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Appendix 1. Additional methodological details for palynological counts and ordination analyses.

Table A2. Palynomorph taxa and groups sorted by morphological categories as employed
throughout this paper. Note the finer taxonomic divisions for PKHB-1 Count 1. Taxa in bold
have been employed herein for regional palynostratigraphic correlation. Morphological
categories are based on those of Traverse (2007). “Spp.” includes only other species not already
listed.

Table A3. Abundance tables of palynomorph groups. All percentages are calculated as a
proportion of the respective total palynomorph sample count (N). Average counts for PHKB-1
are calculated from the abundances of both counts 1 and 2. Dashes indicate samples included
only in PHKB-1 Count 2. Palynomorph concentration per gram of dried sediment (C) derived by
the following calculation (modified from Benninghoff, 1962):

C=(NxL)/(LxM),

where N = total palynomorph sample count, L; = estimated Lycopodium spores per spiked sample
(= 9666; standard deviation = 671; Maher, 1981), L = Lycopodium spores counted, and M = mass
of processed dried sediment.

Table A4. Abundance tables of palynofacies groups. All percentages are calculated as a
proportion of the respective palynofacies total, either category subtotal (n) or total palynofacies
count (N = 500). Palyn = palynomorphs, phyto = phytoclasts, miospores = spores + pollen, - =
samples in which Lycopodium spore tablets were not included during processing. PHKB-1
palynofacies data are from Fielding et al. (2019).

Table AS. Palynomorph categories for ordination analysis applied to all palynomorph count
data. Categories employed in this study are numbered.

Table A6. Stable carbon isotope data for PKHB-1 and CCC-27. PHKB-1 data are from Fielding
et al. (2019).

Table A7. List of specimens in Figs 7 and 8, including taxon authorities, sample numbers, slide
numbers and England Finder coordinates (Eng. Find. coords); K = kerogen slide.



APPENDIX 1: ADDITIONAL METHODS and REFERENCES CITED
Palynology count methods

Of the 52 palynological samples from PHKB-1, we provide the full palynomorph count
data sets of the 44 samples presented by Fielding et al. (2019), including additional data
categories that were excluded from that study for brevity; taxa assigned to each taxonomic/
morphological category are outlined in Appendix 2. Twenty-four of these samples were counted
a second time by CM (‘Count 1’; the remaining specimen counts constitute ‘Count 2’; see
Appendix 3) for the purpose of verifying the original results of Fielding et al. (2019). The
remaining eight samples from PHKB-1 (S014107, S014111, S014112, S014115, S014121,
S014122, S014123, S014149), and four samples from CCC-27 (S014165, S014168, S014169,
S014171), were barren of palynomorphs, and excluded from the palynomorph counts. All
palynomorph counts incorporated >250 individual specimens, except for six samples from
PHKB-1 (S014097, S014099, S014100, S014105, S014116 and S014141) and three samples
from CCC-27 (S014158, S014166, S014167), which failed to meet the prescribed specimen
count. Full palynomorph count data are presented in Appendix 3.

Pollen diagrams of PHKB-1 (Figs. 3 and 4) were produced from a composite data set of
counts 1 and 2; in samples where both count data were available, an average was calculated and
used. Where only Count 2 data were available, these data were employed. Count 2 did not
include monolete spores other than Thymospora spp. and zonate monolete spores ( =
Aratrisporites spp.). As such, all values of ‘other monolete spores’ for Count 2 were assigned to
zero for the purposes of the pollen diagrams.

Kerogen slides of all 78 samples were produced for palynofacies analysis. Palynofacies
data were compiled from counts of 500 individual grains (minimum grain diameter = 5 pum). The
following palynofacies categories and subcategories were included in the counts (following the
classification of Tyson, 1995): 1, palynomorphs ([a] plant spores, [b] pollen, [c] phytoplankton,
[d] fungal remains); 2, phytoclasts ([e] opaque including charcoal, [f] tracheids/rays, [g] other
translucent phytoclasts, [h] cuticles/membranous tissues); and 3, amorphous organic matter
(AOM; [i] particulate, [j] resin). Full palynofacies count data are presented in Appendix 4.

To estimate productivity (a measure of absolute abundance) per sample, a standardized
quantity of an exotic marker spore species was added to the samples during palynological
processing (Stockmarr, 1971). For these estimates, selected samples were dried, weighed and one
spore tablet of extant Lycopodium clavatum per sample was added prior to acidification (for
specific samples and lycopodium counts, see appendices 3 and 4). Spore tablets were from Batch
3862, as prepared by the Department of Geology, Lund University (2014); estimated number of
spores per tablet = 9,666 + 6.94% (confidence estimations follow Maher, 1981). These extrinsic
Lycopodium spores were counted in addition to the total counts for palynofacies and
palynomorphs outlined above. By counting these standard markers in parallel with the
palynological counts, we employed the relative changes in palynomorphs or palynofacies as a
proxy of palynomorph production or total organic production, respectively, for a given time
horizon. Specifically, there is an inverse relationship between the Lycopodium count and total
palynomorphs/palynofacies count; hence, an interval of higher palynomorphs/palynofacies
productivity should be reflected by a relatively low Lycopodium count. Fluvio-deltaic systems
are characterized by variable depositional rates and hydraulic sorting of sediments, including
palynomorphs and other organic matter (Brown et al., 2007). Thus, productivity estimates should
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only be compared between assemblages from lithofacies of similar grain-size (e.g., claystone,
siltstone, or fine sandstone), because these should reflect comparable flow conditions at the site
of deposition. In order to control for this variable, siltstone and claystone facies were selected for
palynological processing, reflecting minimal depositional transport (Folk, 1980), except where
indicated in appendices 3 and 4. Palynomorph concentrations for each sample spiked with
Lycopodium were calculated by employing the method outlined by Benninghoff (1962; see
Appendix 3); however, owing to the low concentrations of counted Lycopodium spores, absolute
palynomorph concentrations could not be determined reliably for most samples in PHKB-1.

Ordination data treatment and indices

For nMDS, the abundance data needed to be standardized across both well successions,
and this was conducted in a series of stages. Firstly, within PHKB-1, Count 1 was selected where
possible (because of the higher sample counts), and Count 2 data for the remaining samples in
that well. Secondly, data categories shared by both successions could be compared without
regrouping, whereas more finely-partitioned data required amalgamation into broader
morphological categories (‘lumping’) which could then be compared across all count data sets.
Thirdly, samples were excluded if they failed to meet the minimum palynomorphs count number
of 250, including functionally barren samples (14 samples in total from PHKB-1, seven from
CCC-27; see Appendix 3). Finally, palynomorph categories that were recorded from single
samples (‘singletons’) were excluded in order to decrease statistical noise.

Ordination analyses were conducted on two versions of the compiled data: 1, relative
abundance; and 2, presence/absence. Relative abundances were calculated as a proportion of the
total count of each sample, thus standardizing for different count sizes. NMDS ordination
analyses were conducted on these relative abundance data, and on two types of transformed
fossil data sets: 1, a logarithmic function (e.g., Spicer and Hill, 1979; Slater and Wellman, 2015);
and 2, a square root function. These transformations were performed to compress the abundance
ranges, without altering their relative rank-orders. The Bray-Curtis similarity index was
employed for all variants of the relative abundance data; this is algebraically equivalent to the
Bray-Curtis dissimilarity index (Bray and Curtis, 1957). The combination of nMDS and Bray-
Curtis index has been demonstrated to be a reliable ordination method for quantitative ecological
data (Minchin, 1987). For the presence/absence ordination, all palynomorph group abundances
were converted to binary, where the absence of a palynomorph group = 0, and presence = 1. The
Jaccard index of similarity was chosen for the presence/absence ordination because it has
consistently proven reliable for intergroup differences in binary ecological data (Hubélek, 1982).
Ordination analysis was conducted on a binary variant of the data set because, although
anomalously high taxon abundances can greatly influence the ordination of abundance data sets,
binary data are immune to this effect. A comparison of presence/absence and relative abundance
ordinations should reveal which samples are contributing inordinately to the dissimilarity
between palynomorph assemblages. Furthermore, both ordination techniques were included in
this study because temporal differentiation (biozones) was probably a major factor controlling
the differences between assemblages, and these zones are defined partly on taxon acmes and
partly on taxon first appearances. Relative abundance ordination is more relevant for
differentiating the former, whereas presence/absence ordination should reveal the latter.
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