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1. SAMPLES 

 

Existing data: Detrital zircon U-Pb data from published papers plus unpublished M.S. theses and 

Ph.D. dissertations are compiled in Table DR1.  For grains younger and older than 900 Ma, 
206

Pb/
238

U and 
207

Pb/
206

Pb ages were tabulated, respectively. Analyses with greater than 10% 

uncertainty, 20% discordance, and/or 5% reverse discordance were excluded, when this 

information was made available by authors.  Each published sample is assigned a sample identifier 

in Table DR1 and plotted using this identifier on Plates 1-4. 

 

New data: New sampling efforts focused on the Midcontinent region, where existing data was 

sparse or lacking. Detailed sample location information, including field sample identifiers, 

abbreviated sample identifiers for plotted locations on Plates 1-4, sample coordinates (WGS 84 

datum), unit name, as well as sample descriptions, detrital zircon age distributions, and inferred 

sources are provided below.  New U-Pb detrital zircon data is presented in Table DR2. 

 

1.1. Sampled Ordovician Units 

 

13MO2 (Plate 1 location #3; UTM 15S, 698005E, 4262009N) – Upper Ordovician St. Peter 

Sandstone  

Collected in Pacific, Missouri.  Sample is a friable, well-sorted, coarse quartz arenite containing 

spherically rounded quartz grains and heavy mineral separates.  Most detrital zircon grains 

extracted from sample 13MO2 yield ages of ca. 2.7 Ga (~70% of analyzed grains), with a 

relatively small proportion (~20%) of grains between ca. 1.0 and 1.35 Ga in age.  Most remaining 

grains yield a minor peak centered at ca. 1.85 Ga.  Inferred ultimate provenance: Superior cratonic 

basement, Penokean orogen, and Grenville orogen (likely recycled from eroded Proterozoic basins 

once situated in Ontario; Konstantinou et al., 2014) with possible additional input from felsic 

material of the Midcontinent Rift. 



             
Figure DR1. Sampled exposure of St. Peter Sandstone in Pacific, Missouri.  Cliff exposes ~8 m 

of white to light beige St. Peter Sandstone with silica mine entrances below ~3 m of pale buff 

Joachim Formation; Photo: Missouri DNR. 

 

13OK1 (Plate 1 location #4; UTM 14S, 695765E, 3816335N) – Upper Ordovician Oil Creek 

Sandstone  

Collected near Mill Creek, Oklahoma.  Sample is a friable, well-sorted, coarse quartz arenite 

containing spherically rounded quartz grains and heavy mineral separates.  Like sample 13MO2, 

this sample contains a significant proportion of ca. 2.7 Ga grains (~70% of analyzed grains), and 

diminishing proportions of ca. 1.85 Ga grains (~15%), and a small proportion (~5%) of grains 

between ca. 1.0 and 1.3 Ga in age.  One single euhedral concordant grain from sample 13OK1 

yields an Early Ordovician 
206

Pb/
238

U age of 470.4 ± 7.5 Ma – possibly delivered through the air 

from an eruption in the Taconic arc. Inferred ultimate provenance: Superior cratonic basement, 

Penokean orogen, and Grenville orogen (likely recycled from eroded Proterozoic basins once 

situated in Ontario) with possible additional input from felsic material of the Midcontinent Rift. 

 

GIBBONS-HESS (Plate 1 location #5; UTM 14S, 527636E, 4166839N) – Upper Ordovician 

Simpson Sandstone  

Collected from the Kansas Core Library (Kansas Geological Survey).  Sampled core was taken 

from a depth of 4309-4313’ from the Gibbons-Hess 2 well (Pratt County; original operator: 

William Gruenerwald and Associates). Sample is a friable, well-sorted, oil-saturated medium 

quartz arenite containing subrounded to subangular quartz grains cemented by iron oxide and 

silica.  Sample contains vertical skolithos burrows.  This sample contains a very high proportion of 

ca. 2.7 Ga grains (~85%) with minor amounts of ca. 1.0-1.35 Ga grains (~5%) and scattered ages 

from 1.68-1.86 Ga (~5%). Inferred ultimate provenance: Superior cratonic basement with minor 

contributions from the Grenville orogen (likely recycled from eroded Proterozoic basins once 

situated in Ontario), and Yavapai/Mazatzal crust. 

 



                      
Figure DR2. Sampled drill core of Simpson Sandstone.  Detrital zircon grains were extracted 

from core sections marked with checks. 

 

13MO1 (Plate 1 location #40; UTM 15S 604575E, 4199858N) – Lower Ordovician Roubidoux 

Sandstone  

Collected in Rolla, Missouri along Interstate 44.  Sample is a thick-bedded, well-sorted, coarse 

quartz arenite showing well-developed ripple marks and contains rounded quartz grains, <5% 

feldspar, and heavy mineral separates, including zircon, tourmaline, and garnet.  Sample 13MO1 

contains a significant proportion of ca. 2.7 Ga grains (~75%) with a subsidiary amount of ca. 1.0-

1.3 Ga grains (~15%).  Inferred ultimate provenance: Superior cratonic basement plus the 

Grenville orogen (likely recycled from eroded Proterozoic basins once situated in Ontario). 



 
Figure DR3. Sampled exposure of Roubidoux Sandstone in Rolla, Missouri.  Roadcut is ~2 m 

high.  Photo: Google street view. 

 

14MO8 (Plate 1 location #41; UTM 15S, 520762E, 4202945N) – Lower Ordovician Gunter 

Sandstone  

Collected in Ha Ha Tonka State Park, Missouri.  Sample is from a thin (<10 m), friable, cross-

bedded orthoquartzite interval with well-rounded quartz grains and variable silica to calcite cement 

conformably underlying the Lower Ordovician Gasconade Dolomite and unconformably overlying 

the Upper Cambrian Eminence Dolomite. This sample contains subequal proportions of ca. 2.7 Ga 

(~50%) and ca. 1.0-1.3 Ga grains (~40%), with ~10% scattered ages from ca. 1.3-1.5 Ga.  Inferred 

ultimate provenance: Superior cratonic basement plus the Grenville orogen (likely recycled from 

eroded Proterozoic basins once situated in Ontario), with minor input from local basement sources 

in the Granite-Rhyolite belt (e.g., the St. Francois Mountains). 



 
Figure DR4. Sampled exposure of cross-bedded Gunter Sandstone at Ha Ha Tonka State Park, 

central Missouri. 

 

 

18BH2A (Plate 1 location #59; UTM 13T 603274E, 4916000N) – Middle Ordovician Winnipeg 

Formation  

Collected near Deadwood, South Dakota (northern Black Hills) along U.S. Highway 14 behind the 

Canyon View Amish Furniture store (Sweet, 1982 locality 75SA).  Sample is from a ~2 m thick, 

light beige-weathering siltstone, containing highly indurated subangular to subrounded quartz 

grains, that transitions upward into the overlying Whitewood Formation. Detrital zircon grains 

from this unit are relatively small (generally ~30x15 µm), which required analysis via ion counting 

mode.  This sample consists mainly of ca. 1.8-2.0 Ga grains (~60%) with diminishing amounts of 

Archean (~30%) and ca. 1.6-1.8 Ga (~10%) grains. Inferred ultimate provenance: Juvenile arcs and 

orogens of NW Canada plus Archean crust from the same broad region with minor input from 

Yavapai/Mazatzal basement. 



 
Figure DR5. Sampled exposure of Winnipeg Formation, northern Black Hills (western South 

Dakota). Picnic tables are ~2 m long.  Cliff exposes, from bottom to top: ~3 m of buff, cliff-

forming, bedded Winnipeg Formation; ~6 m of pale buff, cliff-forming, massive Whitewood 

Limestone; ~5 m of slope-forming pink limestone and purplish-gray shale of the Englewood 

Formation; and is capped by light gray massive Pahasapa Limestone.  Sample 18BH2A was 

collected adjacent to covered picnic table (starred location). 

 

 

1.2. Sampled Devonian Units 

 

14MO4 (Plate 2 location #41; UTM 15S, 727981E, 4248738N) – Upper Devonian Bushberg 

Sandstone  

Collected along Interstate 55 near Imperial, Missouri.  Sample is from a roadcut of yellow to 

yellow-brown, friable, medium to coarse grained, cross-bedded quartz arenite with well-rounded 

quartz grains.  As noted by Thompson (1995), the Bushberg Sandstone shares several textural and 

mineralogical similarities with the St. Peter Sandstone.  These relations plus similar detrital zircon 

distributions in the Bushberg and St. Peter sandstones (i.e. abundant ca. 2.7 Ga and ca. 0.95-1.3 Ga 

grains) strongly suggest that the former represents the reworked equivalent of the latter.  

 



 
Figure DR6. Sampled exposure of cross-bedded Bushberg Sandstone near Imperial, Missouri. 

 

180721FL1 (Plate 2 location #52; NAD83, -110.97726º, 45.90480º) Devonian Upper 

Sappington Formation 

A sample was collected from ~20 m below the summit of Pomp Peak, north-adjacent to 

Sacajewea Peak in the Bridger Range northeast of Bozeman, Montana. Sample was collected 

from a thick-bedded, yellow-weathering, fine sandstone with sparse shale and siltstone interbeds. 

Sandstone beds near the sample collection site contained hummocky cross stratification, wave 

ripple cross stratification and parallel lamination. The locality was described by Cole et al., 

(2015). Detrital zircon grains extracted from this sample are characterized by, in order of 

decreasing prominence: 1) a Grenville-age peak centered at ca. 1.0 Ga (41% of analyzed grains), 

2) Paleozoic grains, with ages ranging from ca. 390-480 Ma (18%), 3) a range of Yavapa-

Mazatzal age-probability peaks between 1.6-1.8 Ga (15%), 4) Granite/Rhyolite ages between 

1.3-1.5 Ga (13%), Archean grains mainly between 2.6-2.9 Ga  with a subordinate age-probability 

peak at 3.5 Ga (10%), 5) less than three percent total of Suwanee/Meguma and 1.8-2.0 Ga grains. 

Inferred ultimate provenance: Grenville and Appalachian Orogens plus Superior and/or 

Wyoming cratons, Granite/Rhyolite province, and the Yavapai-Mazatzal province.  

 



 
Figure DR7. Sampled exposure of Devonian upper Sappington Formation exposed just below the 

summit of Pomp Peak, north-adjacent to Sacajewea Peak in the Bridger Range northeast of 

Bozeman, MT. Sample was collected at chest height. 

 

1.3. Sampled Mississippian Units 

 

14MO3 (Plate 3 location #8; UTM 16S, 236940E, 4200921N) – Mississippian Aux Vases 

Sandstone  

Collected along Highway 61 near Ste. Genevieve, Missouri.  Sample is from a roadcut of an 

exposure of white-light gray mixed siliciclastic-carbonate material showing trough and tabular 

cross-bedding.  The clastic component of the studied Aux Vases sample consists of fine- to 

medium-grained quartz arenite with well-rounded quartz grains.  In comparison to underlying 

rocks in the vicinity of the Ozark Dome, the Aux Vases Sandstone contains a lower proportion of 

ca. 2.7 Ga zircon grains (6%) and a higher proportion of detrital zircon ages from ca. 0.95 to 1.3 

Ga (53%) plus a significant proportion (23%) of Paleozoic zircon grains, exhibiting prominent 

Taconic-aged peaks at ca. 425 and 465 Ma.  The sample also contains small amounts of ca. 1.6-1.8 

Ga (14%) and 1.3-1.5 Ga (12%) grains. Inferred ultimate provenance: Grenville and Taconic 

orogens with minor input Yavapai/Mazatzal and Granite/Rhyolite crust plus the Superior Craton 

(possibly recycled from older units).  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

    

   

Figure DR8. Sampled exposure of Aux Vases Sandstone near Ste. Genevieve, Missouri. 

 

 

PUYEAR (Plate 3 location #9; UTM 14S, 264382E, 4164452N) –Mississippian Ste. Genevieve 

Limestone 

Collected from the Kansas Core Library (Kansas Geological Survey).  Sampled core was taken 

from a depth of 5462-5466’ from the Puyear 1 well (Stanton County; original operator: Amoco 

Production Company). The studied sample is an oolitic limestone containing undulose quartz-rich 

silt and sand. This sample contains an age distribution similar to that of the Aux Vases Sandstone, 

with abundant detrital zircons yielding ages from ca. 0.95 to 1.3 Ga (40%) with diminishing 

proportions of 1.3-1.5 Ga (18%), 400-470 Ma (13%), and Archean grains (4%), plus scattered ages 

from ca. 1.6-2.0 Ga (24%). Inferred ultimate provenance: Grenville and Taconic orogens with 

minor input Granite/Rhyolite and Yavapai/Mazatzal crust plus the Superior Craton (possibly 

recycled from older units). 



 

180713SWC3 (Plate 3 location #28; NAD83, -109.32626, 46.71101) -Mississippian Kibbey 

Formation sandstone 

A sample was collected from the Swimming Woman Creek locality in the southern Big Snowy 

Mountains, MT. This is the same locality that was sampled by Shean (1947). Sample was 

collected from sparsely exposed, brick-red, medium-sorted, fine-grained sandstone. The Kibbey 

Formation is characterized by a mix of well-rounded, frosted sand grains and subangular grains 

that are not frosted. This suggests two distinct sources with one involving eolian transport 

(Shean, 1947). Detrital zircon grains extracted from this sample are characterized by, in order of 

decreasing prominence: 1) a Grenville-age peak centered at ca. 1.0 Ga (44% of analyzed grains), 

2) Paleozoic grains, with ages ranging from ca. 400-470 Ma (21%), 3) two Yavapa-Mazatzal 

age-probability peaks between 1.6-1.8 Ga (11%), 4) Archean grains mainly between 2.6-2.9 Ga 

(10%), 5) less than ten percent total of Suwanee/Meguma, Granite/Rhyolite, and 1.8-2.0 Ga 

grains. Inferred ultimate provenance: Grenville and Appalachian Orogens plus Superior and/or 

Wyoming cratons and the Yavapai-Mazatzal province.  

 

 

1.4. Sampled Pennsylvanian Units 

 

15MO1 (Plate 4 location #1; UTM 15S, 533851E, 4360992N) – Upper Pennsylvanian Moberly 

Sandstone  

In central Missouri, Paleozoic units are cut by two (Moberly and Warrensburg) formerly 

contiguous, ~2 to 8 km-wide, ~30-50 m-deep valley-shaped channels filled with Upper 

Pennsylvanian (Desmoinesian) sandstone and shale. Whereas pre-Pennsylvanian clastic rocks in 

the Midcontinent region are dominated by quartz arenite, channel sands are far less mature, 

consisting chiefly of quartz wacke and containing significant proportions of igneous plus 

metamorphic detritus and varying amounts of iron oxide and silica cements (Doty and Hubert, 

1962). This sample of the Moberly Sandstone was collected from the Moberly Quarry (owned and 

operated by Norris Quarries), in Salt Springs Township, Missouri.  The studied sample consists of 

~65% quartz and 10% feldspar, with ~10% metamorphic lithic fragments (chiefly phyllite and 

schist), ~7% opaque minerals, 6% muscovite, and 1% biotite.  Detrital zircon grains extracted from 

this sample are characterized by, in order of decreasing prominence: 1) a Grenville-age peak 

centered at ca. 1.0 Ga with shoulders extending from 0.95 to 1.3 Ga (60% of analyzed grains), 2) 

Paleozoic grains, with ages ranging from ca. 450 to 309 Ma (13%), 3) scattered ages ranging from 

1.3 to 1.8 Ga with a subtle peak at ca. 1.65 Ga (12%), 4) a Neoproterozoic peak from 600 to 540 

Ma (11%), and 5) a Neoarchean peak centered at ca. 2.7 Ga (3%).  Inferred ultimate provenance: 

Grenville, Taconic, Acadian, and Alleghenian orogens plus Pan-African crust (most likely 

originating in the northern Appalachians), with minor input from Granite/Rhyolite and 

Yavapai/Mazatzal crust plus the Superior Craton (possibly recycled from older units). 



 
Figure DR9. Sampled exposure of Moberly Sandstone collected from Moberly Quarry.  Note 

alternating beds containing variable proportions of iron oxide cement (dark orange-light 

brown=more iron oxide).  Photo: John Hogan. 

 

 

15MO2 (Plate 4 location #2; UTM 15S, 434292E, 4291426N) – Upper Pennsylvanian 

Warrensburg Sandstone  

The Warrensburg Sandstone (the western of the two channel fill sandstones) was sampled at Cave 

Hollow Park in Warrensburg, Missouri, where it crops out as 0.5-2 m-thick cross-bedded medium- 

to fine-grained sandstone separated by ~10 cm siltstone intervals. The studied sample is 

petrographically nearly identical to sample 15MO1, consisting of ~70% quartz and 7% feldspar, 

with ~18% metamorphic lithic fragments (chiefly phyllite and schist), ~2% opaque minerals, 2% 

muscovite, and 1% biotite.  Like sample 15MO1, this sample contains chiefly 0.95 to 1.3 Ga grains 

(57%), Paleozoic grains, with scattered peaks from ca. 480 to 300 Ma (10%), scattered ages 

ranging from 1.3 to 2.0 Ga with a subtle peak at ca. 1.62 Ga (23%), a ca. 600 to 540 Ma peak (3%), 

and 5) Archean ages (5%).  Inferred ultimate provenance: Grenville, Taconic, Acadian, and 

Alleghenian orogens plus Pan-African crust (most likely originating in the northern Appalachians), 

with minor input from Granite/Rhyolite and Yavapai/Mazatzal crust plus the Superior Craton 

(possibly recycled from older units). 
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Photos of 15MO1 and 15MO2 

 

Figure A2- Moberly sandstone exposed in a quarry owned and operated by Norris Quarries located in Salt Springs Township, 

MO. Photo credit to Dr. John P. Hogan. 

 

Figure A3- Moberly sandstone outcrop displaying planar bedding. Rock hammer for scale. Photo credit to Dr. John P. Hogan. 



 
Figure DR10. Sampled exposure of Warrensburg Sandstone collected from Warrensburg, 

Missouri.  Note cross-stratified sandstone separated by a ~5 cm shale interval (hammer head).  

Photo: John Hogan. 

 

SEACAT (Plate 4 location #3; UTM 14S, 443295E, 4131896N) –Lower Pennsylvanian Kearny 

Formation  

Collected from the Kansas Core Library (Kansas Geological Survey).  Sampled core was taken 

from a depth of 5234-5235’ from the Seacat 13-19 well (Clark County; original operator: MESA 

PET). The studied core fragment is a poorly sorted, coarse-grained, glauconitic, porous, carbonate- 

plus silica-cemented quartz arenite containing chiefly subrounded to rounded detrital quartz and 

authigenic chlorite.  This sample contains detrital zircon grains yielding a spectrum of ages from 

ca. 0.95 to 1.3 Ga (53%) with diminishing proportions of 1.3-1.5 Ga (15%), 1.8-2.0 Ga, with a 

sharp peak at ca. 1.85 Ga (10%), 1.6-1.8 Ga (9%), 390-470 Ma (8%), and Archean grains (4%). 

Inferred ultimate provenance: Grenville, Taconic, and Acadian orogens with subsidiary input from 

Juvenile arcs and orogens of NW Canada, Granite/Rhyolite and Yavapai/Mazatzal crust, plus the 

Superior Craton. 
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Figure 6- Outcrop of Warrensburg Channel Sandstone in Cave Hollow Park showing shaly layer in between cross-stratified 

sandstone layers. Photo credit to Dr. John P. Hogan. 

 

Figure 7- Outcrop of Warrensburg channel sandstone in Cave Hollow Park displaying prominent cross-stratification and 

terminations. Photo credit to Dr. John P. Hogan. 

 



             
Figure DR11. Sampled drill core of Kearny Formation.  Detrital zircon grains were extracted 

from core sections marked with chalk lines. 

 

10DM14 (Plate 4 location #37; UTM 12N 485883E, 4966973N) – Lower Pennsylvanian Amsden 

Formation  

A sample was collected from a resistant calcareous sandstone bed within the Amsden Formation, 

exposed north of Graycroft Ridge in the southern Madison Range near Hebgen Lake, MT. This 

sample contains roughly equal proportions of 1.6-1.8 Ga (24%), Archean (18%), 0.95-1.3 Ga 

(15%), 1.3-1.5 Ga (13%), 1.8-2.0 Ga (13%), and 350-480 Ma (11%), with ~5% of grains falling 

between 530-610 Ma. Inferred ultimate provenance: Yavapai/Mazatzal crust (likely sourced from 

the uplifting Ancestral Rockies), Grenville plus Taconic and Acadian orogens, Proterozoic and 

Archean cratonic material from NW and/or north-central Canada, Granite/Rhyolite crust, and a 

minor amount of Pan-African material. 



 
Figure DR12. Sampled exposure of Amsden Formation sampled northeast of Hebgen Lake in 

the southern Madison Range, MT. 

 

 

10DM15 (Plate 4 location #38; UTM 12N 485717E, 4966991N) – Lower Pennsylvanian 

Quadrant Formation  

A sample was collected from an exposure of thin to medium bedded quartz arenite north of 

Graycroft Ridge near Hebgen Lake in the southern Madison Range. In comparison with the 

Amsden Formation, this sample contains somewhat higher proportions of 1.8-2.0 Ga (27%) and 

0.95-1.3 Ga (22%) grains, less 1.6-1.8 Ga (16%), Archean (18%), 1.3-1.5 Ga (10%),  and 390-480 

Ma (10%) grains, and lacks Neoproterozoic ages. Inferred ultimate provenance: Proterozoic and 

Archean cratonic material from NW and/or north-central Canada, Grenville plus Taconic and 

Acadian orogens, and Yavapai/Mazatzal (likely sourced from the uplifting Ancestral Rockies) and 

Granite/Rhyolite crust. 



 
Figure DR13. Sampled exposure of Quadrant Formation sampled northeast of Hebgen Lake in 

the southern Madison Range, MT. 

 

18BH1 (Plate 4 location #48; UTM 13T 601993E, 4917588N) – Lower Pennsylvanian 

Minnelusa Formation  

A sample was collected from a ~1 m thick sandy interval in a roadcut exposing alternating beds of 

yellow-orange dolomite, orange sandstone, and red-purple shale (the lower portion of the 

Minnelusa Formation; Dewitt et al., 1986) along U.S. Highway 85 in the northern Black Hills. The 

studied sample consists chiefly of fine-grained subangular detrital quartz cemented by calcite.  This 

sample contains significant amounts of 1.6-1.8 Ga grains (35%), with decreasing quantities of 

0.95-1.3 Ga (23%), 1.8-2.0 Ga (15%), and 1.3-1.5 Ga (11%) grains, with relatively minor 

contributions from 370-460 Ma (6%), Archean (18%), and Neoproterozoic (4%) grains. Inferred 

ultimate provenance: Yavapai/Mazatzal crust (likely sourced from the uplifting Ancestral 

Rockies), Proterozoic and Archean cratonic material from NW and/or north-central Canada (likely 

recycled from older strata), Grenville plus Taconic and Acadian orogens, Granite/Rhyolite crust, 

and a minor amount of Pan-African material. 

 



 
Figure DR14. Panorama along U.S. Highway 85 showing alternating sandstone, shale, and 

limestone of the Minnelusa Formation, northern Black Hills (western South Dakota). Highway 

dividers are ~2 m long. Star marks location of sample 18BH1. 

 

2. METHODS 

 

2.1.  LA-MC-ICPMS 

Detrital zircon U-Pb geochronology was conducted by laser ablation multicollector inductively 

coupled mass spectrometry (LA-MC-ICPMS) at the Arizona LaserChron Center (ALC) 

following the methods outlined in Gehrels et al. (2006). Zircon grains were extracted from 

samples using standard mineral separation techniques of crushing, sieveing, magnetic separation, 

processing through heavy liquids, and hand picking at the Missouri University of Science and 

Technology and Macalester College. Separates were then mounted in epoxy, polished, and 

imaged on a JEOL 6610LV Scanning Electron Microscope at Macalester College prior to 

analysis. Zircon grains were ablated using a 193 nm ArF laser with a pit depth of ~12 µm and 

spot diameters of 25-30 µm in Faraday collection mode and with a spot diameter of 10 µm for 

sample 18BH2A in ion counting mode. Unless otherwise noted, most analyzed grains were 

subhedral to subrounded, ~ 50 – 350 µm in length, inclusion-poor, and exhibit simple oscillatory 

zoning patterns in cathodoluminescence images that we interpret as magmatic features.  

 

2.2. Data Reduction and analysis 

Data reduction was done using in-house ALC Microsoft Excel programs and ISOPLOT/Ex 

Version 3 (Ludwig, 2003).  The “best ages” reported in Table DR2 were calculated using 
206

Pb/
238

U ages for grains younger than 900 Ma and 
207

Pb/
206

Pb ages for grains older than 900 

Ma.  Analyses with greater than 10% uncertainty, 20% discordance, and/or 5% reverse 

discordance were excluded.  Detrital zircon probability distributions for all samples are provided 

as kernel density estimations (KDEs) in Figure DR15. 

 

The Multidimensional scaling (MDS) mapping algorithm (e.g., Vermeesch, 2013) used here to 

compare U-Pb detrital zircon spectra is as follows:  1) input square, symmetric matrix of 

Kolmogorov-Smirnov (K-S) distances between samples; 2) assign points to arbitrary coordinates 

in 2-dimensional space; 3) compute K-S distances among all pairs of points, to form a new 

matrix; 4) compare the new matrix with the input matrix by evaluating the stress function, a 

measure of the degree of correspondence between the observed and reproduced distances; 5) 

perturb the coordinates of each data point; and 6) repeat steps 2 through 5 until stress is 

minimized. These operations were carried out using detritalPy (Sharman et al., 2018). The 



degree of similarity in U-Pb detrital zircon age spectra on an MDS “map” is higher for samples 

that plot close to each other than for samples that are positioned farther apart.  The reader is 

referred to Borg and Groenen (1997) for a comprehensive treatment of MDS. 

 

Non-negative matrix factorization (NMF) applied to detrital zircon geochronology is a powerful 

cutting-edge technique that enables characterization, or “unmixing,” of “source” (i.e., eroded and 

transported parent materials) age spectra from large volumes of “sink” (i.e., samples collected 

from sedimentary rocks) data (Sharman and Johnstone, 2017; Saylor et al., in press). The 

procedure of Saylor et al. (in press) for characterizing source spectra from sink data is as follows 

(see this reference for a comprehensive treatment): 1) input m-by-n matrix V (where m are KDE 

probabilities for each of n samples); 2) compute matrices W (m probabilities at the same 

spacing-by-k factorized components) and H (k factorized components-by-n samples), such that 

V≈WH (in detail, V=WH+E, where is a residual); 3) iterate until E is minimized.  Results of 

NMF analysis are in Table DR3. 
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PLATE CAPTIONS 

 

Plate 1.  A) Oversized version of Figure 2A (Ordovician).  See Figure 2 in the main text for 

explanation.  B) Locations, plotted using sample identifiers from Table DR1, of new and existing 

U-Pb detrital zircon data. 

 

Plate 2.  A) Oversized version of Figure 2B (Silurian-Devonian).  See Figure 2 in the main text for 

explanation.  B) Locations, plotted using sample identifiers from Table DR1, of new and existing 

U-Pb detrital zircon data. 

 

Plate 3.  A) Oversized version of Figure 2C (Mississippian).  See Figure 2 in the main text for 

explanation.  B) Locations, plotted using sample identifiers from Table DR1, of new and existing 

U-Pb detrital zircon data. 

 

Plate 4.  A) Oversized version of Figure 2D (Pennsylvanian).  See Figure 2 in the main text for 

explanation.  B) Locations, plotted using sample identifiers from Table DR1, of new and existing 

U-Pb detrital zircon data. 

 

NON-EMBEDDED FIGURE CAPTION 

 

Figure DR15.  Unnormalized detrital zircon probability distributions as kernel density estimations 

(KDEs) with 5 Myr bandwidth, for samples with A) Ordovician, B) Silurian and Devonian, C) 

Mississippian, and D) Pennsylvanian depositional ages.  Sample names from Table DR1. For 

example, sample SD15 refers to Silurian and Devonian sample 15. 

 

TABLE CAPTIONS 

 

Table DR1. Compiled published U-Pb detrital zircon data for Ordovician, Silurian, Devonian, 

Mississippian, and Pennsylvanian strata from southern Canada, northern Mexico, and the United 

States. 

 

Table DR2. Newly acquired LA-MC-ICPMS U-Pb detrital zircon data. 

 

Table DR3. Results of NMF analysis. 
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