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Site Descriptions and Sample Ages 7 
 8 
 The wood fossils analyzed in this study were recovered from 4 localities. 9 
Geologic descriptions and age control are given as follows. 10 
 11 
Banks Island, Arctic Canada (Early Eocene) 12 
Wood samples were collected from the Cyclic Member of the Eureka Sound Formation 13 
at the Eames River site on northern Banks Island, Northwest Territories (~74o N) 14 
(Padilla et al., 2014; Schubert et al., 2012). The site is dated to early Eocene in age 15 
based on palynology, including the presence of Platycarya, rare fossil turtle shell 16 
fragments identified as Emydidae (pond turtles, collected by Jaelyn Eberle in 2004), 17 
and sharks’ teeth referred to the genus Physogaleus (Carcharhinidae) collected from 18 
marine sediments. Sharks’ teeth referred to Striatolamia (Odontaspididae; sand tigers), 19 
which have a Paleocene-Eocene distribution, are also known from the site (Padilla et 20 
al., 2014). Wood fossils from the nearby Muskox River site were previously described in 21 
Schubert et al. (2012). 22 
 23 
Nanning, China  (Oligocene) 24 
Fossil wood samples were collected from the Yongning Formation of the south China 25 
Nanning Basin (22.881° N, 108.417° E). The wood is part of a Konservat-Lagerstätte 26 
that preserves tree trunks, branches, roots, leaves, fruiting bodies, seeds, and fungi, as 27 
well as invertebrate and vertebrate fossils (Huang et al., 2018; Quan et al., 2016; Ying 28 
et al., 2018). The age for the site is assigned based on anthracotheriid mammals and a 29 
late Oligocene tragulid (Zhao, 1993). The fossil wood is preserved in a single, fining-30 
upward deposit that occurs between deepwater lacustrine mudstones (Quan et al., 31 
2016). Rounded gravels and the dense accumulation of fossils indicate that the 32 
Lagerstätte was rapidly deposited in a single event. Palynology of the lacustrine 33 
mudstones and the wood-bearing interval indicates a conifer-dominated, temperate 34 
forest surrounded the lake basin (Ying et al., 2018). 35 
 36 
Yunnan, China (late Miocene) 37 
 Wood fossils were collected from the Xiaolongtan Formation (25.416° N, 38 
102.850° E) in the Yunnan Province, China (Xing et al., 2010). The Xiaolongtan 39 
Formation consists of interbedded coal, lignite, mudstone, siltstone, and diatomite. A 40 
late Miocene age was determined based on mammalian fauna (Dong, 2001; Zhang, 41 
1974) and floral assemblages (Wang et al., 1999; Zhou, 1985; Zhou, 2000). 42 
 43 
Finish Stream, Sakha Republic, Russia (late Miocene) 44 
Fossil wood was collected from the Upper Miocene Khapchansky horizon at “Finish 45 
Stream” in far northeastern Siberia (present-day coordinates: 68.724° N, 161.587° E; 46 



paleolatitude: 71–72° N (van Hinsbergen et al., 2015), as described within (Schubert et 47 
al., 2017). The sediments contain silt lenses and ferruginous sands containing plant 48 
detritus and the wood fragments sampled here. A palynological analysis was consistent 49 
with the late Miocene age for the site. A lack of thermophilic angiosperm pollen 50 
suggests the sediments postdate the Miocene Climate Optimum (17 to 15 Ma); 51 
stratigraphic position below the very coarse-grained Lower Pliocene Begunovsky 52 
horizon suggests the wood predates the early Pliocene. Details on the Finish Stream 53 
locality, stratigraphy, wood fossils, and palynological analysis can be found within 54 
(Schubert et al., 2017). 55 
 56 
Analytical Methods 57 
 58 
Fossil samples were dried overnight at 40-50°C and then ground and homogenized in 59 
an agate mortar and pestle. Where growth rings were visible, homogenized samples 60 
typically included between 2-5 rings. Powdered whole wood samples were wrapped in 61 
tin capsules and stored in a desiccator. Aliquots of the same powders were set aside for 62 
cellulose extraction. Cellulose (α-cellulose) was extracted using the Brendel method 63 
(Brendel et al., 2000), modified with a NaOH treatment (Gaudinski et al., 2005). The 64 
NaOH washing has been shown to prevent addition of C and N to cellulose, and to 65 
remove excess residues of lipids and waxes (Gaudinski et al., 2005). Cellulose content 66 
was calculated as the difference in sample mass before and after extraction and is 67 
reported in weight percent. Cellulose content could not be accurately measured for 68 
some samples that contained detrital silicate mineral grains left behind in extracted 69 
cellulose, and are reported as “NA” in Table DR2. 70 
The isotopic composition of extracted cellulose and whole wood was analyzed using a 71 
Delta V Advantage Isotope Ratio Mass Spectrometer (Thermo Fisher) coupled to a 72 
Thermo Finnigan Elemental Analyzer (Flash EA1112 Series, Bremen, Germany) at 73 
the University of Louisiana at Lafayette. Three internal lab standards were used for 74 
carbon isotope ratio calibration (JGLY, –43.51‰; JHIST, –8.15‰; and JRICE, –75 
27.44‰); a fourth (JGLUC, –10.52‰) was analyzed as an unknown quality assurance 76 
sample. Analytical precision of the quality control sample was ± 0.2‰ (± 1σ, n = 10). 77 
All isotope ratios are reported relative to the Vienna Pee Dee Belemnite (VPDB) 78 
standard: δ13C = [(Rsample/Rstandard) – 1] * 1000, where R is the ratio of 13C to 12C. The 79 
internal reference materials were calibrated within our laboratory and normalized to 80 
VPDB using NBS-19 calcium carbonate (δ13C consensus value = 1.95‰) and LSVEC 81 
lithium carbonate (δ13C consensus value = -46.6‰), which define the VPDB scale 82 
(Coplen et al., 2006). All isotope ratios are reported relative to the Vienna Pee Dee 83 
Belemnite (VPDB) standard: δ13C = [(Rsample/Rstandard) – 1] * 1000, where R is the ratio 84 
of 13C to 12C. 85 
 86 
Estimation of pCO2 Using Fossil Wood 87 
 88 
 We determined pCO2 at the Toarcian CIE using the following equation that 89 
relates changes in net carbon isotope discrimination [Δ13C = (δ13Catm - δ13Cwood) / (1 + 90 
δ13C/1000)] between two time points (time t and t = 0) to changes in pCO2 (Schubert and 91 
Jahren 2015): 92 



 93 
[(δ13Catm(t) - δ

13C(t)) / (1 + δ13C(t)/1000)] - [(δ13Catm(t=0) - δ
13C(t=0)) / (1 + δ13C(t=0)/1000)] = 94 

[(A)(B)(pCO2(t) + C)] / [(A + (B)(pCO2(t) + C)] – [(A)(B)(pCO2(t=0) + C)] / [(A + 95 
(B)(pCO2(t=0) + C)] (Eqn. DR1) 96 
 97 
where time t is the peak of the carbon isotope excursion (stratigraphic height between 98 
1780 and 2080 cm; Hesselbo et al., 2007) and time t = 0 is the post-industrial Holocene. 99 
Within Eqn. (DR1), we set A = 28.26, B = 0.22, and C = 23.9 (Schubert and Jahren, 100 
2015); δ13Catm(t=0) = -7.6‰ (Keeling et al., 2001) and δ13Catm(t) = -7.2‰ (using bulk 101 
marine carbonate δ13C from Hesselbo et al., 2007, and assuming a 7‰ offset between the 102 
bulk marine carbonate δ13C value, after Prokoph et al., 2008); δ13C(t=0) = -24.4‰ (median 103 
post-industrial evergreen gymnosperm δ13Cwood value; Table DR2, n = 139); and 104 
pCO2(t=0) = 350 ppm (Keeling et al., 2001). When using δ13C(t) = -29.4‰ (median 105 
δ13Cwood at time t, Hesselbo et al., 2007, n = 10), Eqn. (DR1) yields pCO2(t) = 2154 ppm. 106 
Although cellulose content was not measured in these samples, trends observed in our 107 
Cenozoic dataset suggest that cellulose content was likely low (i.e., < 1%) in these 108 
Mesozoic samples, suggesting an inherent bias of ~1.4‰ compared to background 109 
modern δ13Cwood values. Adjusting δ13C(t) by 1.4‰ (i.e., δ13C(t) = -28.0‰ versus -29.4‰) 110 
to account for this cellulose loss yields pCO2(t) = 1039 ppm (Eqn. DR1), or 1115 ppm 111 
lower than pCO2(t) calculated without accounting for diagenesis (i.e., 2154 ppm). We note 112 
that this corrected pCO2(t) estimate (i.e., 1039 ppm) overlaps with an estimate of 1200 ± 113 
400 ppm based on fossil leaf stomatal frequency (McElwain et al., 2005).   114 



Supplemental Figures 115 
 116 

 117 
Figure DR1. Representative samples of deep-time mummified (non-permineralized) 118 
wood used in this study. All scale bars are 1 cm wide. A) Sample IC-02 from Early 119 
Eocene, Banks Island, Canada. Cellulose yield = 0.6%, ε = 2.7‰. Note very thin 120 
growth rings on front cross-section. Marks on recessed cross-sectional face are saw cut 121 
marks. B) Sample ER-05_02 from Early Eocene, Banks Island, Canada. Cellulose 122 
yield could not be calculated due to sediment admixed with extracted cellulose, ε = 123 
3.1‰. Faint growth rings present. C) Sample NNW069 from Oligocene, Nanning, 124 
China. Cellulose yield = 44.5%, ε = 1.3‰. Note growth rings on roughly polished front 125 
cross-section. D) Sample NNW40 from Oligocene, Nanning, China. Cellulose yield = 126 
1.7%, ε = 3.3‰. Thin growth rings are present. E) Sample FC13-04 from Miocene, 127 
Finish Stream, Russia. Cellulose yield = 18.9%, ε = 2.3‰. Thin growth rings are 128 
present. F) Sample NF01 from Miocene, Yunnan, China. Cellulose yield = 2.7% ε = 129 
3.2‰. Growth rings present.  130 



 131 
Figure DR2. Boxplots of deep-time δ13Cwood and δ13Ccell values, with lines connecting 132 
paired samples (n = 38). Boxes extend from the first to third quartile; bold crossbar 133 
indicates second quartile (median). Whiskers extend to 1.5 times the interquartile 134 
range (third quartile minus first quartile). The δ13Cwood values are significantly lower 135 
than δ13Ccell values (Wilcoxon test, p < 0.001); δ13Ccell values are higher than δ13Cwood 136 
in every pair (gray tie lines).   137 



 138 
Figure DR3. Cross-plot of δ13Ccell versus δ13Cwood for all Holocene data (12 ka to 139 
present), coded by angiosperms and gymnosperms. Gymnosperms have significantly 140 
higher δ13Ccell and δ13Cwood values than angiosperms (Wilcoxon test, p < 0.001 for 141 
each). Deviation from the 1:1 line indicates apparent enrichment (ε) between δ13Ccell 142 
and δ13Cwood. Regression line is for all samples shown. 143 
	  144 
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