Ford, H.L., and Raymo, M.E., 2020, Regional and global signals in seawater δ^{18} O records across the mid-Pleistocene transition: Geology, v. 48, https://doi.org/10.1130/G46546.1

APPENDIX

2	Site	1208
_	Site	12

1

- Based on sample availability, samples were taken at \sim 7, 10, and 20 cm intervals from 40-53,
- 4 21.7-24, and 24-40/53-87 mbsf, respectively. This equates to a temporal resolution of 1.4 to 3.7
- 5 kyr. As site 1208 is a single hole, we constructed a "re-compressed" depth, as in Venti and
- 6 Billups (2012):
- 7 ((reported depth core-top depth)*(100/% core recovered) + core-top depth)

8

9

Prob-stack and LR04

- In the years since the publication of the δ¹⁸O_{benthic} LR04 stack (Lisiecki and Raymo, 2005) researchers have produced new δ¹⁸O_{benthic} records. An updated version of LR04 is Probstack (Ahn et al., 2017). Prob-stack includes 180 δ¹⁸O_{benthic} globally distributed records whereas LR04 included 57 δ¹⁸O_{benthic} records. Prob-stack and LR04 are similar in structure (**Data**)
- 14 Repository Figure 1).

15

16

17

18

19

20

21

22

23

Minor Elemental Analyses

Uvigerina spp. was used to reconstruct bottom water temperature at Ocean Drilling Program Site 1208. Marine sediment samples were washed and picked for *Uvigerina* spp. specimens from the > 250μm size fraction. Prior to analysis, 6-12 *Uvigerina* spp. specimens were crushed, washed using MilliQ water and methanol, and reductively and oxidatively cleaned. Prepared samples were analyzed for minor and trace elements on the Thermo Scientific iCAP-Q inductively coupled plasma mass spectrometer (ICP-MS) at the Lamont-Doherty Earth Observatory and Rutgers University. Long-term precision of a liquid consistency standard is ~1-

- 24 2%. The pooled standard deviation of the replicate Uvigerina spp. Mg/Ca determinations is
- 25 0.056 mmol/mol. Al, Fe and Mn were used to screen for contamination (Data Repository
- Figure 2 and 3; n = 4 samples were eliminated because the Mn/Ca or Fe/Ca values were >350
- 27 mmol/mol or µmol/mol, respectively). No preservation biases are observed in percent coarse
- 28 fraction or lightness as a proxy for percent CaCO₃ (**Data Repository Figure 4**).

29

30

Converting to Bottom Water Temperature and δ¹⁸O_{seawater}

- 31 PSU Solver (Thirumalai et al., 2016) was used to estimate bottom water temperature and
- δ^{18} O_{seawater} (**Data Repository Figure 5, 6 and 7**). PSU Solver uses a Monte Carlo simulation (n
- = 1000) to propagate errors on bottom water temperature and $\delta^{18}O_{sw}$ estimates.

34

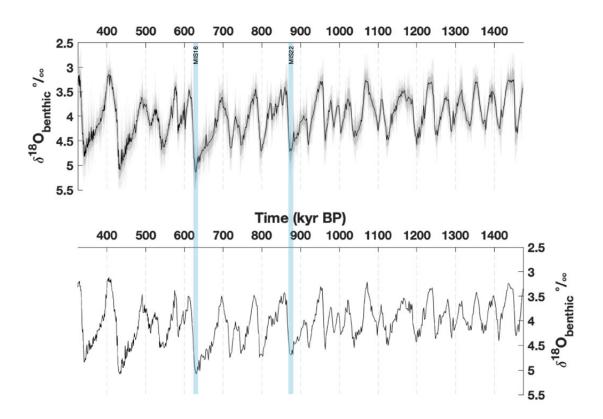
- 35 The following equations were used:
- 36 (1) Mg/Ca = 1.0 + (0.1*BWT) from (Elderfield et al., 2010; Elderfield et al., 2012) with
- 37 oxidative cleaning only
- 38 (2) Mg/Ca = 0.9 + (0.1*BWT) modified from (Elderfield et al., 2010; Elderfield et al., 2012)
- with oxidative and reductive cleaning (Woodard et al., 2014; Ford et al., 2016)
- 40 (3) Mg/Ca = 1.16 + (0.15*T) from (Sosdian and Rosenthal, 2009)
- 41 (4) Temperature = $16.9 4.0 * (\delta^{18}O_{carbonate} \delta^{18}O_{sw} + 0.27)$ from (Shackleton, 1974; Kim and
- 42 O'Neil, 1997; Elderfield et al., 2010; Elderfield et al., 2012)

- Bottom water temperature for *Uvigerina* spp. was estimated using equation 1 and
- equation 2 for ODP Site 1123 and Site 1208, respectively. For the multi-species bottom water
- 46 temperature reconstruction at DSDP Site 607, equation 2 was used for *Uvigerina* spp. and

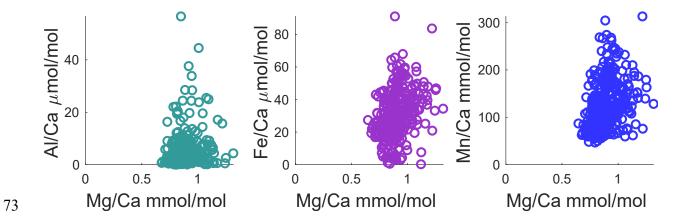
equation 3 was used Cibicidoides wuellerstorfi and Oridorsalis umbonatus. The Mg/Ca uncertainty for Uvigerina spp. is 0.06 mmol/mol and 0.16 mmol/mol for Cibicidoides wuellerstorfi and Oridorsalis umbonatus. The $\delta^{18}O_{carbonate}$ uncertainty is 0.06 per mill. The age model uncertainty is 1 kyrs.

Constructing the δ^{18} O_{seawater} Stack

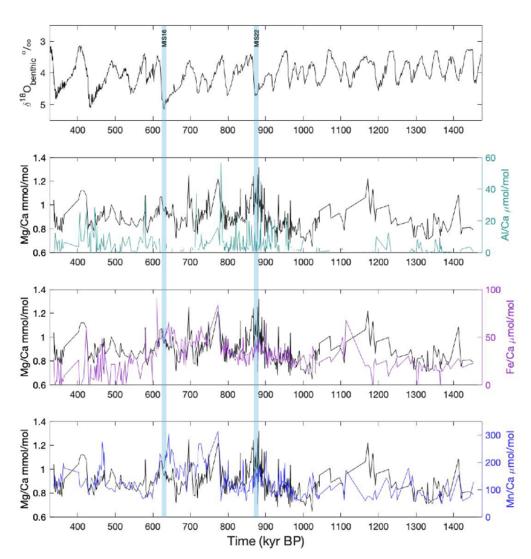
Using the $\delta^{18}O_{sw}$ estimates from ODP Sites 1123 and 1208 and DSDP Site 607 from PSU Solver (**Data Repository Figure 8**), we created a $\delta^{18}O_{sw}$ stack. First, the $\delta^{18}O_{sw}$ estimates for each site were interpolated the records to an even 3-kyr interval (across the 338-1450 ka interval where all three records \leq 3 kyr resolution, **Data Repository Figure 9**). During the 338 – 1450 ka interval Sites 607, 1123, and 1208 have a ~3.0 kyr, 2.7 kyr, and 1.0 kyr sampling resolution, respectively. Each record was then bootstrapped to estimate error (n = 1000, **Data Repository Figure 10**). The interpolated means the bootstrapped error estimates were then averaged to create the mean and error estimate of the $\delta^{18}O_{sw}$ stack (**Data Repository Figure 11**).


Wavelet analyses of the individual $\delta^{18}O_{sw}$ and $\delta^{18}O_{sw}$ stack

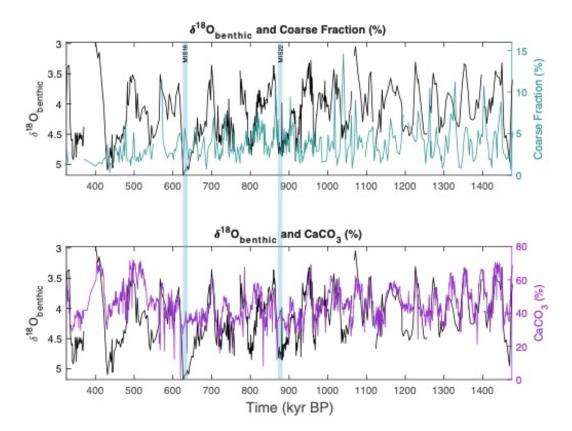
Continuous 1-D wavelet transforms were calculated using the Matlab® function cwt (Data Repository Figure 12). The Probstack has strong 41- and 100-kyr signal. The d18Osw records have weak 41-kyr signal and 100-kyr signal that begins \sim 900 kyr and becomes stronger at \sim 600 kyr.


Data Set

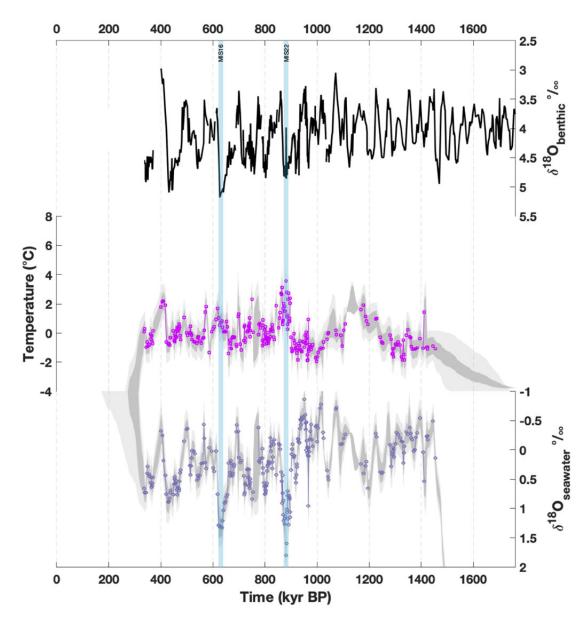
2020037 Data Set.xlsx


- **Data Repository Figure 1:** Prob-stack (top) and LR04 (bottom). Error envelopes: dark grey =
- 1σ , light grey = 2σ).

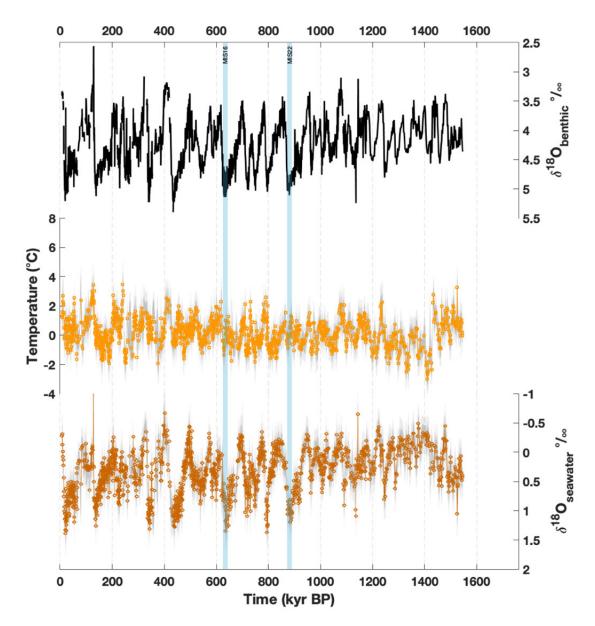
Data Repository Figure 2: Scatter plots of Mg, Al, Fe and Mn.

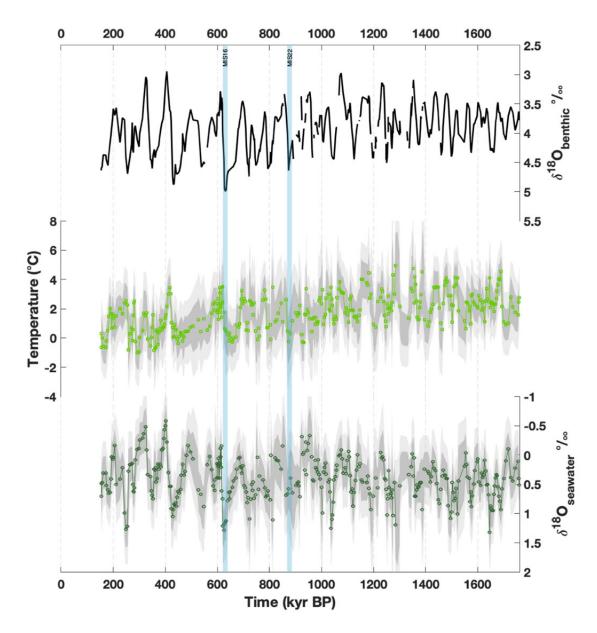


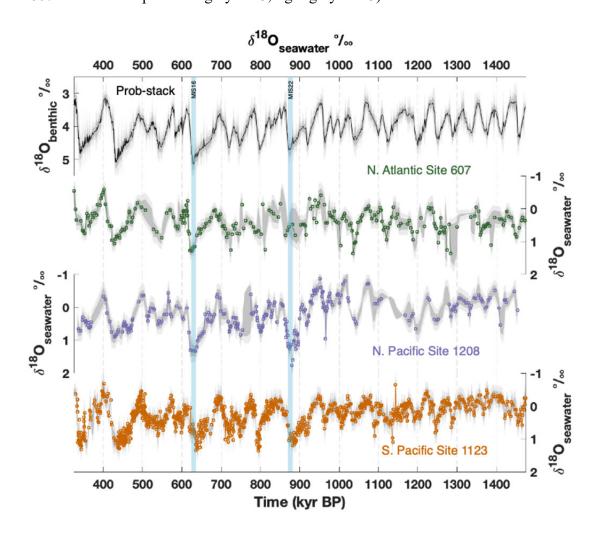
Data Repository Figure 3: Time series plots of Mg (black), Al, Fe and Mn.



Data Repository Figure 4: Time series plots of Site 1208 δ^{18} O_{benthic} (black) and Coarse Fraction


(%) and CaCO₃ (%) showing no obvious preservation bias in the Site 1208 Mg/Ca record.


Data Repository Figure 5: N. Pacific ODP Site 1208 $\delta^{18}O_{benthic}$, Mg/Ca derived temperature and $\delta^{18}O_{seawater}$. Using Monte Carlo simulations, PSU Solver (Thirumalai et al., 2016) generated error envelopes (dark grey = 1σ , light grey = 2σ) on temperature and $\delta^{18}O_{seawater}$.

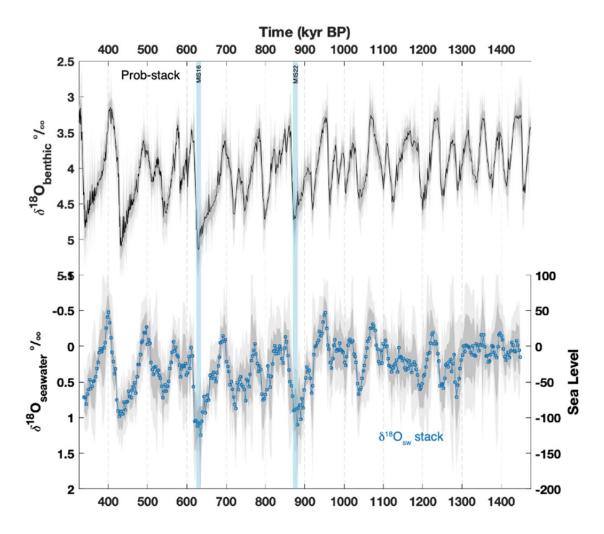

Data Repository Figure 6: S. Pacific ODP Site 1123 $\delta^{18}O_{benthic}$, Mg/Ca derived temperature and $\delta^{18}O_{seawater}$. Using Monte Carlo simulations, PSU Solver (Thirumalai et al., 2016) generated error envelopes (dark grey = 1σ , light grey = 2σ) on temperature and $\delta^{18}O_{seawater}$.

Data Repository Figure 7: N. Atlantic DSDP Site 607 $\delta^{18}O_{benthic}$, Mg/Ca derived temperature and $\delta^{18}O_{seawater}$. Using Monte Carlo simulations, PSU Solver (Thirumalai et al., 2016) generated error envelopes (dark grey = 1σ , light grey = 2σ) on temperature and $\delta^{18}O_{seawater}$.

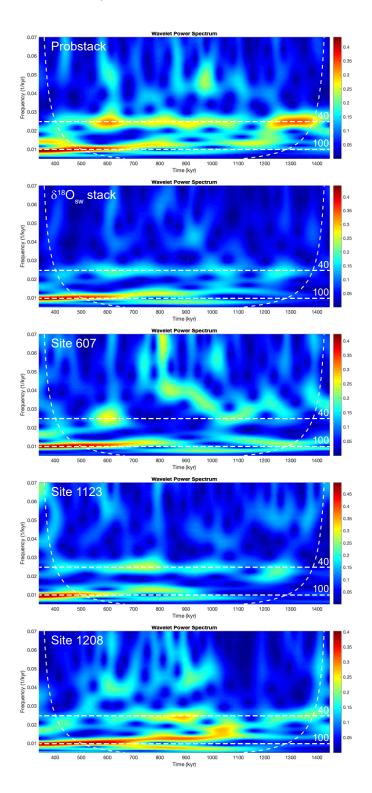
Data Repository Figure 8: Prob-stack and $\delta^{18}O_{\text{seawater}}$ records from ODP 1208 and 1123 and DSDP 607. Error envelopes: dark grey = 1σ , light grey = 2σ).

104

105


106

108


109

110

Data Repository Figure 11: Prob-stack and $\delta^{18}O_{sw}$ stack. Error envelopes: dark grey = 1σ , light 113 grey = 2σ).

118 from Sites 607, 1123 and 1208.

- Ahn, S., Khider, D., Lisiecki, L.E., and Lawrence, C.E., 2017, A probabilistic Pliocene-
- Pleistocene stack of benthic δ 180 using a profile hidden Markov model: Dynamics and
- Statistics of the Climate System, v. 2, no. 1, p. 91–16, doi: 10.1093/climsys/dzx002.
- 123 Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D., and
- Piotrowski, A.M., 2012, Evolution of Ocean Temperature and Ice Volume Through the Mid-
- Pleistocene Climate Transition: Science, v. 337, no. 6095, p. 704–709, doi:
- 126 10.1126/science.1221294.
- Elderfield, H., Greaves, M., Barker, S., Hall, I.R., Tripati, A., Ferretti, P., Crowhurst, S., Booth,
- L., and Daunt, C., 2010, A record of bottom water temperature and seawater δ 180 for the
- Southern Ocean over the past 440kyr based on Mg/Ca of benthic foraminiferal Uvigerina
- spp.: Quaternary Science Reviews, v. 29, no. 1, p. 160–169.
- Ford, H.L., Sosdian, S.M., Rosenthal, Y., and Raymo, M.E., 2016, Gradual and abrupt changes
- during the Mid-Pleistocene Transition: Quaternary Science Reviews, v. 148, no. C, p. 222–
- 133 233, doi: 10.1016/j.quascirev.2016.07.005.
- 134 Kim, S., and O'Neil, J., 1997, Equilibrium and nonequilibrium oxygen isotope effects in
- synthetic carbonates: Geochimica et Cosmochimica Acta, v. 61, p. 3461–3475.
- Lisiecki, L.E., and Raymo, M.E., 2005, A Pliocene-Pleistocene stack of 57 globally distributed
- benthic delta O-18 records: Paleoceanography, v. 20, no. 1, p. PA1003, doi:
- 138 10.1029/2004PA001071.
- Shackleton, N.J., 1974, Attainment of isotopic equilibrium between ocean water and the
- benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last
- glacial: Colloques Internationaux du C.N.R.S., p. 203–209.
- Sosdian, S., and Rosenthal, Y., 2009, Deep-Sea Temperature and Ice Volume Changes Across
- the Pliocene-Pleistocene Climate Transitions: Science, v. 325, no. 5938, p. 306–310, doi:
- 144 10.1126/science.1169938.
- Thirumalai, K., Quinn, T.M., and Marino, G., 2016, Constraining past seawater δ18O and
- temperature records developed from foraminiferal geochemistry: Paleoceanography,, doi:
- 147 10.1002/(ISSN)1944-9186.
- 148 Venti, N.L., and Billups, K., 2012, Stable-isotope stratigraphy of the Pliocene–Pleistocene
- climate transition in the northwestern subtropical Pacific: *Palaeogeography*,
- 150 Palaeoclimatology, Palaeoecology, v. 326 p. 54-65.
- Woodard, S.C., Rosenthal, Y., Miller, K.G., Wright, J.D., Chiu, B.K., and Lawrence, K.T., 2014,
- Antarctic role in Northern Hemisphere glaciation: Science, v. 346, no. 6211, p. 847–851,
- doi: 10.1126/science.1255586.