GSA Data Repository 2019186

Erickson, T.M., et al., 2019, Shock-produced high-pressure (La, Ce, Th)PO4 polymorph revealed by microstructural phase
heritage of monazite: Geology, https://doi.org/10.1130/G46008.1

Item DR1: Analytical methods
Identification of Shocked Monazites and Imaging External Shock Features

Two shock-deformed crystalline samples of target rock-clast within suevitic, impact-melt
bearing, breccia were investigated. Sample 604 comes from the original study of shock
deformation in crystalline target rocks by Stoffler (1971) at the Nordlinger-Ries impact structure.
The sample is a shock stage Ib granitic clast made up of quartz, K-feldspar, oligoclase, and
biotite collected at the Otting quarry (48°52'38"N, 10°47'30"E). Quartz contains planar
deformation features (PDFs) and minor stishovite, K-feldspar contain PDFs and mosaicism;
oligoclase displays mosaicism and partial amorphization; and biotite contains kink bands
(Stoffler, 1971; von Engelhardt et al., 1969).

The second sample, DIG 9, is derived from the Haughton Dome and is the first sample in
which shock features were reported in natural monazite (Schirer and Deutsch, 1990). Sample
DIG 9 was collected near the central peak of the structure (75°23'11"N, 89°38'58"W) and is a
shock stage III sillimanite-biotite gneiss. Tecto-silicates (quartz, K-feldspar, plagioclase) in the
gneiss are completely amorphous and vesiculated, whereas biotite has decomposed to oxides and

sillimanite contains planar microstructures.

The shock stage Ib granitic sample from the Nordlinger-Ries impact structure was
investigated in thin section, while monazite grains were picked from mineral separates of the
shock stage III gneiss from Haughton impact structure and mounted in 25.5 mm epoxy round.
The thin sections and grain mounts were given a preliminary polish to 1 pm using diamond
paste. The samples were then given a final chemical-mechanical polish with 5 nm colloidal silica

dispersion in NaOH on a Buehler VibroMet2 polishing machine. Grains from sampled DIG 9
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and petrographic texture and grains from Nordlinger-Ries sample604 were then imaged
optically.
Imaging Internal Shock Features

After polishing and optical imaging, internal textures of the deformed monazite grains
were imaged using the Tescan Mira3 field emission (FE) SEM at the Microscopy &
Microanalysis Facility, within the John de Laeter Centre for Isotope Research (JDLC), Curtin
University, Western Australia or the JEOL 7600f FEG-SEM within the Astromaterials Research
and Exploration Science (ARES) Division, NASA Johnson Space Center, Houston, Texas.
Backscattered-electron (BSE) photomicrographs of the monazite grains were collected using an
accelerating voltage of 15 kV. BSE photomicrographs from all shocked monazite grains are
included in Data Repository Item 2.
EBSD Mapping of Monazites and Zircons

Deformed monazites were subsequently mapped by EBSD. Electron backscatter patterns
(EBSPs) were collected from the monazite grains in orthogonal grids using a Nordlys Nano high
resolution detector and Oxford Instruments Aztec 3.4 acquisition software package on the Mira3
FEG-SEM within the JDLC and with an Oxford Symmetry detector and Oxford Instruments
Aztec 4.0 software on a JEOL 7600f FEG-SEM within ARES. EBSD analyses were collected
with a 20 kV accelerating voltage, 70° sample tilt, ~20 mm working distance, and 18 nA beam
current. Oxford Instruments Channel 5.11 software suite was used to post-process the EBSD
data. Monazite grains were mapped with the match unit described in Erickson et al. (2016);
Erickson et al. (2015), which originates from crystallographic data of Ni et al. (1995). Operating
conditions and noise reduction parameters are summarized in Table DR1. EBSD maps were

produced using the Tango suite of Channel5, and pole figures were processed in Mambo suite of
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Channel5. EBSD maps and pole figures of the shocked monazite grains can be found in Data
Repository Item DR2. Crystallographic orientation maps using all Euler color scheme with
special boundary maps in which boundaries between adjacent pixels are color coded such that if
they matched a specific disorientation axis and angle pair, within 5°, consistent with a twin
boundary. Pole figures of (010), [100], (100), [001] and (001) were produced for each grain
analyzed.

Conversion of EBSD disorientation data to deformation twins

Crystallographic orientation data obtained by EBSD can be used to calculate the
misorientation between two different crystallographic orientations. This is commonly expressed
as three superimposed rotations about axes specified by a convention, where the rotation angles
are known as Euler angles, or a single angular rotation around a stated axis (angle-axis pair).
Depending on the crystal symmetry there may be more than one angle-axis pair that achieves the
same rotation but the rotation angles will be different. The disorientation convention used in this
paper means that the angle-axis pair with the smallest angular rotation is chosen from all the
symmetrically equivalent rotations. For monoclinic minerals, of which monazite is one, there are
only two symmetric equivalents. This arises from the diad axis of symmetry parallel to the [010]
direction and the fact that EBSD data can only describe proper rotations (i.e., the mirror plane
perpendicular to [010] is not a proper rotation).

While the disorientation can be used to document twin microstructures, it is often cryptic
and not geometrically meaningful. The relationship between two parts of a twin can be described
by one (or both) of two 180° rotations that are geometrically related to either the composition
plane, (K1) or shear direction(n1) (summarized in Figure DR1 after Christian and Mahajan

(1995). For type 1 twins, the twin is related to the host by a 180° rotation around the pole to (a
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rational) K1. For type 2 twins, the twin is related to the host by a 180° rotation around (a
rational) n1. Composite twins satisfy both constraints.

To document the nature of the twins observed in monazite and identify the composition
planes, pairs of Euler angles from twin and host were used to calculate not only the
disorientation axis but also the hypothetical orientations of its symmetrical equivalent variants.
In each case, except one, the misorientation calculation revealed a 180° rotation that was not
always apparent from the disorientation. Where the 180° rotation axis was close to a pole to a
rational plane this was noted to be a type 1 twin relationship and where it was close to a rational
crystallographic direction the twin was documented as a type 2 relationship. Several twins (those
with a disorientation rotation of 180°) satisfied both of these criteria and were determined to be
composite twins. The procedure was implemented in Matlab using the unit cell parameters of
natural monazite after Ni et al. (1995) as follows:

1. Constructs a list of directions and planes in the crystal reference frame, removing

collinear ones (e.g. 111 and 222).

2. Calculates the x,y,z orientation of each of the directions and plane normal for a crystal

with Euler angles (0 0 0). This takes into account the crystal unit cell parameters.

3. Calculate the symmetry operators (Si) for the Laue group. In this case there are only 2

symmetrical equivalents which are related by a 180° rotation around [0 1 0].

4. For each pair of sets of Euler angles do the following:

a. Calculate the rotation matrix (DCM) for each Euler angle triple using equations
B2 and B4 of Cho et al. (2005).

b. Calculate the rotation from one to the other (DCM3 = DCM2 — DCM1).
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c. Calculate the rotation matrix for each symmetric equivalent (DCM3i = Si x
DCM3).

d. Calculate the angle and axis (in Cartesian x,y,z coordinates) of rotation for each
resulting rotation matrix.

e. Calculate the crystallographic index of each rotation axis. This approach gives
the closest zone axis. It should be noted that where the rotation axis is a pole to a
plane then it is not necessarily a rational direction (especially in monoclinic
minerals where only (010)=[010]).

f. For a list of planes from where {h, k, 1} are integers from -3 to 3 calculate the
angle in x,y,z co-ordinates between the rotation axis and the plane normal (using
dot product of unit vectors). If the angle is >90° then use the supplementary angle
to thereby ignore polarity of the poles to planes; i.e., (001) = (00-1).

g. Compile the data into an output format giving the angle and axis (in x,y,z) for
each symmetric variant, crystallographic vector (with smallest value normalized
to 1), angle between rotation axis and closest direction, and angle between
rotation axis and closest pole to plane.

The input parameters and results of the script are summarized in DR3.
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Figure DR1. Twin mode conventions modified after Christian and Mahjan (1995)

Conversion of EBSD data to high pressure polymorph orientations

The Python-based software combination of ARPGE (Cayron, 2007a) and GenOVa
(Cayron, 2007b) were used to perform a crystallographic orientation analysis of monazite
(monoclinic REEPQOy,) to reconstruct evidence for precursor tetragonal REEPO, following the
approach applied by Cayron et al. (2006), utilized for understanding the behavior of steels (e.g.,
the martensite-austenite transformation) and zirconia (Timms et al., 2017; White et al., 2018). To
back-calculate the transformation mechanism of the lath-like microstructure to a high-pressure
polymorph, the following steps were taken:

1. Analysis of the EBSD map and pole figures to determine the orientation relationship
(OR) between the (hypothetical) parent tetragonal phase and the daughter monazite
daughter phase.

2. Create the phase transformation with GenOVa to simulate the theoretical pole figures and

calculate the groupoid composition table.
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3. Use ARPGE to reconstruct the parent tetragonal phase from the EBSD maps and the OR

determined at step 2.

This method automatically and objectively reconstructs ‘parent’ grains using known sets of
orientation relationships among ‘daughter’ grains. While no preexisting constraints on the crystal
structure of the high-pressure parent REEPO,4 phase exist, we based the tetragonal parent on the
geometric distribution of the reverted daughter products. The lattice parameters used for the
phases are a=b=6.5 A and ¢ = 7.0 A for the tetragonal phase, and a=6.7902 A, b=7.0203 A, ¢

=6.4674 A, ans B = 103.4° for the monoclinic phase.
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Reconstruction of the tetragonal domains in the Digd monazite 13 AOl map

Monazite monoclinic grains Reconstructed tetragonal grains

(experiment) 3 bands = 3 grains of same orientation

Tolerance angle for the reconstruction = 3°
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Figure DR2. Reconstruction of tetragonal parent grain from EBSD data and produced pole figures and maps using GenOVa

(theoretical) and ARPGE (from data) python programs.
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Reconstruction of the tetragonal domains in the Dig9 monazite 13 AOI map

Reconstructed tetragonal grains

3 bands = 3 grains of same orientation
Tolerance angle for the reconstruction = 3°
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Figure DR3 Reconstruction of tetragonal parent grain from EBSD data and produced pole figures and maps
using GenOVa (theoretical) and ARPGE (from data) python programs.
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Table DR1.1 EBSD analytical conditions for sample Ries 604 grains 13 & 14

Figure Ries 604 Ries 604 Ries 604 Ries 604
13 wholegrain 13 14 wholegrain 14
AOI'l AOI'l
Acquisition speed (Hz) 40 40 40 40
Background (frames) 64 64 64 64
Binning 4x4 4x4 4x4 4x4
Gain High High High High
Hough resolution 60 60 60 60
Band detection min/max 6/8 6/8 6/8 6/8
Mean angular deviation 0.3919 0.4527 0.5216 0.5363
X steps 320 141 868 270
Y steps 225 172 1696 135
Step distance (um) 0.2 0.075 0.07 0.05
Noise reduction — ‘wildspike’ Yes No No No
n neighbour zero solution 7 7 7 7
extrapolation
Kuwabhara Filter - - - -
SEM model Tescan Tescan Tescan Tescan
EBSD detector Nordlys Nordlys Nordlys Nordlys
Acquistion software (Aztec v.) 3.4 3.4 34 3.4
Carbon coat (<5nm) Yes Yes Yes Yes
Acc. Voltage (kV) 20 20 20 20
Working distance (mm) 20 20 20 20
Tilt (degrees) 70 70 70 70
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Table DR1.2 EBSD analytical conditions sample DIG 9 grains 4, 5

Figure DIG9 DIG 9 DIG 9 DIG 9 DIG 9
grain 4 grain 4 grain 4 grain 5 grain 5
wholegrain ~ AOI 1 AOI2  wholegrain AOIl
Acquisition speed (Hz) 70 40 40 322 298
Background (frames) 64 64 64 64 64
Binning 2x2 4x4 4x4 4x4 4x4
Gain High High High High High
Hough resolution 60 60 60 60 60
Band detection min/max 6/11 6/8 6/8 6/11 6/11
Mean angular deviation 1.007 0.3985 0.4509 1.032 1.012
X steps 1109 230 221 950 631
Y steps 1278 214 132 843 528
Step distance (um) 0.2 0.1 0.15 0.2 0.1
Noise reduction — ‘wildspike’ Yes Yes Yes Yes Yes
n neighbour 0 solution extrapolation 7 7 7 7 7
Kuwahara Filter - - - - -
SEM model JEOL Tescan Tescan JEOL JEOL
EBSD detector Symmetry Nordlys Nordlys Symmetry Symmetry
Acquistion software (Aztec v.) 4.0 3.4 34 4.0 4.0
Carbon coat (<5nm) Yes Yes Yes Yes Yes
Acc. Voltage (kV) 20 20 20 20 20
Working distance (mm) 20 20 20 20 20
Tilt (degrees) 70 70 70 70 70

Erickson et al. 2016 Data Repository

11



Table DR 1.3 EBSD analytical conditions sample DIG 9 grains 12, 13 & 30

Figure DIG9 DIG 9 DIG 9 DIG 9 DIG 9
grain 12 grain 13 grain 13 grain 30 grain 30
AOI'1 wholegrain ~ AOI1  wholegrain AOIl

Acquisition speed (Hz) 40 166 40 134 134
Background (frames) 64 64 64 64 64
Binning 4x4 4x4 4x4 4x4 4x4
Gain High High High High High
Hough resolution 60 60 60 60 60
Band detection min/max 6/8 6/11 6/8 6/11 6/11
Mean angular deviation 0.3576 0.7758 0.3488 0.7749 0.7652
X steps 180 3117 251 298 316
Y steps 169 1946 262 234 337
Step distance (um) 0.3 0.2 0.05 0.5 0.25
Noise reduction — ‘wildspike’ Yes Yes Yes Yes Yes
n nelghbogr 0 solution 7 7 7 7 7
extrapolation

Kuwahara Filter - - - - -
SEM model Tescan JEOL Tescan JEOL JEOL
EBSD detector Nordlys  Symmetry Nordlys Symmetry Symmetry
Acquistion software (Aztec v.) 3.4 4.0 3.4 4.0 4.0
Carbon coat (<5nm) Yes Yes Yes Yes Yes
Acc. Voltage (kV) 20 20 20 20 20
Working distance (mm) 20 20 20 20 20
Tilt (degrees) 70 70 70 70 70
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Table DR 1.4 EBSD analytical conditions sample DIG 9 grains 32, 33

DIG 9 Dig 9 DIG 9 DIG 9 DIG 9 DIG 9
Figure grain 32 grain 32 grain 32 grain 33 grain 33 grain 33
wholegrain AOI'1 AOI 2 wholegrain AOIl AOI2
Acq“‘s(lg‘z’;l speed 305 303 303 305 305 306
Background (frames) 64 64 64 64 64 64
Binning 4x4 4x4 4x4 4x4 4x4 4x4
Gain High High High High High High
Hough resolution 60 60 60 60 60 60
Band detection 6/11 6/11 6/11 6/11 6/11 6/11
min/max
Mean angular 1.035 1.038 0.9978 1.053 1.06 1.072
deviation
X steps 624 510 563 541 779 550
Y steps 749 470 346 515 627 334
Step distance (um) 0.2 0.1 0.1 0.2 0.1 0.05
N01‘se.redu.c tl(,m a Yes Yes Yes Yes Yes
wildspike
n neighbour 0 ' 7 7 7 7 7
solution extrapolation
Kuwabhara Filter - - - - -
SEM model JEOL JEOL JEOL JEOL JEOL JEOL
EBSD detector Symmetry Symmetry Symmetry Symmetry Symmetry Symmetry
Acquistion software 4.0 4.0 4.0 4.0 4.0 4.0
(Aztec v.)

Carbon coat (<5nm) Yes Yes Yes Yes Yes Yes
Acc. Voltage (kV) 20 20 20 20 20 20
Working distance 20 20 20 20 20 20

(mm)
Tilt (degrees) 70 70 70 70 70 70
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