Junlai Liu, Xiaoyu Chen, Yuan Tang, Zhijie Song, and Wei Wang, 2019, The Ailao Shan–Red River shear zone revisited: Timing and tectonic implications: GSA Bulletin, https://doi.org/10.1130/B35220.1.

Data Repository

DR 1. Analytical Techniques

DR 2. Whole rock chemistry, Sr-Nd-Hf isotopes of the leucocratic dykes along the ASRR shear zone

- DR 3. Zircon LA-ICP-MS U-Pb Dating results
- DR 4. Analyzed Samples with ages and collected age data
- DR 5. Whole rock Sr-Nd isotopes of the leucocratic dykes along the ASRR shear zone
- DR 6. Zircon Lu-Hf isotope compositions

DR 1. ANALYTICAL TECHNIQUES

1. EBSD techniques

XZ sections (paralleling to lineation and normal to foliation) are cut from the samples and polished using Buehler Mastermet colloidal silica and Buehler grinder-polisher. The LPO data acquisition was finished on a Hitachi S-3400N-II scanning electron microscope mounted with Nordlys EBSD Model NL-II detector with the sections surface inclined at 70° to the incidental beam. The new technique can provide fast data acquisition of mineral grains or part of mineral grains of interest, with 0.1 μ m spatial resolution and 0.5° angular resolution. Acceleration voltage of 15 kV is applied and working distance is 23 mm. EBSP analysis is finished using the HKL Channel 5 software package.

LPO measurements were done on quartz grains using interactive mode due to the very large grain sizes of quartz in the rocks. Several representative windows (8–9) of 500 μ m by 300 μ m in size are chosen for LPO data acquisition. Most of such windows contain representative quartz grains. The data for all the windows are merged to form the data set for the sample. The interactive mode is a reliable way of collecting EBSP data from representative grains or subgrain within the field of view. All the LPO data are presented using equal area, lower hemisphere projection in a structural frame of foliation // XY plane and lineation // X direction.

2. Whole rock chemistry

After petrographic examinations, fresh samples were selected for geochemical analysis. The samples were crushed in a hardened jaw crusher and then powdered in an agate mill to <200 mesh (75µm). Chemical analyses were carried out at the IGG. Major element oxides were analyzed on fused glass disks employing a Pillips PW 1500 X-ray fluorescence spectrometer. The precision accuracy of the major-element data as determined on the Chinese whole-rock basalt standard GSR-3 (Xie et al., 1989) is \leq 3% and ca. 5% (2 σ), respectively. The FeO concentration was determined using a conventional titration procedure.

3. LA-ICP-MS zircon U-Pb geochronology

All zircon grains were separated from whole-rock samples using conventional techniques. After crushing and sieving of the samples, heavy minerals were concentrated by panning and then by magnetic separation. The zircon grains were hand picked and then mounted on an epoxy disc with chips of standard zircons of 91500 zircon age standards (91500–1063 \pm 6Ma, Wiedenbeck et al., 1995) for the LA-ICP-MS analyses. These zircons were then carefully polished until their cores were exposed. Cathodoluminescent (CL) images of the zircons combined with reflected and transmitted light images were used to morphologically target distinct areas on the zircons for the LA-ICP-MS analyses. The CL images were obtained by a Mini CL attached to a scanning electron microscope (LEO1450VP) at the Electron Microprobe Laboratory at the Institute of Geology and Geophysics (IGG), Chinese Academy of Sciences, Beijing. The LA-ICP-MS analyses were finished at the same Institution. The analyses were conducted using an Agilent ICP-MS equipped with a 193 nm laser ablation. The zircon standard 91500 was used as the external calibration standard. The collected data were then adjusted by GLITTER, a data reduction software package for LA-ICP-MS. The zircon U-Pb concordia plots and weighted ages were calculated by the Isoplot program. The detailed analytical procedure, identical to those described by Yuan et al. (2008), can also be found in Xie et al. (2008).

4. Isotopes

Samples for isotope analysis were dissolved in Teflon bombs after being spiked with ⁸⁴Sr, ⁸⁷Sr, ¹⁵⁰Nd and ¹⁴⁷Sm tracers before HF+HNO₃ (with a ratio of 2:1) dissolution. Rb, Sr, Sm and Nd were separated using conventional ion exchange procedures as described by Yang et al. (2004). Sr-Nd isotopic data were measured on a MAT 262 mass spectrometer. The Sr and Nd isotope ratios were respectively normalized to ⁸⁶Sr/⁸⁸Sr = 0.1194 and ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. Typical within-run precision (2σ) for Sr and Nd was estimated to be ± 0.000015. The BCR-2 Nd standards and NBS-987 Sr standard were ¹⁴³Nd/¹⁴⁴Nd = 0.512630 ± 12 (2σ , n = 2) and ⁸⁷Sr/⁸⁶Sr = 0.710252 ± 11 (2σ , n = 1). The initial ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratios were calculated using their Zircon U-Pb LA-ICP-MS ages.

In situ zircon Hf isotopic analyses were conducted using a Neptune MC-ICP-MS, equipped with a 193 nm laser, at the IGG. The spot sizes were either 32 or 63 μ m. Detailed analytical technique was described in Wu et al. (2006). Initial ¹⁷⁶Hf/¹⁷⁷Hf ratios ϵ Hf(t) are calculated with reference to the chondritic reservoir (CHUR) of Blichert-Toft and Albarede (1997) at the time of zircon growth from the magma. The single-stage Hf model age (tDM1) is calculated relative to the depleted mantle with present-day ¹⁷⁶Hf/¹⁷⁷Hf = 0.28325 and ¹⁷⁶Lu/¹⁷⁷Hf = 0.0384 (e.g., Griffin et al. 2000). Two-stage model ages (tDMC) are calculated for the source rock of the magma by assuming a mean ¹⁷⁶Lu/¹⁷⁷Hf value of 0.015 for the average continental crust (Griffin et al. 2002).

REFERENCES CITED

- Blichert-Toft, J., Albarede, F., 1997, The Lu–Hf isotope geochemistry of chondrites and evolution of mantle-crust system: Earth and Planetary Science Letters, v. 148, p. 243–258.
- Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Van Achterbergh, E., O'Reilly, S.Y., and Shee, S.R., 2000, The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites: Geochimica et Cosmochimica Acta, v. 64, p. 133–147, <u>https://doi.org/10.1016/S0016-7037(99)00343-9</u>.
- Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., Oreilly, S.Y., Xu, X.S., and Zhou, X.M., 2002, Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes: Lithos, v. 61, p. 237–269, https://doi.org/10.1016/S0024-4937(02)00082-8.

- Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quardt, A., Roddick, J.C., and Spiegel, W., 1995, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses: Geostandards Newsletter, v. 19, p. 1–23, doi:<u>https://doi.org/10.1111/j.1751-908X.1995.tb00147.x</u>.
- Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H., and Xu, P., 2006, Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology: Chemical Geology, v. 234, p. 105–126, <u>https://doi.org/10.1016/j.chemgeo.2006.05.003</u>.
- Xie, X.J., Yan, M.C., Wang, C.S., Li, L.Z., and Shen, H.J., 1989, Geochemical standard reference samples GSD-9–12, GSS-1–8 and GSR-1–6: Geostandards Newsletter, v. 13, p. 83–179, https://doi.org/10.1111/j.1751-908X.1989.tb00469.x.
- Xie, L.W., Zhang, Y.B., Zhang, H.H., Sun, J.F., and Wu, F.Y., 2008, In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite: Chinese Science Bulletin, v. 53, p. 1565–1573.
- Yang, J.H., Chung, S.L., Zhai, M.G., and Zhou, X.H., 2004, Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle: Lithos, v. 73, p. 145–160, <u>https://doi.org/10.1016/j.lithos.2003.12.003</u>.
- Yuan, H.L., Gao, S., Dai, M.N., Zong, C.L., Günther, D., Fontaine, G.H., Liu, X.M., and Diwu, C.R., 2008, Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiplecollector ICP-MS: Chemical Geology, v. 247, p. 100–118, <u>https://doi.org/10.1016/j.chemgeo.2007.10.003</u>.

Serial	Sample No	Rock type	SiO ₂	Al_2O_3	TFe ₂ O ₃	MgO	CaO	Na₂O	K ₂ O	TiO ₂	P_2O_5	MnO	Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr(i)	$\epsilon_{Nd}(t)$	$\epsilon_{\rm Hf}(t)$
							Pre-Ki	inematic d	ykes							
1	AL0623-3-2	Granodiorite	61.32	16.59	6.3	1.48	6.22	5.18	0.93	0.91	0.4	0.19	33.3±1.2	0.70707	-4.81	-3.6~+3.2
2	AL08138-2	Monzogranite	70.44	15.83	1.35	0.41	1.32	3.54	5.3	0.2	0.063	0.034	33.8±1.3	0.70915	-5.69	-7.9~+4.3
3	AL08149-1	Granite	72.38	15.1	1.24	0.35	1.08	3.67	5.11	0.18	0.1	0.027	30.9±0.7	N/A	N/A	-2.4~+5.7
4	AL08153-2	Two-mica granite	77.3	13.82	0.47	0.19	2.24	4.49	1.14	0.059	0.029	0.01	30.42±0.72	0.70981	-7.11	-0.4~+3.9
5	DC08-2-a	Monzonite	61.91	16.02	5.02	1.89	3.73	4.49	5.31	0.62	0.4	0.11	33.5±1.8	0.70686	-3.31	-1.9~+2.8
6	DC0835-2	Granite					N/#	4					33.4±1.7	N/A		-2.7~+4.8
7	DC0623-1	POR monzogranite					N/#	4					30.95±0.61	0.70840	-7.98	N/A
							Syn- K	inematic d	ykes							
8	AL0623-3-1	Granite	70.43	15.47	1.29	0.25	2.07	3.35	6.43	0.15	0.088	0.034	25.65±0.46	0.70710	-5.83	-1.9~1.9
9	AL0814-2	Granite	67.57	15.44	2.29	0.52	2.09	3.78	7.11	0.35	0.18	0.056	25.9±1.6	0.70698	-6.81	-5.0~-1.1
10	DC08-2-1	PEG					N/#	4					25.49±0.41	N/A		-3.0~+0.6
11	DC0822-1	Two-mica granite	73.08	14	1.6	0.41	1.28	3.94	4.64	0.25	0.1	0.031	26.95±0.34	0.70860	-8.06	-7.5~-2.1
12	AL06135-3	Granite	75.36	13.55	1.14	0.19	2.21	3.45	3.23	0.24	0.075	0.02	26.78±0.62	0.72560	-9.76	+2.8~+7.6
13	DC0835-1	Granite	80.24	10.67	0.44	0.08	0.56	3.05	4.08	0.035	0.005	0.005	25.31±0.18	0.70869	-7.89	-6.4~-2.0
14	Al06103-2	PEG					N/#	4					25.45±0.54	0.72167	-12.12	-12.0~-7.4
15	AL06175-5	Garnet granite	69.77	16.48	1.02	0.07	1.27	4.06	6.91	0.049	0.007	0.01	23.59±0.83	0.70866	-7.11	-4.6~-+0.7
							Post- K	(inematic c	lykes							
16	DC08-8(5)	MUS PEG					N/#	4					22.91±0.19	0.72057	-7.90	-3.6~-1.2
17	AL0814-1	POR granite	65.67	12.47	1.7	0.87	10.48	2.6	2.37	0.28	0.17	0.071	21.92±0.70	0.7127	-9.27	-10.2~+0.2
18	AL0841-4	Pegmatitic granite					N/#	4					23.05 ±0.41	N/A		-4.5~-1.4
19	AL0841-8	Biotite granite	75.32	13.36	0.6	0.13	0.61	3.23	6.2	0.065	0.038	0.016	21.8±1.0	0.71121	-7.09	+0.5~+4.8
20	DC0810-2	Pegmatitic granite					N/#	4					20.37±0.43	0.73116	-2.39	+2.1~+6.8

DR 2 Whole rock chemistry, Sr-Nd-Hf isotopes of the leucocratic dykes along the ASRR shear zone

PEG-pegmatite; POR-Porphyritic; MUS-Muscovite; N/A-Data not available (not analyzed).

G (1	Cor	ntent	TTI/II			Isotopic	ration				Age	(Ma)	
Spot number	Th	U	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²³⁵ U	lσ	²⁰⁶ Pb/ ²³⁸ U	1σ
AL0623-3-1													
AL0623-3-1 01	24.23	2817.18	0.01	0.0416	0.0019	0.0222	0.0009	0.0039	0.0001	22.3	0.9	24.9	0.7
AL0623-3-1 02	147.90	4561.20	0.03	0.0420	0.0015	0.0221	0.0008	0.0038	0.0001	22.2	0.7	24.6	0.7
AL0623-3-1 03	24.80	1623.66	0.02	0.0422	0.0024	0.0229	0.0013	0.0039	0.0001	23.0	1.0	25.3	0.8
AL0623-3-1 04	36.19	4930.19	0.01	0.0461	0.0013	0.0252	0.0006	0.0040	0.0001	25.3	0.6	25.5	0.6
AL0623-3-1 07	19.33	2664.51	0.01	0.0430	0.0019	0.0224	0.0009	0.0038	0.0001	22.5	0.9	24.3	0.7
AL0623-3-1 10	35.03	2219.69	0.02	0.0460	0.0018	0.0248	0.0009	0.0039	0.0001	24.8	0.9	25.2	0.7
AL0623-3-1 12	24.13	2996.61	0.01	0.0425	0.0014	0.0228	0.0007	0.0039	0.0001	22.9	0.7	25.1	0.6
AL0623-3-1 13	43.30	1698.49	0.03	0.0460	0.0019	0.0255	0.0010	0.0040	0.0001	25.6	1.0	25.9	0.7
AL0623-3-1 14	25.03	4120.27	0.01	0.0424	0.0013	0.0219	0.0007	0.0037	0.0001	22.0	0.6	24.1	0.6
AL0623-3-1 16	44.31	5079.97	0.01	0.0437	0.0011	0.0243	0.0006	0.0040	0.0001	24.4	0.6	26.0	0.6
AL0623-3-1 17	138.96	14480.98	0.01	0.0440	0.0008	0.0231	0.0004	0.0038	0.0001	23.2	0.4	24.5	0.6
AL06175-5													
AL06175-5 14	1649.27	12302.38	0.13	0.0461	0.0019	0.0237	0.0007	0.0037	0.0001	23.8	0.7	24.1	0.7
AL06175-5 18	25280.98	23084.42	1.10	0.0483	0.0009	0.0257	0.0005	0.0039	0.0001	25.8	0.4	24.8	0.6
AL06175-5 28	164.86	4272.13	0.04	0.0461	0.0019	0.0234	0.0007	0.0037	0.0001	23.5	0.7	23.8	0.7
AL06175-5 02	1573.59	7379.89	0.21	0.0453	0.0010	0.0242	0.0005	0.0039	0.0001	24.3	0.5	25.0	0.6
AL06175-5 03	201.26	9331.15	0.02	0.0486	0.0010	0.0244	0.0005	0.0036	0.0001	24.5	0.4	23.4	0.6
AL06175-5 05	1148.97	11808.00	0.10	0.0439	0.0009	0.0230	0.0005	0.0038	0.0001	23.1	0.5	24.5	0.6

DR 3 Zircon LA-ICP-MS U-Pb Dating results

AL06175-5 07	210.07	5431.01	0.04	0.0497	0.0014	0.0265	0.0007	0.0039	0.0001	26.6	0.7	24.9	0.6
AL06175-5 08	441.95	5867.95	0.08	0.0478	0.0021	0.0254	0.0010	0.0039	0.0001	25.5	1.0	24.8	0.8
AL06175-5 21	5352.11	21647.18	0.25	0.0475	0.0011	0.0229	0.0005	0.0035	0.0001	22.9	0.5	22.4	0.6
AL0814-1													
AL0814-1 03	114.89	2096.05	0.05	0.0461	0.0021	0.0229	0.0007	0.0036	0.0001	23.0	0.7	23.2	0.7
AL0814-1 05	98.93	2380.86	0.04	0.0461	0.0017	0.0220	0.0006	0.0035	0.0001	22.1	0.6	22.3	0.6
AL0814-1 06	426.78	4137.00	0.10	0.0448	0.0014	0.0201	0.0006	0.0033	0.0001	20.2	0.6	21.0	0.5
AL0814-1 09	173.20	2329.79	0.07	0.0467	0.0019	0.0231	0.0009	0.0036	0.0001	23.2	0.9	23.1	0.6
AL0814-1 17	501.82	5314.41	0.09	0.0460	0.0012	0.0208	0.0005	0.0033	0.0001	20.9	0.5	21.1	0.5
AL0814-1 20	481.39	3640.23	0.13	0.0466	0.0015	0.0222	0.0007	0.0035	0.0001	22.3	0.7	22.2	0.6
AL0814-1 23	94.85	1779.45	0.05	0.0459	0.0021	0.0228	0.0010	0.0036	0.0001	22.8	1.0	23.1	0.6
AL0814-1 25	3752.30	21288.70	0.18	0.0488	0.0008	0.0242	0.0004	0.0036	0.0001	24.3	0.4	23.2	0.5
AL0814-1 26	356.47	5458.17	0.07	0.0487	0.0032	0.0229	0.0013	0.0034	0.0001	23.0	1.0	21.9	0.6
AL06135-3													
AL06135-3 21	141.69	927.88	0.15	0.0461	0.0028	0.0277	0.0014	0.0044	0.0001	28.0	1.0	28.1	0.8
AL06135-3 39	1213.79	4724.90	0.26	0.0521	0.0016	0.0304	0.0009	0.0042	0.0001	30.4	0.8	27.2	0.4
AL06135-3 40	677.88	3097.79	0.22	0.0486	0.0022	0.0271	0.0011	0.0041	0.0001	27.0	1.0	26.0	0.4
AL06135-3 01	484.07	1788.90	0.27	0.0481	0.0027	0.0289	0.0015	0.0044	0.0001	29.0	1.0	28.1	0.7
AL06135-3 02	878.46	4588.13	0.19	0.0518	0.0018	0.0308	0.0010	0.0043	0.0001	30.8	1.0	27.8	0.5
AL06135-3 05	700.33	2929.86	0.24	0.0512	0.0016	0.0299	0.0009	0.0042	0.0001	29.9	0.8	27.3	0.5
AL06135-3 14	1030.80	3443.99	0.30	0.0461	0.0017	0.0270	0.0009	0.0043	0.0001	27.1	0.8	27.4	0.5
AL06135-3 16	794.72	2281.25	0.35	0.0481	0.0030	0.0273	0.0016	0.0041	0.0001	27.0	2.0	26.5	0.5
AL0623-3-2													
AL0623-3-2 02	65.04	455.49	0.14	0.0461	0.0022	0.0344	0.0013	0.0054	0.0002	34.0	1.0	35.0	1.0
AL0623-3-2 04	483.04	1350.21	0.36	0.0551	0.0083	0.0394	0.0057	0.0052	0.0002	39.0	6.0	33.0	1.0

AL0623-3-2 14	2235.94	2131.38	1.05	0.0461	0.0021	0.0329	0.0011	0.0052	0.0002	33.0	1.0	33.0	1.0
AL0623-3-2 16	275.96	1327.62	0.21	0.0506	0.0044	0.0379	0.0031	0.0054	0.0002	38.0	3.0	35.0	1.0
AL0623-3-2 18	197.54	740.16	0.27	0.0561	0.0046	0.0408	0.0031	0.0053	0.0002	41.0	3.0	34.0	1.0
AL0623-3-2 22	22.40	65.10	0.34	0.0531	0.0077	0.0370	0.0051	0.0051	0.0002	37.0	5.0	32.0	1.0
AL0623-3-2 23	88.11	180.94	0.49	0.0510	0.0035	0.0336	0.0021	0.0048	0.0002	34.0	2.0	31.0	1.0
AL0623-3-2 27	1249.32	1425.60	0.88	0.0461	0.0042	0.0340	0.0023	0.0054	0.0003	34.0	2.0	34.0	2.0
AL08138-2													
AL08138-2 01	1369.17	3480.28	0.39	0.0473	0.0054	0.0345	0.0038	0.0053	0.0002	34.0	4.0	34.0	1.0
AL08138-2 04	1165.35	6468.10	0.18	0.0499	0.0051	0.0383	0.0037	0.0056	0.0002	38.0	4.0	36.0	1.0
AL08138-2 16	299.28	5679.25	0.05	0.0464	0.0024	0.0321	0.0016	0.0050	0.0001	32.0	2.0	32.2	0.8
AL08138-2 17	651.04	2458.01	0.26	0.0535	0.0056	0.0396	0.0041	0.0054	0.0002	39.0	4.0	35.0	1.0
AL08138-2 18	1050.61	4443.31	0.24	0.0461	0.0020	0.0345	0.0013	0.0054	0.0001	34.0	1.0	34.9	0.8
AL08138-2 24	1178.98	6791.19	0.17	0.0461	0.0027	0.0320	0.0017	0.0050	0.0001	32.0	2.0	32.4	0.8
AL08138-2 27	1214.23	6461.49	0.19	0.0493	0.0039	0.0352	0.0027	0.0052	0.0001	35.0	3.0	33.3	0.9
AL08153-2													
AL08153-2 02	1160.61	18566.77	0.06	0.0446	0.0007	0.0301	0.0005	0.0049	0.0001	30.1	0.4	31.4	0.7
AL08153-2 03	773.08	12075.33	0.06	0.0441	0.0010	0.0295	0.0006	0.0048	0.0001	29.5	0.6	31.1	0.8
AL08153-2 04	1398.18	16793.04	0.08	0.0443	0.0007	0.0295	0.0005	0.0048	0.0001	29.6	0.5	31.1	0.7
AL08153-2 07	158.94	5972.39	0.03	0.0462	0.0010	0.0298	0.0006	0.0047	0.0001	29.8	0.6	30.1	0.7
AL08153-2 10	377.61	7838.13	0.05	0.0475	0.0011	0.0295	0.0006	0.0045	0.0001	29.5	0.6	28.9	0.7
AL08153-2 12	196.81	4052.79	0.05	0.0480	0.0014	0.0331	0.0009	0.0050	0.0001	33.0	0.9	32.2	0.8
AL08153-2 14	448.59	7455.33	0.06	0.0454	0.0013	0.0315	0.0009	0.0050	0.0001	31.5	0.8	32.3	0.8
AL08153-2 15	173.87	5153.65	0.03	0.0479	0.0019	0.0307	0.0011	0.0046	0.0001	31.0	1.0	29.8	0.8
AL08153-2 18	914.66	14768.34	0.06	0.0483	0.0012	0.0310	0.0007	0.0047	0.0001	31.0	0.7	29.9	0.7
AL08153-2 19	715.68	6141.96	0.12	0.0463	0.0012	0.0321	0.0008	0.0050	0.0001	32.1	0.8	32.3	0.8

AL08153-2 23	507.18	0072.24	0.06										
	00/110	88/2.34	0.06	0.0485	0.0011	0.0304	0.0007	0.0045	0.0001	30.4	0.7	29.2	0.7
AL08153-2 24	1006.06	14360.69	0.07	0.0474	0.0011	0.0297	0.0007	0.0045	0.0001	29.7	0.7	29.2	0.7
AL08153-2 25	908.94	14173.22	0.06	0.0479	0.0013	0.0297	0.0007	0.0045	0.0001	29.7	0.7	28.9	0.7
AL08153-2 26	1130.15	15145.18	0.07	0.0463	0.0017	0.0306	0.0009	0.0048	0.0001	30.6	0.8	30.9	0.8
DC08-2-a													
DC08-2-a 02	122.93	201.68	0.6095	0.04965	0.01781	0.03161	0.01119	0.00462	0.00027	32	11	30	2
DC08-2-a 03	674.98	525.09	1.2855	0.04234	0.01225	0.02785	0.0079	0.00477	0.00028	28	8	31	2
DC08-2-a 05	183.82	330.89	0.5555	0.04471	0.00983	0.02981	0.00636	0.00484	0.00026	30	6	31	2
DC08-2-a 07	553.15	612.96	0.9024	0.04764	0.00555	0.03085	0.00347	0.0047	0.00015	31	3	30.2	1
DC08-2-a 10	79.63	158.69	0.5018	0.04605	0.00282	0.03057	0.00144	0.00482	0.00019	31	1	31	1
DC08-2-a 11	86.34	136.59	0.6321	0.04694	0.01649	0.03225	0.01113	0.00499	0.00033	32	11	32	2
DC08-2-a 13	97.91	158.26	0.6187	0.04605	0.00376	0.03289	0.00216	0.00518	0.00025	33	2	33	2
DC08-2-a 17	324.41	402.45	0.8061	0.04093	0.00668	0.03136	0.00498	0.00557	0.00022	31	5	36	1
DC08-2-a 23	149.87	376.73	0.3978	0.05345	0.00635	0.04041	0.00461	0.0055	0.00019	40	4	35	1
DC08-2-a 25	164.95	238.03	0.693	0.04521	0.0112	0.03349	0.0081	0.00539	0.0003	33	8	35	2

DR 4. Analyzed Samp	oles with ag	es and co	llected age data	
1) Analyzed Samples	with ages			
	Sample	Number	Age (Ma)	Reference
Pre-kinematic dykes				
	AL08153-	-2	30.42±0.72	This Study
	AL08138-	-2	33.8±1.3	This Study
	AL0623-3	3-2	33.3±1.2	This Study
	AL08149-	-1	30.9±0.7	Tang et al., 2013
	DC08-2-a		33.5±1.8	This Study
	DC0835-2	2	33.4±1.7	Cao et al., 2010b
	DC0623-1		30.95±0.61	Cao et al., 2012

Syn-kinematic dykes

AL0623-3-1	25.03±0.39	This Study
AL0814-2	25.9±1.6	Tang et al., 2013
DC08-2-1	25.49±0.41	Cao et al., 2010b
DC0822-1	26.95±0.34	Cao et al., 2010b
AL06135-3	27.09±0.61	This Study
AL06175-5	24.17±0.69	This Study
AL06103-2	25.45±0.54	Liu et al., 2015b
DC0835-1	25.31±0.18	Cao et al., 2010b
DC08-8(5)	22.91±0.19	Cao et al., 2010b

Post-kinematic dykes

AL0814-1	22.25±0.70	This Study	
AL0841-4	$23.05\pm\!\!0.41$	Liu et al., 2015b	
AL0841-8	21.8±1	Tang et al., 2013	
DC0810-2	20.37±0.43	Cao et al., 2010	
			_

2) Collected age data

	0			
Serial	Sample number	Rock type	Age result	Reference
1	11ML-9A	Granitic gneiss	41.0±0.5	Guo, 2017
2	10HH-69G	Granitic gneiss	38.9±1.2	Guo, 2017
3	AOHH-66	Granitic gneiss	38.7±2.0	Guo, 2017
4	Al-4	Granitic gneiss	37.5±0.67	Li et al., 2014
5	15G23-1	Granitic gneiss	36.7±0.5	Ji et al., 2017
6	AL09213-1	Granitic mylonite	36.6±0.1	Tang et al., 2013
7	10HH-80B	Migmatite vein	36.5±1.4	Guo, 2017
8	AL09106-1	Amphibole-bearing	36.0±0.3	Liu et al., 2015b
		granitic mylonite		
9	AL09209-1	Amphibole-bearing	35.72±0.35	Liu et al., 2015b
		granitic mylonite		

10	15G16-1	Granitic gneiss	35.4±0.6	Ji et al., 2017
11	SH-126	Potassic alkaline rock	35.4±0.4	Liang et al., 2007
12	10HH-30B	Syenite	35.1±1.2	Guo, 2017
13	Y81-78	Potassic alkaline rock	35.1±0.3	Liang et al., 2007
14	AL08138-2	Pre-kinematic dykes	33.8±1.3	This study
15	EH1	Granitic leucosomes	33.7±0.3	Liu et al., 2015a
16	DC08-2-a	Pre-kinematic dykes	33.5±1.8	This study
17	DC0835-2	Pre-kinematic dykes	33.4±1.7	Cao et al., 2010b
18	AL0623-3-2	Pre-kinematic dykes	33.3±1.2	This study
19	ES2	Granitic leucosomes	33.2±0.2	Liu et al., 2015a
20	15G12-1	Granitic gneiss	33.0±0.4	Ji et al., 2017
21	ES1	Granitic leucosomes	32.7±0.2	Liu et al., 2015a
22	15YN-66A	Granitic gneiss	32.5±1.1	Guo, 2017
23	11AL09-1	Granitic gneiss	31.2±2.3	Wang et al., 2013a
24	DC0623-1	Pre-kinematic dykes	30.95±0.61	Cao et al., 2012
25	AL08149-1	Granitic mylonite	30.9±0.7	Tang et al., 2013
26	EB2	Granitic leucosomes	30.9±0.3	Liu et al., 2015a
27	11ML-27A	Migmatite vein	30.8±0.4	Guo, 2017
28	SM07-3	Leucogranitic dikes	30.8±0.3	Li et al., 2014
29	AL08153-2	Pre-kinematic dykes	30.42±0.72	This study
30	15G41-1	Granitic mylonite	28.6±0.6	Ji et al., 2017
31	EB3	Granitic leucosomes	27.8±0.2	Liu et al., 2015a
32	AL0866-2	Biotite monzogranitic	27.7±1.0	Liu et al., 2015b
		dyke		
33	11AL17-1	Granitic gneiss	27.4±1.2	Wang et al., 2013a
34	AL09146-3	Granitic dyke	27.2±0.2	Tang et al., 2013
35	AL06135-3	Early syn-kinematic	27.09±0.61	This study
		dykes		
36	ALYJ1615-4-1	Granitic mylonite	27.09±0.48	Chen et al., 2018
37	DC0822-1	Early syn-kinematic	26.95±0.34	Cao et al., 2010b
		dykes		
38	YS-58	Qz-monzonite	26.3±0.3	Schärer et al., 1994
39	AL07-24A	Mylonitic	26.2±0.3	Searle et al., 2010
		biotite-k-feldspar		
		orthogneiss		
40	YS-59	Qz-monzosyenite	26.1±0.3	Schärer et al., 1994
41	AL0814-2	Mylonitic	25.9±1.6	Tang et al., 2013
	15027.1	monzogranitic	25 74:0.55	L. (1. 2017
42	15G37-1	Granitic gneiss	25.74±0.65	J1 et al., 2017
43	¥ S-53	Layered granite	25.8±0.2	Zhang and Schärer, 1999
44	DC08-2-1	Syn-kinematic dykes	25.49±0.41	Cao et al., 2010b

45	AL06103-2	Syn-kinematic dykes	25.45±0.54	Liu et al., 2015b
46	DC0835-1	Syn-kinematic dykes	25.31±0.18	Cao et al., 2010b
47	ALYJ1615-3	Syn-kinematic dykes	25.17±0.23	Chen et al., 2018
48	ALYJ1615-5	Syn-kinematic dykes	25.16±0.50	Chen et al., 2018
49	AL0623-3-1	Syn-kinematic dykes	25.03±0.39	This study
50	AL09106-3	Felsic dykes	24.86±0.3	Liu et al., 2015b
51	15G29-1	Granitic mylonite	24.5±0.3	Ji et al., 2017
52	AL06175-5	Syn-kinematic dykes	24.17±0.69	This study
53	YS-54	Pegmatite	24.1±0.2 3	Schärer et al., 1994
54	YS-11	Garnet leucogranitic	23.0±0.2	Schärer et al., 1994
		layer		
55	DC08-8(5)	Syn-kinematic dykes	22.91±0.19	Cao et al., 2010b
56	YS-9	Garnet leucogranitic	22.8±0.6	Schärer et al., 1994
		layer		
57	YS-60	Pegmatite	22.4±0.2	Schärer et al., 1994
58	AL0814-1	Post-kinematic dykes	22.25±0.70	This study
59	AL0841-4	Granitic pegmatite dyke	23.05±0.41	Liu et al., 2015b
60	AL0841-8	Granitic dyke	21.8±1	Tang et al., 2013
61	10HH-152B	Granitic gneiss	21.7±1.6	Guo, 2017
62	10HH-150B	Migmatite vein	20.9±0.4	Guo, 2017
63	DC0810-2	Post-kinematic dykes	20.37±0.43	Cao et al., 2010a
64	10HH-149B	Granitic gneiss	19.6±1.3	Guo et al., 2017

REFERENCES CITED

- Cao, S.Y., Liu, J.L., Leiss, B., and Zhao, C.Q., 2010a, New zircon U-Pb geochronology of the postkinematic granitic plutons in the Diancang Shan metamorphic massif along the Ailao Shan-Red River shear zone and its geological implications: Acta Geologica Sinica [English edition], v. 84, p. 1474-1487, https://doi.org/10.1111/j.1755-6724.2010.00342.x.
- Cao, S.Y., Liu, J.L., Leiss, B., Neubauer, F., Genser, J., and Zhao, C.Q., 2010b, Oligo-Miocene shearing along the Ailao Shan-Red River shear zone: Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan Massif, SE Tibet, China: Gondwana Research, v. 19, p. 975-993, https://doi.org/10.1016/j.gr.2010.10.006.
- Chen, W., Liu, J.L., Fan, W.K., Feng, J., Yan, J.X., and Dao, H.N., 2018, Multiple stages of granitic dikes along the Ailao Shan-Red River shear zone: Constraints on timing of switch of shear strain types: Acta Petrologica Sinica (Yanshi Xuebao), v. 34, p. 1347-1358.
- Guo, X.F., 2017, Magmatic and Metamorphic Records of the Ailao Shan Tectonic Belt since the Cretaceous and their Tectonic Implications [Ph.D. thesis]: Beijing, University of Chinese Academy of Sciences. 336p.
- Ji, L., Liu, F.L., Wang, F., Cai, J., Wang, W., Tian, Z.H., and Liu, L.S., 2017, Polyphase metamorphism in Diancang Shan-AilaoShan complex zone: Constraints from U-Pb dating and trace elements of zircons in metasedimentary rocks, Gasa area: Acta Petrologica Sinica (Yanshi Xuebao), v. 33, p. 605-621.
- Li, B.L., Ji, J.Q., and Wang, D.D., 2014, Determination of Eocene-Oligocene (30-40 Ma) deformational time by zircon U-Pb SHRIMP dating from leucocratic rocks in the Ailao

Shan-Red River shear zone, southeast Tibet, China: International Geology Review, v. 56, p. 74-87, https://doi.org/10.1080/01431161.2013.819960.

- Liang, H.Y., Campbell, I.H., Allen, C.M., Sun, W.D., Yu, H.X., Xie, Y.W., and Zhang, Y.Q., 2007, The age of the potassic alkaline igneous rocks along the Ailao Shan–Red River shear zone: Implications for the onset age of left-lateral shearing: The Journal of Geology, v. 115, p. 231–242, https://doi.org/10.1086/510801.
- Liu, F.L., Wang, F., Liu, P.H., Yang, H., and Meng, E., 2015a, Multiple partial melting events in the Ailao Shan–Red River and Gaoligong Shan complex belts, SE Tibetan Plateau: Zircon U-Pb dating of granitic leucosomes within migmatites: Journal of Asian Earth Sciences, v. 110, p. 151–169, https://doi.org/10.1016/j.jseaes.2014.06.025.
- Liu, J.L., Chen, X.Y., Wu, W.B., Tang, Y., Tran, M.D., Nguyen, Q.L., Zhang, Z.C., and Zhao, Z.D., 2015b, New tectono-geochronological constraints on timing of shearing along the Ailao Shan–Red River shear zone: Implications for genesis of Ailao Shan gold mineralization: Journal of Asian Earth Sciences, v. 103, p. 70–86, https://doi.org/10.1016/j.jseaes.2014.11.006.
- Schärer, U., Zhang, L.S., and Tapponnier, P., 1994, Duration of strike-slip movements in large scale shear zones: The Red River belt, China: Earth and Planetary Science Letters, v. 126, p. 379–397, https://doi.org/10.1016/0012-821X(94)90119-8.
- Searle, M.P., Yeh, M.W., Lin, T.H., and Chung, S.L., 2010, Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China: Geosphere, v. 6, p. 316–338, https://doi.org/10.1130/GES00580.1.
- Tang, Y., Liu, J.L., Tran, M.D., Song, Z.J., Wu, W.B., Zhang, Z.C., Zhao, Z.D., and Chen, W., 2013, Timing of left-lateral shearing along the Ailao Shan-Red River shear zone: Constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, western Yunnan, China: International Journal of Earth Sciences, v. 102, p. 605-626, https://doi.org/10.1007/s00531-012-0831-y.
- Wang, D.B., Tang, Y., Liao, S.Y., Yin, F.G., Sun, Z.M., Wang, L.Q., and Wang, B.D., 2013, Zircon U-Pb dating and the geological implications of the metamorphic rock series in Ailao Shan Ranges, western Yunnan: Acta Petrologica Sinica (Yanshi Xuebao), v. 29, p. 1261–1278.
- Zhang, L.S., and Schärer, U., 1999, Age and origin of magmatism along the Cenozoic Red River shear belt, China: Contributions to Mineralogy and Petrology, v. 134, p. 67–85, https://doi.org/10.1007/s004100050469.

es of the leucocratic dykes along the ASRR shear zor
--

	t(Ma)	Rb (ppm)	Sr (ppm)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr(i)	Sm (ppm)	Nd (mgg)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	T _{DM1}	T _{DM2}	ε _{νd} (0)	ε _{Nd} (t)	f _{Sm/Nd}
						P	re-Kinematic dy	/kes									l
5	33	9.88	1023.40	0.0280	0.707081	7	0.70707	21.40	95.52	0.1354	0.512378	2	1501			-4.81	-0.31142
e	34	240.52	320.20	2.1750	0.710159	3	0.70915	2.88	17.12	0.1017	0.512326	4	1121			-5.69	-0.48284
	31		I					II	N/A			I					1
ite	30	32.23	330.84	0.2821	0.709934	4	0.70981	0.88	3.97	0.1348	0.512261	5	1713			-7.11	-0.31464
	34	147.60	1607.60	0.2659	0.706984	2	0.70686	7.89	37.58	0.1269	0.512453	2	1223			-3.31	-0.35471
	33								N/A								
nite	31	272.81	277.51	2.8466	0.709647	7	0.70840	4.35	27.96	0.0940	0.512208	3	1199			-7.98	-0.52211
						S	yn- Kinematic dy	ykes									
	26	155.84	1095.40	0.4120	0.707251	13	0.70710	8.77	37.66	0.1408	0.51233	2	1709			-5.83	-0.28442
	26	153.57	105.80	4.2029	0.708587	6	0.70698	4.13	19.25	0.1296	0.512277	2	1579			-6.81	-0.1549
	26								N/A								
ite	27	266.00	307.40	2.5056	0.709539	9	0.70860	4.15	25.50	0.0985	0.512208	2	1245			-8.06	-0.49932
	27	137.72	82.88	4.8116	0.727420	5	0.72560	4.31	18.56	0.1403	0.51233	2	1709			-9.76	-0.28685
	25	234.60	53.24	12.7593	0.713304	9	0.70869	0.76	3.04	0.1522	0.512226	5	2281			-7.89	-0.22616
	24	90.70	196.06	1.3395	0.722138	7	0.72167	2.04	7.59	0.1625	0.512011	4	3366			-12.12	-0.17370
e	24	195.32	495.60	1.1412	0.709030	4	0.70866	0.50	1.47	0.2059	0.512275	4	16224 ?			-7.11	0.04669
						Рс	ost- Kinematic d	ykes									
	23	363.40	27.18	38.7145	0.733802	7	0.72057	6.55	14.94	0.2652	0.512244	4	-2716 ?			-7.90	0.34808
	22	75.56	315.11	0.6944	0.712887	6	0.7127	8.17	29.72	0.1662	0.512158	2	3163			-9.27	-0.1549
i	23		Γ		I			rr	N/A								
e	22	293.35	105.70	8.0358	0.713718	6	0.71121	1.86	7.47	0.1501	0.512268	4	2104			-7.09	-0.23716
)	20	264.60	49.24	15.5600	0.735770	15	0.73116	0.85	3.02	0.1697	0.512512	13	2199			-2.39	-0.13751

ic; MUS-Muscovite; N/A-Data not available (not analyzed).

 $b^{86}Sr \times (e^{\lambda T}-1)$

 $\frac{d}{d^{144}}Nd_{CHUR}(t)-1 \times 10000$ $\frac{d}{s} - \left(\frac{147}{Sm}\frac{Sm}{^{144}}Nd_{s} \times \left(e^{\lambda t}-1\right)\right)$ 56 $\frac{8-0.1967 \times \left(e^{\lambda t}-1\right)}{\frac{1}{4^{144}}Nd_{s}} - 0.51315 / \left(\left(\frac{147}{Sm}\frac{Sm}{^{144}}Nd_{s} - 0.2137\right)\right)$

	Comple No.	Deek time	+(Ma)	Dh (nnm)	Sr (nnm)	87ph /86pm	87 c = /86 c =	2-	87 c = /86 c = (i)	Cma (mmma)	Nd (nnm)	147 pm /144 Md	143 Not /144 Not	27	-	Ŧ	a (0)	a (t)	£
NO	Sample No	коск туре	l(IVIA)	Kb (ppm)	Sr (ppm)	KD/ 51	51/ 51	20	SI/ SI(I)	Sm (ppm)	Na (ppm)	SIII/ NU	ING/ ING	20	I DM1	I DM2	ε _{Nd} (U)	ε _{Nd} (ι)	ISm/Nd
								Pr	e-Kinematic	dykes							-	-	-
1	AL0623-3-2	Granodiorite	33	9.88	1023.40	0.0280	0.707081	7	0.70707	21.40	95.52	0.1354	0.512378	2	1501			-4.81	-0.31142
2	AL08138-2	Monzogranite	34	240.52	320.20	2.1750	0.710159	3	0.70915	2.88	17.12	0.1017	0.512326	4	1121			-5.69	-0.48284
3	AL08149-1	Granite	31								N/A					•	•	•	
4	AL08153-2	Two-mica granite	30	32.23	330.84	0.2821	0.709934	4	0.70981	0.88	3.97	0.1348	0.512261	5	1713			-7.11	-0.31464
5	DC08-2-a	Monzonite	34	147.60	1607.60	0.2659	0.706984	2	0.70686	7.89	37.58	0.1269	0.512453	2	1223			-3.31	-0.35471
6	DC0835-2	Granite	33								N/A								
7	DC0623-1	POR monzogranite	31	272.81	277.51	2.8466	0.709647	7	0.70840	4.35	27.96	0.0940	0.512208	3	1199			-7.98	-0.52211
	1							Sy	n- Kinematic	dykes									
8	AL0623-3-1	Granite	26	155.84	1095.40	0.4120	0.707251	13	0.70710	8.77	37.66	0.1408	0.51233	2	1709			-5.83	-0.28442
9	AL0814-2	Granite	26	153.57	105.80	4.2029	0.708587	6	0.70698	4.13	19.25	0.1296	0.512277	2	1579			-6.81	-0.1549
10	DC08-2-1	PEG	26								N/A								
11	DC0822-1	Two-mica granite	27	266.00	307.40	2.5056	0.709539	9	0.70860	4.15	25.50	0.0985	0.512208	2	1245			-8.06	-0.49932
12	AL06135-3	Granite	27	137.72	82.88	4.8116	0.727420	5	0.72560	4.31	18.56	0.1403	0.51233	2	1709			-9.76	-0.28685
13	DC0835-1	Granite	25	234.60	53.24	12.7593	0.713304	9	0.70869	0.76	3.04	0.1522	0.512226	5	2281			-7.89	-0.22616
14	AI06103-2	PEG	24	90.70	196.06	1.3395	0.722138	7	0.72167	2.04	7.59	0.1625	0.512011	4	3366			-12.12	-0.17370
15	AL06175-5	Garnet granite	24	195.32	495.60	1.1412	0.709030	4	0.70866	0.50	1.47	0.2059	0.512275	4	16224 ?			-7.11	0.04669
				•				Po	st- Kinematic	dykes						•	•	•	
16	DC08-8(5)	MUS PEG	23	363.40	27.18	38.7145	0.733802	7	0.72057	6.55	14.94	0.2652	0.512244	4	-2716 ?			-7.90	0.34808
17	AL0814-1	POR granite	22	75.56	315.11	0.6944	0.712887	6	0.7127	8.17	29.72	0.1662	0.512158	2	3163			-9.27	-0.1549
18	AL0841-4	Granitic PEG	23						•		N/A								
19	AL0841-8	Biotite granite	22	293.35	105.70	8.0358	0.713718	6	0.71121	1.86	7.47	0.1501	0.512268	4	2104			-7.09	-0.23716
20	DC0810-2	Granite (PEG)	20	264.60	49.24	15.5600	0.735770	15	0.73116	0.85	3.02	0.1697	0.512512	13	2199			-2.39	-0.13751

1

DR 5 Whole rock Sr-Nd isotopes of the leucocratic dykes along the ASRR shear zone

PEG-pegmatite; POR-Porphyritic; MUS-Muscovite; N/A-Data not available (not analyzed).

$${}^{87}Sr/{}^{86}Sr_{(i)} = ({}^{87}Sr/{}^{86}Sr)_{s} - ({}^{87}Rb/{}^{86}Sr) \times (e^{\lambda T} - 1)$$

$${}^{87}Rb/{}^{86}Sr = (Rb/Sr) \times 2.8956$$

$$\varepsilon_{Nd(i)} = (({}^{143}Nd/{}^{144}Nd)_{s}(t)/({}^{143}Nd/{}^{144}Nd)_{CHUR}(t) - 1) \times 10000$$

$$({}^{143}Nd/{}^{144}Nd)_{s}(t) = ({}^{143}Nd/{}^{144}Nd)_{s} - ({}^{147}Sm/{}^{144}Nd)_{s} \times (e^{\lambda t} - 1)$$

$${}^{147}Sm/{}^{144}Nd = (Sm/Nd) \times 0.60456$$

$$({}^{143}Nd/{}^{144}Nd)_{CHUR}(t) = 0.512638 - 0.1967 \times (e^{\lambda t} - 1)$$

$$T_{DM} - Nd = 1/\lambda \times \ln(1 + ((({}^{143}Nd/{}^{144}Nd)_{s} - 0.51315)/(({}^{147}Sm/{}^{144}Nd)_{s} - 0.2137)))$$

DR 6 ZIRCON LU-HF ISOTOPE COMPOSITIONS

All the data with yellow color are from inherited zircons that are not plotted on the Figure 9													
Sample	age	176Yb/177Hf(corr)	176Lu/177Hf(corr)	176Hf/177Hf(corr)	2σ	176Hf/177Hfi	eHf(0)	eHf(t)	TDM (Ma)	TDMC	fLu/Hf		(176Hf/177Hf)
										(Ma)			DM,t
AL0814-1													
AL0814-1 60u 8h	n 01 20	0.0092631	0.0004595	0.2826712	1.528E-05	0.282671	-3.6	-3.1	812	1298	-0.99	Post-Shearing	0.283236
AL0814-1 60u 8h	n 02 27.5	0.0092143	0.0003409	0.2824819	1.37E-05	0.282482	-10.3	-9.7	1071	1716	-0.99	Post-Shearing	0.283230
AL0814-1 60u 8h	n 03 23.2	0.0127672	0.0005034	0.2825926	1.467E-05	0.282592	-6.3	-5.8	922	1472	-0.98	Post-Shearing	0.283233
AL0814-1 60u 8h	n 04 20.4	0.0199842	0.0008632	0.282716	1.532E-05	0.282716	-2.0	-1.5	757	1198	-0.97	Post-Shearing	0.283235
AL0814-1 60u 8h	n 05 22.3	0.0157803	0.0006523	0.2825864	1.345E-05	0.282586	-6.6	-6.1	934	1487	-0.98	Post-Shearing	0.283234
AL0814-1 60u 8h	n 06 21	0.0050333	0.0002193	0.2826926	1.379E-05	0.282692	-2.8	-2.4	777	1250	-0.99	Post-Shearing	0.283235
AL0814-1 60u 8h	07 28.8	0.0062146	0.0003206	0.2825903	1.213E-05	0.282590	-6.4	-5.8	921	1474	-0.99	Post-Shearing	0.283229
AL0814-1 60u 8h	n 08 26.7	0.0162447	0.0007258	0.2826364	1.496E-05	0.282636	-4.8	-4.2	866	1373	-0.98	Post-Shearing	0.283231
AL0814-1 60u 8h	n 09 23.1	0.0210395	0.0008763	0.282647	1.655E-05	0.282647	-4.4	-3.9	855	1351	-0.97	Post-Shearing	0.283233
AL0814-1 60u 8h	n 10 24.2	0.0210167	0.0008148	0.2824958	1.272E-05	0.282495	-9.8	-9.3	1065	1688	-0.98	Post-Shearing	0.283233
AL0814-1 60u 8h	n 11 23.9	0.0299544	0.0011974	0.2825449	1.361E-05	0.282544	-8.0	-7.5	1007	1579	-0.96	Post-Shearing	0.283233
AL0814-1 60u 8h	n 12 25.6	0.0351374	0.0013066	0.2826031	1.322E-05	0.282603	-6.0	-5.4	927	1448	-0.96	Post-Shearing	0.283232
AL0814-1 60u 8h	n 13 30	0.0110556	0.0004494	0.282272	1.612E-05	0.282272	-17.7	-17.0	1364	2179	-0.99		0.283229
AL0814-1 60u 8h	n 14 25.7	0.0079201	0.0003006	0.2825026	1.261E-05	0.282502	-9.5	-9.0	1042	1671	-0.99	Post-Shearing	0.283232
AL0814-1 60u 8h	n 15 21.2	0.0187001	0.0008567	0.2826039	1.63E-05	0.282604	-5.9	-5.5	915	1449	-0.97	Post-Shearing	0.283235
AL0814-1 60u 8h	n 16 20.1	0.0253653	0.0011273	0.2825877	1.303E-05	0.282587	-6.5	-6.1	944	1485	-0.97	Post-Shearing	0.283236
AL0814-1 60u 8h	n 17 21.1	0.0057367	0.0002423	0.282702	1.082E-05	0.282702	-2.5	-2.0	765	1229	-0.99	Post-Shearing	0.283235
AL0814-1 60u 8h	n 18 27.1	0.0102139	0.0003698	0.2824733	1.331E-05	0.282473	-10.6	-10.0	1084	1735	-0.99	Post-Shearing	0.283231
AL0814-1 60u 8h	n 19 26.2	0.0370664	0.0014043	0.2826107	1.758E-05	0.282610	-5.7	-5.2	919	1431	-0.96	Post-Shearing	0.283231
AL0814-1 60u 8h	n 20 22.2	0.029594	0.0014331	0.2827182	1.799E-05	0.282718	-1.9	-1.4	766	1193	-0.96	Post-Shearing	0.283234
AL0814-1 60u 8h	n 21 27.6	0.0135191	0.0005067	0.2824659	1.421E-05	0.282466	-10.8	-10.2	1098	1751	-0.98	Post-Shearing	0.283230
AL0814-1 60u 8h	1 22 80	0.0100001	0.0003886	0.2824333	1.483E-05	0.282433	-12.0	-10.2	1140	1794	-0.99		0.283193
AL0814-1 60u 8h	n 23 23.1	0.0116464	0.0004918	0.282667	1.299E-05	0.282667	-3.7	-3.2	818	1306	-0.99	Post-Shearing	0.283233
AL0814-1 60u 8h	1 24 26.8	0.0164195	0.0006919	0.2827609	1.394E-05	0.282761	-0.4	0.2	691	1094	-0.98	Post-Shearing	0.283231
AL0814-1 60u 8h	25 23.2	0.0294443	0.0011537	0.2825352	1.515E-05	0.282535	-8.4	-7.9	1019	1601	-0.97	Post-Shearing	0.283233
AL0814-1 60u 8h	1 26 21.9	0.0292979	0.0011289	0.2825849	1.616E-05	0.282584	-6.6	-6.2	948	1491	-0.97	Post-Shearing	0.283234

AL0814-1 60u 8h 27 352	0.023139	0.0009479	0.2823292	1.619E-05	0.282323	-15.7	-8.2	1302	1875	-0.97		0.282997
AL0814-1 60u 8h 28 898	0.0200391	0.000727	0.2820998	1.461E-05	0.282088	-23.8	-4.4	1613	2063	-0.98		0.282601
AL0814-1 60u 8h 29 26	0.0180092	0.0006962	0.282615	1.698E-05	0.282615	-5.6	-5.0	896	1421	-0.98	Post-Shearing	0.283231
AL0814-1 60u 8h 30 1922	0.0144188	0.0005679	0.2809287	1.938E-05	0.280908 -	-65.2 -	-23.2	3193 -	4 035 -	-0.98 -	_	0.281849
AL0841-4												
AL0841-4 60u 8h 01 23.2	0.0360185	0.0013601	0.2826473	1.389E-05	0.282647	-4.4	-3.9	865	1351	-0.96	Post-Shearing	0.283233
AL0841-4 60u 8h 02 23.9	0.0322906	0.0012343	0.2826459	1.5E-05	0.282645	-4.5	-4.0	865	1354	-0.96	Post-Shearing	0.283233
AL0841-4 60u 8h 03 23.4	0.028625	0.0010878	0.2826838	1.426E-05	0.282683	-3.1	-2.6	808	1269	-0.97	Post-Shearing	0.283233
AL0841-4 60u 8h 04 23.7	0.034345	0.0012971	0.2826245	1.542E-05	0.282624	-5.2	-4.7	896	1402	-0.96	Post-Shearing	0.283233
AL0841-4 60u 8h 05 23.3	0.043479	0.0016634	0.2826364	1.46E-05	0.282636	-4.8	-4.3	888	1376	-0.95	Post-Shearing	0.283233
AL0841-4 60u 8h 06 24	0.0235604	0.0009033	0.2826352	1.59E-05	0.282635	-4.8	-4.3	872	1377	-0.97	Post-Shearing	0.283233
AL0841-4 60u 8h 07 24.7	0.0253159	0.0009693	0.2826292	1.55E-05	0.282629	-5.0	-4.5	882	1390	-0.97	Post-Shearing	0.283232
AL0841-4 60u 8h 08 20.7	0.0756896	0.0028363	0.2826999	2.034E-05	0.282699	-2.5	-2.1	823	1236	-0.91	Post-Shearing	0.283235
AL0841-4 60u 8h 09 21.6	0.0272772	0.001039	0.2826565	1.433E-05	0.282656	-4.1	-3.6	845	1331	-0.97	Post-Shearing	0.283235
AL0841-4 60u 8h 10 22.1	0.0575212	0.0021661	0.2826779	1.948E-05	0.282677	-3.3	-2.9	840	1284	-0.93	Post-Shearing	0.283234
AL0841-4 60u 8h 11 22.7	0.0223778	0.0008478	0.2826894	1.497E-05	0.282689	-2.9	-2.4	795	1257	-0.97	Post-Shearing	0.283234
AL0841-4 60u 8h 12 23.8	0.037479	0.0015099	0.282711	1.584E-05	0.282710	-2.2	-1.7	778	1208	-0.95	Post-Shearing	0.283233
AL0841-4 60u 8h 13 23.4	0.0625234	0.0024947	0.2826811	1.08E-05	0.282680	-3.2	-2.7	843	1276	-0.92	Post-Shearing	0.283233
AL0841-4 60u 8h 14 23.5	0.0568947	0.0021233	0.2826497	1.398E-05	0.282649	-4.3	-3.8	880	1346	-0.94	Post-Shearing	0.283233
AL0841-4 60u 8h 15 21	0.0237311	0.0009056	0.2826765	1.446E-05	0.282676	-3.4	-2.9	814	1286	-0.97	Post-Shearing	0.283235
AL0841-4 60u 8h 16 94	0.0268177	0.0010302	0.2826394	1.992E-05	0.282638	-4.7	-2.7	869	1329	-0.97		0.283183
AL0841-4 60u 8h 17 22.3	0.0337681	0.0012988	0.28272	1.605E-05	0.282719	-1.8	-1.4	760	1189	-0.96	Post-Shearing	0.283234
AL0841-4 60u 8h 18 22.3	0.0523891	0.002031	0.2826857	1.454E-05	0.282685	-3.1	-2.6	826	1266	-0.94	Post-Shearing	0.283234
AL0841-4 60u 8h 19 24.1	0.0360625	0.001361	0.2826876	2.179E-05	0.282687	-3.0	-2.5	808	1260	-0.96	Post-Shearing	0.283233
AL0841-4 60u 8h 20 22.2	0.0408391	0.0016268	0.282659	1.649E-05	0.282658	-4.0	-3.5	855	1326	-0.95	Post-Shearing	0.283234
AL0841-4 60u 8h 21 287	0.0312031	0.0012388	0.2825222	2.256E-05	0.282516	-8.8	-2.8	1040	1484	-0.96		0.283044
AL0841-4 60u 8h 22 464	0.044925	0.0017468	0.2825916	2.161E-05	0.282576	-6.4	3.3	955	1237	-0.95		0.282916
AL0841-4 60u 8h 23 464	0.0162653	0.0006614	0.2825185	1.626E-05	0.282513	-9.0	1.0	1029	1381	-0.98		0.282916
AL0841-4 60u 8h 24 31	0.0313074	0.0012243	0.2825315	1.853E-05	0.282531	-8.5	-7.9	1026	1605	-0.96		0.283228
AL0841-4 60u 8h 25 505	0.0407764	0.0015793	0.2823427	1.925E-05	0.282328	-15.2	-4.6	1305	1770	-0.95		0.282887
DC0810-2												

DC0810-2 60u 8h 01 20.4	0.1124854	0.0058367	0.2828677	1.566E-05	0.282865	3.4	3.8	626	861	-0.82	Post-Shearing	0.283235
DC0810-2 60u 8h 02 22.8	0.0274065	0.0011444	0.2828465	8.945E-06	0.282846	2.6	3.1	578	904	-0.97	Post-Shearing	0.283234
DC0810-2 60u 8h 03 20.7	0.0310321	0.0014322	0.2828229	1.303E-05	0.282822	1.8	2.2	616	958	-0.96	Post-Shearing	0.283235
DC0810-2 60u 8h 04 20	0.123736	0.0058291	0.2829475	1.317E-05	0.282945	6.2	6.6	496	681	-0.82	Post-Shearing	0.283236
DC0810-2 60u 8h 05 21.1	0.0644921	0.0034506	0.2829307	1.094E-05	0.282929	5.6	6.0	488	717	-0.90	Post-Shearing	0.283235
DC0810-2 60u 8h 06 230.7	0.0607109	0.0024338	0.2828004	2.289E-05	0.282790	1.0	5.7	666	901	-0.93		0.283084
DC0810-2 60u 8h 07 211.4	0.0425153	0.0018338	0.2829372	1.972E-05	0.282930	5.8	10.2	457	596	-0.94		0.283098
DC0810-2 60u 8h 08 185.5	0.039418	0.0016066	0.2828424	2.31E-05	0.282837	2.5	6.4	591	824	-0.95		0.283117
DC0810-2 60u 8h 09 184.2	0.0338991	0.001361	0.2828063	2.175E-05	0.282802	1.2	5.1	638	904	-0.96		0.283118
DC0810-2 60u 8h 10 198.8	0.0535258	0.002128	0.282771	2.448E-05	0.282763	0.0	4.0	704	982	-0.94		0.283107
DC0810-2 60u 8h 11 193.3	0.0328215	0.001388	0.2828678	2.514E-05	0.282863	3.4	7.5	551	760	-0.96		0.283111
DC0810-2 60u 8h 12 163.7	0.0475292	0.0020544	0.2827619	2.225E-05	0.282756	-0.4	3.0	715	1021	-0.94		0.283133
DC0810-2 60u 8h 13 21.9	0.0347671	0.0016365	0.2829479	2.414E-05	0.282947	6.2	6.7	439	676	-0.95	Post-Shearing	0.283234
DC0810-2 60u 8h 14 21.3	0.0296325	0.0012548	0.2828725	1.793E-05	0.282872	3.6	4.0	542	846	-0.96	Post-Shearing	0.283235
DC0810-2 60u 8h 15 21.3	0.0373097	0.0017536	0.2829046	1.732E-05	0.282904	4.7	5.1	503	774	-0.95	Post-Shearing	0.283235
DC0810-2 60u 8h 16 20.2	0.0326461	0.0013862	0.2828405	1.301E-05	0.282840	2.4	2.8	590	919	-0.96	Post-Shearing	0.283236
DC0810-2 60u 8h 17 20.8	0.0491794	0.0026724	0.2828653	1.264E-05	0.282864	3.3	3.7	574	864	-0.92	Post-Shearing	0.283235
DC0810-2 60u 6h 18 19.9	0.0388282	0.0016962	0.2828402	1.311E-05	0.282840	2.4	2.8	595	920	-0.95	Post-Shearing	0.283236
DC0810-2 60u 6h 19 22.6	0.0517652	0.003049	0.2828279	1.138E-05	0.282827	2.0	2.4	636	948	-0.91	Post-Shearing	0.283234
DC0810-2 60u 6h 20 24.6	0.1431933	0.0079968	0.2828366	2.053E-05	0.282833	2.3	2.7	724	932	-0.76	Post-Shearing	0.283232
DC0810-2 60u 6h 21 156.1	0.0417001	0.0017063	0.282818	2.107E-05	0.282813	1.6	4.9	628	896	-0.95		0.283138
DC0810-2 60u 6h 22 34.5	0.0685843	0.0039669	0.2828671	1.444E-05	0.282865	3.4	4.0	593	855	-0.88		0.283225
DC0810-2 60u 6h 23 22.1	0.0301692	0.0012676	0.2828318	9.582E-06	0.282831	2.1	2.6	601	937	-0.96	Post-Shearing	0.283234
DC0810-2 60u 6h 24 20.8	0.0352214	0.0014996	0.2828296	1.175E-05	0.282829	2.0	2.5	607	943	-0.95	Post-Shearing	0.283235
DC0810-2 60u 6h 25 20.3	0.028913	0.001408	0.2828701	1.681E-05	0.282870	3.5	3.9	548	852	-0.96	Post-Shearing	0.283235
DC0810-2 60u 6h 26 26.7	0.100983	0.0051237	0.2828529	1.412E-05	0.282850	2.9	3.4	636	892	-0.85	Post-Shearing	0.283231
DC0810-2 60u 6h 27 20.2	0.0640413	0.0028829	0.2829347	1.611E-05	0.282934	5.8	6.2	474	708	-0.91	Post-Shearing	0.283236
DC0810-2 60u 6h 28 20.2	0.0932493	0.0051587	0.2828514	1.532E-05	0.282849	2.8	3.2	639	898	-0.84	Post-Shearing	0.283236
DC0810-2 60u 6h 29 18.8	0.0497169	0.0021288	0.2828528	1.141E-05	0.282852	2.9	3.2	584	893	-0.94	Post-Shearing	0.283237
DC0810-2 60u 6h 30 21.9	0.0300401	0.0012035	0.2828386	1.226E-05	0.282838	2.4	2.8	590	922	-0.96	Post-Shearing	0.283234
DC0810-2 60u 6h 31 21.3	0.055128	0.0025984	0.2829513	1.756E-05	0.282950	6.3	6.8	446	669	-0.92	Post-Shearing	0.283235

DC0810-2 60u 6h 32 22.7	0.0414706	0.0017163	0.2828175	1.077E-05	0.282817	1.6	2.1	628	970	-0.95	Post-Shearing	0.283234
DC0810-2 60u 6h 33 20.9	0.0416824	0.0020208	0.2828594	1.222E-05	0.282859	3.1	3.5	573	877	-0.94	Post-Shearing	0.283235
DC0810-2 60u 6h 34 139.6	0.0578233	0.0022975	0.2828656	2.006E-05	0.282860	3.3	6.2	568	801	-0.93		0.283150
DC0810-2 60u 6h 35 21.6	0.0507385	0.0024033	0.2828602	1.504E-05	0.282859	3.1	3.6	577	875	-0.93	Post-Shearing	0.283235
AL0841-8												
AL0841-8 60u 8h 01 23	0.0713186	0.0029187	0.2828657	1.623E-05	0.282864	3.3	3.8	578	862	-0.91	Post-Shearing	0.283234
AL0841-8 60u 8h 02 21.7	0.1062434	0.0043495	0.2827893	1.335E-05	0.282788	0.6	1.0	721	1036	-0.87	Post-Shearing	0.283234
AL0841-8 60u 8h 03 22.1	0.0771643	0.003252	0.2828522	1.623E-05	0.282851	2.8	3.3	604	893	-0.90	Post-Shearing	0.283234
AL0841-8 60u 8h 04 178	0.0337406	0.0012524	0.2827649	1.807E-05	0.282761	-0.3	3.5	696	1000	-0.96		0.283122
AL0841-8 60u 8h 05 66	0.0227931	0.0008688	0.2827448	1.862E-05	0.282744	-1.0	0.4	717	1108	-0.97		0.283203
AL0841-8 60u 6h 06 22.3	0.0573401	0.002362	0.2828389	1.73E-05	0.282838	2.4	2.8	608	922	-0.93	Post-Shearing	0.283234
AL0841-8 60u 8h 07 22.2	0.1123143	0.0046206	0.2828044	1.534E-05	0.282802	1.1	1.6	703	1002	-0.86	Post-Shearing	0.283234
AL0841-8 60u 6h 08 22.2	0.1218032	0.0049962	0.2828379	1.984E-05	0.282836	2.3	2.7	657	927	-0.85	Post-Shearing	0.283234
AL0841-8 60u 6h 09 24.6	0.0949717	0.0037612	0.2828312	1.559E-05	0.282830	2.1	2.6	644	940	-0.89		0.283232
AL0841-8 60u 6h 10 22.5	0.0994192	0.004063	0.2827736	1.575E-05	0.282772	0.1	0.5	739	1071	-0.88	Post-Shearing	0.283234
AL0841-8 60u 6h 11 22.3	0.056958	0.0023536	0.282838	1.873E-05	0.282837	2.3	2.8	609	924	-0.93	Post-Shearing	0.283234
AL0841-8 60u 6h 12 22.3	0.0794877	0.0033403	0.2828682	2.052E-05	0.282867	3.4	3.8	581	857	-0.90	Post-Shearing	0.283234
AL0841-8 60u 6h 13 23.3	0.1021064	0.0042591	0.2828775	2.144E-05	0.282876	3.7	4.2	582	837	-0.87	Post-Shearing	0.283233
AL0841-8 60u 6h 14 21.2	0.118248	0.0047963	0.2828424	1.777E-05	0.282841	2.5	2.9	646	917	-0.86	Post-Shearing	0.283235
AL0841-8 60u 6h 15 20.7	0.1040921	0.004264	0.2828351	1.571E-05	0.282833	2.2	2.6	648	933	-0.87	Post-Shearing	0.283235
AL0841-8 60u 6h 16 20.5	0.0992137	0.0040654	0.2828302	1.465E-05	0.282829	2.1	2.5	652	944	-0.88	Post-Shearing	0.283235
AL0841-8 60u 6h 17 22.9	0.0622498	0.0025867	0.282855	1.522E-05	0.282854	2.9	3.4	588	886	-0.92	Post-Shearing	0.283234
AL0841-8 60u 6h 18 19.6	0.1350119	0.0055281	0.2828154	2.276E-05	0.282813	1.5	1.9	704	979	-0.83	Post-Shearing	0.283236
AL0841-8 60u 6h 19 168	0.0532465	0.0021112	0.2821622	2.279E-05	0.282156	-21.6	-18.1	1584	2354	-0.94		0.283129
AL0841-8 60u 6h 20 703	0.0273946	0.0012551	0.2822349	1.839E-05	0.282218	-19.0	-4.1	1446	1892	-0.96		0.282743
AL0841-8 60u 6h 21 22.9	0.1102172	0.0046173	0.2828949	2.059E-05	0.282893	4.3	4.8	561	798	-0.86	Post-Shearing	0.283234
AL0841-8 60u 6h 22 451	0.0278327	0.0012246	0.2821913	1.888E-05	0.282181	-20.5	-11.0	1506	2131	-0.96		0.282926
AL0841-8 60u 6h 23 723	0.0168283	0.0008807	0.282536	2.003E-05	0.282524	-8.3	7.2	1011	1190	-0.97		0.282729
AL0841-8 60u 6h 24 395	0.0236143	0.001	0.2823513	1.724E-05	0.282344	-14.9	-6.5	1273	1802	-0.97		0.282966
AL0841-8 60u 6h 25 638	0.0493703	0.0018414	0.2822171	2.134E-05	0.282195	-19.6	-6.4	1494	1985	-0.94		0.282790
DC08-8(5)												

DC08-8(5) 60u 8h 01 25.3	0.0048016	0.0001234	0.2826683	9.029E-06	0.282668	-3.7	-3.1	809	1302	-1.00	Syn-Shearing	0.283232
DC08-8(5) 60u 8h 02 25.4	0.0065571	0.000159	0.2826815	9.255E-06	0.282681	-3.2	-2.6	791	1272	-1.00	Syn-Shearing	0.283232
DC08-8(5) 60u 8h 03 25.2	0.0072774	0.0002089	0.2826816	9.58E-06	0.282682	-3.2	-2.6	792	1272	-0.99	Syn-Shearing	0.283232
DC08-8(5) 60u 8h 04 25	0.0067335	0.0001721	0.2826989	8.963E-06	0.282699	-2.6	-2.0	768	1233	-0.99	Syn-Shearing	0.283232
DC08-8(5) 60u 8h 05 24.4	0.0050876	0.0001129	0.2826807	7.971E-06	0.282681	-3.2	-2.7	791	1274	-1.00	Syn-Shearing	0.283233
DC08-8(5) 60u 8h 06 24.8	0.0078192	0.0002115	0.2826865	7.393E-06	0.282686	-3.0	-2.5	785	1261	-0.99	Syn-Shearing	0.283232
DC08-8(5) 60u 8h 07 23.8	0.0189427	0.0005882	0.2827176	9.463E-06	0.282717	-1.9	-1.4	750	1192	-0.98	Syn-Shearing	0.283233
DC08-8(5) 60u 8h 08 24.2	0.0060625	0.0001525	0.2826856	1.018E-05	0.282685	-3.1	-2.5	786	1264	-1.00	Syn-Shearing	0.283233
DC08-8(5) 60u 8h 09 25.3	0.003253	8.106E-05	0.2827102	1.412E-05	0.282710	-2.2	-1.6	750	1208	-1.00	Syn-Shearing	0.283232
DC08-8(5) 60u 8h 10 23.2	0.0041422	0.0001026	0.2826917	8.347E-06	0.282692	-2.8	-2.3	776	1250	-1.00	Syn-Shearing	0.283233
DC08-8(5) 60u 8h 11 24.2	0.0049822	0.0001229	0.2826872	8.767E-06	0.282687	-3.0	-2.5	783	1260	-1.00	Syn-Shearing	0.283233
DC08-8(5) 60u 8h 13 24.1	0.0059286	0.0001374	0.2826808	9.38E-06	0.282681	-3.2	-2.7	792	1274	-1.00	Syn-Shearing	0.283233
DC08-8(5) 60u 6h 14 24.1	0.0035811	9.064E-05	0.2826978	1.051E-05	0.282698	-2.6	-2.1	767	1236	-1.00	Syn-Shearing	0.283233
DC08-8(5) 60u 6h 15 24.1	0.0114266	0.0003719	0.2826846	1E-05	0.282684	-3.1	-2.6	791	1266	-0.99	Syn-Shearing	0.283233
DC08-8(5) 60u 6h 16 24.6	0.0041169	0.0001037	0.2826703	9.374E-06	0.282670	-3.6	-3.1	806	1297	-1.00	Syn-Shearing	0.283232
DC08-8(5) 60u 6h 17 22.7	0.0059908	0.0001463	0.282685	9.815E-06	0.282685	-3.1	-2.6	786	1266	-1.00	Syn-Shearing	0.283234
DC08-8(5) 60u 6h 18 23.3	0.0078969	0.0001975	0.2826973	1.222E-05	0.282697	-2.6	-2.1	770	1238	-0.99	Syn-Shearing	0.283233
DC08-8(5) 60u 6h 19 25	0.0045234	0.0001206	0.2826883	1.05E-05	0.282688	-3.0	-2.4	781	1257	-1.00	Syn-Shearing	0.283232
DC08-8(5) 60u 6h 20 23.1	0.0128258	0.000453	0.2827226	1.253E-05	0.282722	-1.7	-1.2	740	1182	-0.99	Syn-Shearing	0.283233
DC08-8(5) 60u 6h 21 24.1	0.0079607	0.000203	0.2826831	1.09E-05	0.282683	-3.1	-2.6	790	1269	-0.99	Syn-Shearing	0.283233
DC08-8(5) 60u 6h 22 24.6	0.0058295	0.00014	0.282705	1.419E-05	0.282705	-2.4	-1.8	758	1220	-1.00	Syn-Shearing	0.283232
DC08-8(5) 60u 6h 23 23.2	0.0050999	0.0001285	0.2826842	1.183E-05	0.282684	-3.1	-2.6	787	1267	-1.00	Syn-Shearing	0.283233
DC08-8(5) 60u 6h 24 22.1	0.0078477	0.0001889	0.2827041	1.581E-05	0.282704	-2.4	-1.9	761	1223	-0.99	Syn-Shearing	0.283234
DC08-8(5) 60u 6h 25 24.5	0.0108431	0.0003521	0.2827036	1.247E-05	0.282703	-2.4	-1.9	765	1223	-0.99	Syn-Shearing	0.283232

(¹⁷⁶Lu/¹⁷⁷Hf)s and (¹⁷⁶Hf/¹⁷⁷Hf)s are the measured values of samples, (¹⁷⁶Lu/¹⁷⁷Hf)CHUR=0.0332 and (¹⁷⁶Hf/¹⁷⁷Hf)CHUR, 0=0.282772(Blichert-Toft and Albarede, 1997); (¹⁷⁶Lu/¹⁷⁷Hf)DM=0.0384 and

 $(^{176}$ Hf/¹⁷⁷Hf)DM=0.28325(Griffin et al., 2000); λ = 1.867 × 10⁻¹¹a⁻¹, $(^{176}$ Lu/¹⁷⁷Hf)c=0.015, t=crystallization time of zircon.

REFERENCES CITED

- Blichert-Toft, J., Albarede, F., 1997, The Lu–Hf isotope geochemistry of chondrites and evolution of mantle-crust system: Earth and Planetary Science Letters, v. 148, p. 243–258.
- Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000, The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites: Geochimica et Cosmochimica Acta, v. 64, p. 133–147.