2009 lidar datasets (blue). B: Slope-area plots showing distribution of 
all pixels and areas experiencing dry sediment loading and subsequent erosion. Symbols 
correspond to median slope and shaded areas correspond to inner quartile range over logarithmic 
bins of drainage area.  
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Figure DR3. Change resolved by differencing of September 2009 and 2015/2016 lidar datasets. 
A: Rockfall in Dunsmore canyon (arrow 1) and erosion of channel fill (arrow 2). B: Erosion of 
channel fill (arrows) in the USGS Arroyo Seco study catchment (Kean et al., 2011; Schmidt et 
al., 2011; Staley et al., 2014). C: Erosion of channel fill and erosion by headward retreat of 
shallow landslide (arrow 3). Gap in 2015/2016 lidar point cloud results in raster artifact (arrow 4) 
but does not propagate as significant change detection. Locations indicated in Fig. DR5. 
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Figure DR4. Examples showing change between September 2009 and 2015/2016 lidar datasets. 
White circles and arrows highlight areas of interest indicated in panel headings. Dashed box in C 
indicates extent of inset panels comparing lidar vegetation filtering in unburned areas that leads 
to spurious topographic change. Locations indicated in Fig. DR5.  
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Figure DR5. Map of difference Normalized Burn Ratio (dNBR), a metric of burn severity, for 
2009 Station Fire, showing location of examples highlighted in Fig. DR3 (3A–C), Fig. DR4 
(4A–I), Fig. DR8 (8A–D), and Fig. DR9 (9A–D).  
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Figure DR6. Comparison of predictions from 2D ravel routing model (DiBiase et al., 2017) with 
topographic differencing of September 2009 and 2015/2016 lidar surveys near Josephine Peak 
(A, C, E, G; Fig. DR4F) and Brown Mountain (B, D, F, H; Fig. DR3C). Ravel model deposit 
thickness is normalized by average number of particles released per cell, which was done either 
uniformly at each cell (A, B) or weighted using a dry ravel storage model (C, D; DiBiase and 
Lamb, 2013; Lamb et al., 2013).  
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Figure DR7. Maps showing fire history for study area prior to 2009 Station Fire (California 
Department of Forestry and Fire Protection Historical Fire Perimeters, accessed July 9, 2019 
from https://frap.fire.ca.gov/mapping/gis-data/). A: Number of years since last fire. B: Number 
of fires since 1878.  
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Figure DR8. Pre-fire (2008) low-altitude oblique imagery of bedrock hillslopes north of the S. 
San Gabriel Fault Zone, highlighting bedrock fracture patterns in steep cliffs composed of 
granodiorite bedrock (Kgrd, Trlgd) (Campbell et al., 2014). None of these burned sites 
experienced significant post-wildfire channel fill or subsequent erosion. Location of images 
shown in Fig. DR5. Images from Pictometry Corp.  
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Figure DR9. Pre-fire (2008) Low-altitude oblique imagery of bedrock hillslopes south of the S. 
San Gabriel Fault Zone, highlighting biotite monzogranite bedrock (Mzmg)(Campbell et al., 
2014) fractured near or below the resolution of the images (5-10 cm/pixel). All sites shown 
experienced both high post-fire dry sediment loading and high post-storm erosion. Locations 
shown in Fig. DR5. Images from Pictometry Corp. 
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