Long, S.P., Mullady, C.L., Starnes, J.K., Gordon, S.M., Larson, K.P., Pianowski, L.S., Miller, R.B., and Soignard, E., A structural model for the South Tibetan detachment system in northwestern Bhutan from integration of temperature, fabric, strain, and kinematic data:
Lithosphere, v. 11, https://doi.org/10.1130/L1049.1

Table DR1 (following 2 pages): Details on thin sections from the Dodena-Lingshi transect, listed from structurally-low to high.

Discussion DR1: Analytical methods and supporting data for RSCM thermometry

Measurements were made at the LeRoy Eyring Center for Solid State Science at Arizona State University, using a Raman spectrometer custom-built by E. Soignard. Carbonaceous material (CM) was analyzed in situ on polished, foliation-normal, lineation-parallel thin sections. The 532 nm laser was focused using a 50x ultra-long working distance Mitutoyo objective and attenuated to a power of 3 mW at the sample. The probed area of CM for each measurement was approximately $1 \mu \mathrm{~m}$ in diameter. Instrument parameters, settings, and procedures followed those outlined in Cooper et al. (2013) and Long et al. (2016; 2017). The laser was focused on CM situated beneath a transparent grain (typically quartz or calcite), after procedures outlined in Beyssac et al. (2003). CM was analyzed for 120 seconds over a spectral window of 1100-2000 cm^{-1}. Multiple grains of CM were analyzed from each sample (the total range is between 9 and 16 grains per sample), to allow evaluation of in-sample variation.

The center positions, heights, widths, and areas of four first-order Raman peaks, including the G peak and three defect bands, D1, D2, and D3, are shown for individual analyses on Table DR2. These parameters were determined using a peak fitting program written in Matlab by E. Soignard, which allowed peaks to be fit by a combination of Gaussian and Lorentzian peak shape, and background slope to be removed by using a $1^{\text {st }}$-order polynomial. R1 and R2 correspond to the height and area ratios as defined in equations 1 and 2 of Rahl et al. (2005), and the peak temperature ($\mathrm{T}_{\text {peak }}$) for each analysis is calculated from equation 3 of Rahl et al. (2005). Analyses of each sample on Table DR2 are ordered from low to high peak temperature. Standard means of R1, R2, and $T_{\text {peak }}$ for all analyses from each sample are shown. The internal variation of R1, R2, and $T_{\text {peak }}$ from each sample is represented by 1 standard deviation on the mean. However, the calibration equation of Rahl et al. (2005) also introduces an external $\pm 50^{\circ} \mathrm{C}$ uncertainty in $\mathrm{T}_{\text {peak. }}$. Therefore, after Cooper et al. (2013), in order to present a more representative uncertainty, we calculated a propagated standard error (SE) by adding internal and external uncertainties quadratically, and dividing by the square root of the number of analyses (n). Mean $T_{\text {peak }}$ with this propagated 2 SE uncertainty is reported for each sample on Table 1 in the text. At 2 SE, typical error ranges are $\pm 30-50{ }^{\circ} \mathrm{C}$.

Table DR2 (following 6 pages): Supporting data for RSCM $\mathrm{T}_{\text {peak }}$ determinations. Data for individual CM spot analyses for each sample are shown, and are ordered from low to high $\mathrm{T}_{\text {peak }}$.

Refer to Table DR1 for a guide to abbreviated sample numbers used in the text.

Discussion DR2: Analytical methods and supporting data for quartz petrofabric analyses

The orientations of quartz c-axes were measured on polished, foliation-normal, lineationparallel thin sections using a Crystal Imaging Systems G60 automated crystal fabric analyzer from Russell-Head systems, housed at the University of British Columbia, Okanagan. Detailed descriptions of previous generation instruments that operate using the same theoretical approach are included in Wilson et al. (2007) and Peternell et al. (2010). The fabric analyzer determines the trend and plunge of the c-axis for each pixel in a composite image of the entire thin section, producing an achsenverteilungsanalyse (AVA) diagram (e.g., Sander, 1950) from which the user can build a spatially-referenced fabric using a variety of plane- and cross-polarized images to verify mineralogy. The orientations measured using this analytical method produce equivalent results to those measured using Electron BackScatter Diffraction, x-ray goniometry and neutron diffraction (e.g., Wilson et al., 2007; Peternell et al., 2010; Hunter et al. 2017).

Pole figures were generated using the program Orient (Vollmer, 2017), and were contoured using a Fourier transform of the entire orientation data set relative to multiples of a random distribution. Quartz c-axis fabric skeletons (Lister and Williams, 1979) were visually best-fit using the methods discussed in Law (2014). The opening angles of the crossed-girdle c axis fabrics yielded by samples $3,7,14$, and 82 were estimated by counting the degrees along the
perimeter circle between the intersections of the fabric skeleton with the perimeter circle. The deformation temperature ranges reported for these samples were estimated using the pressureindependent calibration of Faleiros et al. (2016; their equation 1). Shear-sense on the pole plots for samples $3,10,14$, and 21 A was determined by asymmetry in the orientation of single- or crossed-girdle patterns relative to foliation, after Lister and Williams (1979) and Passchier and Trouw (2005). The bisector of the type II crossed-girdle yielded by Sample 82 is oriented approximately normal to foliation, and therefore could not be used to determine shear sense.

Discussion DR3: Analytical methods and supporting data for estimation of mean kinematic vorticity $\left(\mathrm{W}_{\mathrm{m}}\right)$ using the quartz shape-preferred orientation (SPO) method of Wallis $(1992 ; 1995)$

In the case of plane-strain, monoclinic flow, quartz neoblasts are stretched in the direction of the instantaneous stretching axis (ISA_{1}) during and after dynamic recrystallization (e.g., Johnson et al., 2009) (Fig. DR1A). With continued strain, the long axes of deformed neoblasts progressively rotate toward the flow apophysis (AP1). The ISA $_{1}$ can be estimated by measuring the mean angle between foliation and the long axes of elongated quartz neoblasts (denoted here as $\theta^{\prime}{ }_{\text {ISAI }}$). The AP_{1} can be estimated by measuring the acute angle between foliation and the line normal to the central axis of a single- or crossed-girdle in a quartz c axis plot (denoted here as β, after Law et al., 2013) (Fig. DR1A). The angle between the ISA1 and the AP1 (denoted here as ζ, after Law et al., 2013), is equal to the sum of $\theta^{\prime}{ }_{\text {ISA1 }}$ and β, and mean kinematic vorticity $\left(\mathrm{W}_{\mathrm{m}}\right)$ is equal to $\sin (2 \zeta)$ (Wallis, 1992; 1995).

We measured β by constructing a visual best-fit fabric skeleton of the c-axis plots (e.g., Lister and Williams, 1979) (see discussion above). For the four samples that exhibited a type I crossed girdle or a single girdle ($3,10,14,21 \mathrm{~A}$), β was measured as the acute angle between foliation and the line normal to central axis of the girdle (Figs. 9, DR1B). For sample 82, which yielded a type II crossed girdle, β was measured as the acute angle between foliation and the line normal to the bisector of the legs of the crossed girdle. β is reported as positive if it was inclined down to the SE relative to foliation, which is consistent with a top-to-SE shear sense.

Conversely, if β was inclined down to the NW relative to foliation, which is consistent with a
top-to-NW shear sense, it was reported as negative. For the five samples in which β was able to be measured, it varied between 1° and -18° (Fig. 9, Table 3).

After the procedure described in Long et al. (2016), we define the angle between the ISA_{1} and foliation as $\theta^{\prime}{ }_{\text {ISAI }}$, which we estimated using the mean value of θ^{\prime} (defined as the acute angle measured between the long axis of a quartz neoblast and foliation; e.g., Ramsay and Huber, 1983) measurements from >100 adjacent quartz neoblasts. Grain boundaries were traced in Adobe Illustrator, with the areas of quartz neoblasts filled in solid white and any mineral phases other than quartz filled in solid black (Fig. DR2). This binary black-and-white image was imported into the program Image J (Schneider et al., 2012), and individual quartz neoblasts were modeled as ellipses using the 'fit ellipse' measurement tool. This generated an image of the fit ellipses (Fig. DR2), and a table of long axis length, short axis length, and long axis orientation data for each ellipse. The long axis orientation data were then used to populate θ^{\prime} frequency histograms (Figs. 9E, DR3) for each analysis. The sign convention used for θ^{\prime} is: clockwise from foliation is positive, and counterclockwise from foliation is negative. The reported $\theta^{\prime}{ }_{\text {ISAI }}$ is the mean of all θ^{\prime} measurements, with ± 1 standard error.

Figure DR1: Diagrams illustrating angles pertinent for estimating W_{m} using the quartz SPO method (modified from Long et al., 2016). A) Diagram of the kinematics of plane-strain, monoclinic deformation (modified from Johnson et al., 2009). ISA_{1} and ISA_{2} are the instantaneous stretching axes, and AP_{1} and AP_{2} are the flow apophyses. Relationships between $\beta, \theta_{\text {ISA1 }}, \zeta$, and W_{m}, as defined above, are shown. B) Illustration of determination of the β angle from a c-axis fabric skeleton (modified from Law et al., 2013). C) Illustration of determination of $\theta^{\prime}{ }_{\text {ISAI }}$ from a frequency histogram of all θ^{\prime} measurements. $\theta^{\prime}{ }_{\text {ISA1 }}$ is calculated as the mean of all measurements, and is reported with ± 1 standard error.

Figure DR2 (following page): Supporting figures for the estimation of $\theta^{\prime}{ }_{\text {ISA } 1}$ from foliationnormal, lineation-parallel thin sections of samples $3,10,14,21 \mathrm{~A}$, and 82 . Three figures are shown for each sample: 1) A photomicrograph taken in cross-polarized light with a $540 \mathrm{~nm} \lambda$ plate inserted (oriented with foliation horizontal; view direction is toward the southwest); 2) a line trace of >100 adjacent, recrystallized quartz neoblasts (with white fill; phases other than quartz are shown with black fill); and 3) the ImageJ output figure after performing the 'fit ellipse' function.

Figure DR3: Frequency histograms of θ^{\prime} (the acute angle between foliation and the long axes of quartz neoblasts; e.g., Ramsay and Huber, 1983) in 1° increments for samples 3, 10, 14, 21A, and $82 . \theta^{\prime}{ }_{\text {ISA } 1}$ is defined as the mean of all θ^{\prime} measurements, ± 1 standard error.

Discussion DR4: Analytical methods and supporting data for finite strain analyses

Two foliation-normal thin sections were analyzed from each finite strain sample (Tables 4, DR1), following methods outlined in Long et al. (2016; 2017). For the 22 samples that exhibited mineral stretching lineation, one thin section was cut parallel to lineation, which
approximates the XZ strain plane (thin sections ending with ' A '), and one was cut normal to lineation, which approximates the YZ strain plane (thin sections ending with ' B '). For the three samples that exhibited crenulation cleavage but not stretching lineation, the ' A ' thin section was cut normal to crenulation cleavage, and the ' B ' thin section was cut parallel to crenulation cleavage.

For each thin section, the Rf- ϕ method (e.g., Ramsay, 1967; Dunnet, 1969; Ramsay and Huber, 1983) was used to quantify a 2D strain ellipse. The final elongation (Rf; the ratio of the long axis to the short axis), and ϕ (defined here as the angle of inclination of the long axis measured relative to foliation), were measured for ≥ 30 non-recrystallized quartz porphyroclasts on photomicrographs of each thin section. Photomicrographs were taken with the apparent dip of tectonic foliation oriented horizontal, NW or NE toward the right-hand side of the page, and structurally-upward toward the top of the page. Similar to the methods described above in Discussion DR3, grain boundaries were traced in Adobe Illustrator, with the areas of quartz porphyroclasts filled in solid white and all mineral phases other than quartz filled in solid black (Fig. DR4). This binary image was then imported into ImageJ (Schneider et al., 2012), and individual quartz porphyroclasts were modeled as ellipses using the 'fit ellipse' measurement tool. This generated an image of the fit ellipses (Fig. DR4), and a table of long axis length, short axis length, and long axis orientation (ϕ) for each grain, which were then used to populate the Rfϕ graphs (Fig. DR5). Representative photomicrographs, binary images, and fit ellipses are shown in Figure DR4, and Rf- ϕ plots showing data from individual grains measured on each thin section are shown in Figure DR5.

For all analyses, the mean of all ϕ values is reported as the overall ϕ value for the thin section. Analyses from 14 samples resembled 'situation B' of Figure 5.5 of Ramsay and Huber (1983); for these samples, the tectonic ellipticity (Rs) of each thin section was estimated using the harmonic mean of all Rf values (e.g., Lisle, 1977; 1979). Analyses from 11 samples resembled 'situation A' of Figure 5.5 of Ramsay and Huber (1983); for these samples, Rs was calculated using the equation $\mathrm{Rs}=(\operatorname{Rf} \text { maximum } / \mathrm{Rf} \text { minimum })^{1 / 2}$, with Rf maximum determined from a grain situated near the mean ϕ value and Rf minimum determined from a grain that was approximately 90° away from the mean ϕ value (Ramsay and Huber, 1983). Uncertainties reported for Rs and ϕ represent 1 standard error of all measurements (Rs values and uncertainties are rounded to the nearest single decimal place, and ϕ values and uncertainties are rounded to the
nearest degree). Uncertainties in Rs range between $\pm 0.1-0.3$, and uncertainties in ϕ range between $\pm 2-9^{\circ} . \phi$ was measured relative to the apparent dip of foliation, and is therefore equivalent to the parameter θ^{\prime} defined by Ramsay and Huber (1983). The sign convention used for ϕ is: down to the NW or NE relative to foliation (clockwise from foliation in the photomicrographs) is positive, and down to the SE or SW relative to foliation (counterclockwise from foliation in the photomicrographs) is negative.

The Rs and ϕ values for the 2D strain ellipses from each ' A ' and ' B ' thin section were combined to generate the 3D strain ellipsoid for the sample (e.g., Long et al., 2016; 2017). For all analyses, the Z axis was assigned an Rs value of 1.0 in both ellipses, and the Rs values of both 2D ellipses were then directly compared to assign the X and Y strain directions ($\mathrm{X}>\mathrm{Y}$) and the relative magnitudes of the axes of the 3D strain ellipsoid. For all analyses, Rs in the 'A' thin section was either greater than or equivalent within error to Rs in the ' B ' thin section, and in 39 of the 50 analyzed thin sections, the shortening direction is within 10° of normal to foliation. This justifies the use of macroscopic structural features, including foliation, lineation, and crenulation cleavage, to approximate the principal strain directions within the studied rocks. In addition, the quartz c-axis fabrics on Figure 9, by analogy with experiments and numerical modeling of fabric development, also demonstrate that stretching lineation in the analyzed samples is parallel to the maximum finite stretch (X) direction (e.g., Lister et al., 1978; Lister and Hobbs, 1980).

Figure DR4 (following page): Annotated photomicrographs showing representative examples of quartz grain measurements for Rf- ϕ analyses. All photomicrographs were taken in XPL, with foliation oriented horizontal (arrow points structurally-upward). Three figures are shown for each sample: 1) a photomicrograph; 2) a binary image of traced quartz porphyroclasts (with white fill; phases other than quartz are shown with black fill); and 3) the ImageJ output figure after performing the 'fit ellipse' function.

Figure DR5 (following 7 pages): Rf- ϕ graphs plotting the natural log of final ellipticity (Rf) versus the orientation of the long axis (ϕ) for individual quartz porphyroclasts. ϕ is measured relative to foliation; a positive ϕ value is down to the NW or NE relative to foliation (i.e., clockwise relative to foliation in the photomicrographs), and a negative ϕ value is down to the SE or SW relative to foliation (i.e., counterclockwise relative to foliation in the photomicrographs). Errors reported for Rs and ϕ represent 1 SE of all measurements. 'Situation A' and 'Situation B' refer to Figure 5.5 of Ramsay and Huber (1983). Refer to Table DR1 for a guide to abbreviated sample numbers used in the text.

Discussion DR5: Evidence supporting assumptions for estimation of W_{m} using the Rs- θ ' method

Assuming plane strain, and idealized, steady-state flow, the relationship between tectonic strain (Rs) and the angle between foliation and the long axis of the strain ellipsoid (θ^{\prime}) can be used to estimate W_{m} (Fossen and Tikoff, 1993; Tikoff and Fossen, 1995). W_{m} can be measured by plotting the Rs value of the transport-parallel (' A ') thin section versus the corresponding θ ' value, and comparing to graphed lines of constant W_{m} (e.g., Tikoff and Fossen, 1995; Yonkee, 2005). This involves assumption that the orientation of macroscopic foliation approximates the 'shear zone boundary', or boundary of the 'high strain zone' (Tikoff and Fossen, 1995). As illustrated in mapping in Bhutan and other regions of the Himalaya, $1^{\text {st }}$-order Himalayan shear zones such as the STDS are oriented subparallel to macroscopic foliation for significant acrossstrike map distances, including $\geq 50 \mathrm{~km}$ in the Lingshi region of northwestern Bhutan (Long et al., 2011; Kellett and Grujic, 2012; this study), $\geq 75 \mathrm{~km}$ in north-central Nepal (Robinson et al., 2006), and $\geq 100 \mathrm{~km}$ in the Himachal Himalaya in northwestern India (Webb, 2013). This justifies the assumption that macroscopic foliation is approximately parallel to the boundaries of major Himalayan shear zones such as the STDS.

Discussion DR6: Calculation of transport-parallel lengthening and transport-normal shortening.

Restoration of the 3D strain ellipsoid for each sample to a sphere allowed estimation of elongations in the X and Y directions and shortening in the Z direction (Table DR3). The Y elongation obtained from this exercise was used to calculate the corrected flow-plane parallel and flow-plane normal elongations discussed below (e.g., Law, 2010; Xypolias et al., 2010).

For calculation of flow plane-parallel (i.e., transport-parallel) lengthening and flow-plane-normal (i.e., transport-normal) shortening, the equations of Figure 10 of Law (2010), which integrate strain ratio in the X / Z plane $\left(\mathrm{Rs}_{[\mathrm{X} / \mathrm{Z}]}\right)$ with mean kinematic vorticity number $\left(W_{m}\right)$, were utilized. Because a range of W_{m} values for each sample was estimated with the Rs- θ, method (due to assignment of a 1 SE range for estimation of θ ' values; e.g., Long et al., 2016; 2017), the low and high ranges of W_{m} values were used to estimate a permissible range of lengthening and shortening values. As these values do not account for lengthening in the Y direction, they are listed in Table DR3 as 'uncorrected'.

Next, using the Y lengthening values estimated for each sample from restoration of the ellipsoid to a sphere (the 'percent stretch in Y' on the graphs of Law, 2010, his Fig. 11, and Xypolias et al., 2010, their Fig. 11), corrected values for transport-parallel lengthening and transport-normal shortening were calculated that account for lengthening in Y. These corrected values were calculated for the low and high ranges of W_{m} for each sample. These corrected ranges are listed on Table 4 in the text, and plotted on Figure 10E-F.

Six low-strain magnitude (Rs typically ≤ 1.3) samples from strain domain $3(48,46,45$, $37,36,34$), four of which exhibit W_{m} values as high as $\sim 0.65-0.85$, yielded negative values for corrected transport-parallel lengthening and corrected transport-normal shortening for the high range of their W_{m} values. This indicates the potential for a component of lengthening normal to the transport direction and a component of shortening parallel to the transport direction. These data that yielded negative values were not able to be plotted on the Law (2010) and Xypolias et al. (2010) figures for correction of lengthening in Y. Therefore, only the positive portion of their error range is plotted on Figure 10E-F.

Table DR3 (following two pages): Supporting data for calculation of transport-parallel lengthening and transport-normal shortening values from strain samples on the Dodena-Lingshi transect. Refer to Table DR1 for a guide to abbreviated sample numbers used in the text.

$0 /$	0 L° I	Lt	$65^{\circ} 0$	$9{ }^{\text {d }}$	61	95	¢8．	¢ $\varepsilon^{\prime} 0$	00＇0	$\varepsilon{ }^{\prime}$	0	でて	て－	6	SLT0	ع8－9tas
¢9	t9＇τ	6ε	19\％	¢t	9	65	69^{\prime} โ	OでO	00＇0	S＇t	ε	$8 \cdot \tau$	โ	L＇乙	osz＇o	t8－9tas
IS	LS＇\downarrow	$\downarrow \varepsilon$	99°	โع	OT－	09	如＇L	$0 \mathrm{rro}^{\circ}$	so＇o	8.1	9	$\varepsilon \cdot \tau$	t－	$\varepsilon \cdot 乙$	OSt＇0	とાt－9tas
$\angle 9$	L9＇โ	0%	09\％	$8 t$	97	zs	โ6＇τ	0ャワ	sto	でし	て－	カ＇て	$t-$	6 \％	$002{ }^{\circ}$	68－9tas
IS	TS＇${ }^{\text {I }}$	$\downarrow \varepsilon$	99°	$\dagger \varepsilon$	I－	てs	ts＇τ	Stio	0t＇0	S＇L	6	S＇L	s－	$\varepsilon \cdot 乙$	SLL＇o	I6－9tas
$\downarrow \varepsilon$	$\downarrow \varepsilon^{\prime} \tau$	sz	s $L^{\circ} 0$	82	8	62	$6 \varepsilon^{\prime}$ โ	Stio	00\％	でし	0	S＇L	\dagger	8＇L	0s8．0	0tt－9tas
от	от＇ธ	6	16.0	6	0	6	от＇ธ	¢ $\varepsilon^{\circ} 0$	000	I＇\downarrow	ε－	$\tau^{\prime} \tau$	t－	でし	SLİt	80t－9tas
¿z	てて＇し	81	280	02	\dagger	02	sて＇ı	¢ع＇0	00＇0	でし	0	$\varepsilon^{\prime} \tau$	$\varepsilon-$	S＇L	SLZ＇t	Sot－9tas
97		Iz	$6 L^{\circ} 0$	¿z	z	sz	87^{\prime}	szo	00＇0	でし	8 －	$\varepsilon^{\prime} \tau$	0	$9{ }^{\text {T}}$	009 ＇${ }^{\text {c }}$	ع6－9tas
${ }^{\circ}$	$0 \varepsilon^{\prime}$ โ	$\varepsilon 乙$	$\angle L^{\circ}$	$\angle 2$	01	七て	$\angle \varepsilon^{\prime} \tau$	¢ $\varepsilon^{\prime} 0$	00＇0	I＇t	9 －	S＇L	ε	L＇L	SLL＇I	56－9tas
ss	ss．t	$\varsigma \varepsilon$	590	6ε	¢	$\angle 0$	ย9＇โ	0¢＇0	so＇o	$\varepsilon \cdot \tau$	I－	8＇L	ε	t＇z	SL6＇t	L6－9tas
¿て	てて＇し	81	280	02	\dagger	02	sて＇し	Sto	00＇0	でし	てt	$\varepsilon^{\prime} \tau$	ε－	S＇t	szz＇て	66－9tas
85	$8 \nabla^{\prime}$ L	てع	89°	โع	$t-$	Is	$5{ }^{\text {c }}$ L	0ヶ\％	soo	9＇t	8 －	\dagger^{\prime} L	†	でて	Sく\＆＇乙	tot－9tas
8ε	$8 \varepsilon^{\prime} \tau$	$\angle 7$	$\varepsilon<\cdot 0$	てع	St	62	$8 \mathrm{t}^{\prime} \mathrm{T}$	OガO	00＇0	T＇τ	9τ	$\angle \cdot \tau$	ε	$6^{\circ} \mathrm{L}$	SLて＇	$\varepsilon \varsigma-d 7$
Ot	Ot＇τ	62	T＜ 0	9ε	zz	82	9s＇โ	оع＇0	от＇0	I＇t	9 －	6^{\prime} L	\dagger	$0 \cdot 2$	$009 \cdot \varepsilon$	2s－d7
st	St＇t	โ ε	69°	9ε	91	¢¢	99^{\prime} โ	stio	00＇0	でし	S－	$8^{\prime} \mathrm{L}$	0	I＇z	¢でヤ	$0 \mathrm{~S}-\mathrm{d7}$
97	$97^{\circ} \mathrm{T}$	ı\％	66°	$\dagger 乙$	L	て乙	เย＇τ	szo	00＇0	I＇t	9	\dagger^{\prime} L	0	$9{ }^{\text {¢ }}$	0s9＇t	6 t －d7
s	So＇	s	56.0	9	ε	ε	LO＇τ	¢ $\varepsilon^{\prime} 0$	00＇0	0＇t	$\angle 1$	I＇t	ε	I＇t $^{\text {L }}$	$002 \cdot \mathrm{t}$	$8 \mathrm{t}-\mathrm{d7}$
z	20＇${ }^{\text {¢ }}$	z	86°	6	0	6	0т＇土	s9．0	¢ ε°	I＇L	LT－	I＇ธ	$\downarrow \tau$	でし	0s6 ${ }^{\prime}$	$9 \mathrm{t}-\mathrm{d7}$
［－	66°	I－	L0＇ 1	てて	6	$\angle 1$	8 ＇$^{\prime}$	S $L^{\circ} 0$	¢s．0	I＇I	$\angle 1$	∇^{\prime}	$9 \mathrm{I}^{-}$	S＇L	$002 \cdot 5$	St－d7
0	$00 \cdot \tau$	0	$00 \cdot \tau$	¢	て－	SI	£โ＇ธ	58.0	Sto	でし	0т	T＇T	61	$\varepsilon^{\prime} \tau$	0St＇8	Lع－d7
ε	ย0＇\uparrow	ε	$\angle 6.0$	9	ε	ε	LO＇τ	$00^{\circ} \mathrm{O}$	OZ＇0	0＇t	II	I＇t	$\downarrow \tau$	I＇L	SLL＇8	98－d7
81	$8 \mathrm{I}^{\prime}$	SI	58.0	oz	て！	て！	s\％＇	szo	00\％	$0{ }^{\circ}$	8 －	$\dagger^{\circ} \mathrm{L}$	て－	$カ^{\circ} \mathrm{L}$	Sくが 6	¢8－d7
s	So＇ 1	5	560	9	ε	ε	LO＇τ	¢ع＇0	00＇0	$0 \cdot \tau$	Ot－	I＇t	\dagger	I＇L	SLS＇6	เع－dา
0t	0т＇t	6	16.0	II	9	9	غ！＇ธ	$0 \varepsilon^{\circ}$	00＇0	0＇L	81	でし	ε	でし	S $\angle 9.6$	$\varepsilon \varepsilon-\mathrm{d} 7$
（ $\mathrm{m}_{\mathrm{M}}^{\text {M }}$（ ${ }^{\text {a }}$ ）	（ $\mathrm{m}_{\text {M M M }}$ ）	（ $\mathrm{m}_{\mathrm{M}} \mathrm{Mol}$ ）		（\％）	（\％）	（\％）	дәрәш！${ }^{\text {¢ }}$	${ }^{8-58}$	${ }^{0} 0^{-5}$	${ }^{[1 / x]}$ sy	${ }^{[z / /]}, \theta$	${ }^{[z / /]}$ sy	${ }^{[z / \times]}, \theta$	${ }^{[z / X]}$ sy	（my）u_{s}	ədures
	чวұวมฉร	（\％）яu！̣иәдочs	чวэำร	su！ueцочs			әдәчds	mory	worf						ечуәчว ¢о	
｜illesed	｜Pl｜esed	ןешлои	ןешлои	（z）ןешлои	（ （）ןешлои	（x）｜illexed	рәшıоуəрй								әseq əлоqе	
－rodsuex	－ヶodsuen	－Hodsuex	－ヶо八suen	－ио！̣！！os	－ио！̣eau！ 7	－ио！̣еau！ 7		48！${ }^{\text {a }}$	мот						148！34	
рәрглиоэи	рәұวалоэй	рәуวәиозй	рәұวлиоэй	：arayds e of uo！perołsad mout senjen uo！pesuolg											¢eגmionais	

$0 \cdot \varepsilon$	$\varepsilon \% 8$	¢＇9	¢＇98	0ε	S¢	Ss＇	¢ $¢$	590	¢
60	て＇8¢	s^{2}	ς ¢ $¢$	ts	09	09 โ	$\angle \varepsilon$	\＆9\％	95
て＇も	8.62	$0 \cdot 6$	0 ＇t9	zs	$\downarrow \varepsilon$	เย๋	92	$\downarrow<0$	$0 \angle$
¢＇ε	$8 \cdot 9 \varepsilon$	$0 \cdot 9$	0.82	てz	os	os＇t	$\varepsilon \varepsilon$	$\angle 90$	ャ¢
$\varepsilon \cdot \varsigma$	$\varepsilon \% \%$	$0 \cdot$ TI	0 －$¢$	てع	0ε	$0 \varepsilon^{\prime} \tau$	$\varepsilon \tau$	$\angle L O$	ts
8.5	L＇61	¢＇L	s ＇st	8	9τ	9 T ¢	¢ᄃ	98.0	$\varepsilon \tau$
$\downarrow^{\text {¢ }}$ ¢	$\varepsilon \cdot$	0 ＇t	$0 \cdot 9$	て	て	20＇	τ	86°	ог
$\varepsilon \varepsilon$	$0 \cdot \mathrm{st}$	s＇t	s＇z	8	$\varepsilon \tau$	غ1＇	てI	880	$\angle 1$
9 ¢	$\varepsilon \%$ ¢	s\％	stz	61	てz	で「	8τ	280	ャて
$\varepsilon \varepsilon$	$0 \cdot 0$ \％	$0 \cdot \pm$	O＇ヵ¢	OL	or	Oて＇โ	$\angle \tau$	\＆ 80	81
でて	でદદ	$0 \cdot \pm$	0＇¢	0ع	st	St＇T	โ	69°	8ε
6 ¢	¢＇\％	$0 \cdot 1$	$0 \cdot 0$ ¢	ε	\angle	$\angle 0 \cdot \tau$	\angle	$\varepsilon 6^{\circ}$	$\angle 1$
て＇も	ع＇82	0.8	$0 \cdot \angle$	6ε	てع	てと＇	ゅて	$9<0$	ss
$\varepsilon \cdot \downarrow$	โ＇غ์	$0 \cdot 9$	0．9「	${ }^{\text {or }}$	$\varepsilon \tau$	£ χ^{\prime} T	61	18.0	z2
$0 \cdot \mathrm{z}$	8.92	$\mathrm{s}^{\text {＇t }}$	¢＇9\％	SI	£	દ ε^{\prime}	sz	$5<0$	81
so	¢0\％	s\％	s．tz	ャ2	¢	\＆ャ＇โ	0¢	$0<0$	st
$9 \times$	ع＇61	$0 \cdot$	0＇9	ゅᄃ	zz	てでし	8τ	280	81
†＇	$\varepsilon '$	0 ＇t	$0 \cdot \tau$	0	て－	86.0	て－	20＇	г
0 ＇t	0 ＇T	0 ＇t	0^{\prime}	0	6ז－	18.0	£z－	£ ${ }^{\circ} \tau$	τ
$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	0	ゅで	$9<0$	て¢－	てと＇	0
て＇0	20	00°	$0 \cdot 0$	0	切	95°	くL－	Lく＇	0
$\varepsilon \cdot \tau$	$\varepsilon{ }^{\prime}$	${ }^{\circ} \mathrm{T}$	$0 \cdot \tau$	0	$92-$	$\downarrow \ll 0$	¢¢－	¢ ε^{\prime} T	г
$9{ }^{\text {¢ }}$	6^{6}＇${ }^{\text {c }}$	$\mathrm{s}^{\text {＇t }}$	s＇9	s	ャレ	ゅt＇t	てI	880	8
†＇	$\varepsilon \cdot \tau$	$0{ }^{\text {T}}$	O＇\uparrow	0	て－	860	て－	20＇	て
\dagger＇r	$\varepsilon \cdot 9$	0 ＇t	$0 \cdot \varepsilon$	τ	t	＋0．	\dagger	960	\dagger
	（esuex jo əlpp！u）	（ә8ued ג0．גə）	（əsuex fo elpp！u）	（ $\mathrm{m}_{1} 4$ 49！${ }^{\text {a }}$	（ $\mathrm{m}_{\text {M }}$ 4？${ }^{\text {a }}$ ）	（4M 49？ 4 ）		（\％MM 43！ 4 ）	（\％M MOI）
（\％）รuихдио	（\％）8ииәиочs	（\％）8иииәчивиә｜	（\％）8иихигяиә		（\％）8u｜иачı8ิบ｜		（\％）8иигдоч5	чэวมน	
ןшлои	ןешлои	｜əl｜ered	pllesed	｜Pl｜e．ed	pillesed	pr｜lexed	ןешлои	ןешлои	Pr\｜esed
－ －${ }^{\text {adsuen }}$	－ －${ }^{\text {adsuex }}$	－Modsuent	－- odsuen	－yodsuex	Hodsuea	－rodsuex	－ 7 odsuex	－ ¢odsue．ı	－\％odsuen
рәұวлио	рәрวлоэ		рәрวлоэ	рәұวлао	рәұวдиозй	рәวэมиози	рәрәдоэи	рарәдиоии	рәрวалоэ

Figure DR6: Ternary plot showing point (P), girdle (G), and random (R) values for quartz petrofabric samples from the Lingshi transect. Samples were plotted using methods described in Vollmer (1990) and are shown with intensity contours defined by Lisle (1985). See Figure 9D in the text for a graph of cylindricity (B) values relative to structural height.

Figure DR7: Graph of average recrystallized quartz grain diameter versus structural height for the seven samples on which quartz petrofabric data were collected. Error is shown at the 1σ level, and ' n ' represents the number of grains measured. Numbers in bold indicate sample numbers. Grain sizes were measured by tracing the outlines of >100 adjacent grains in Adobe Illustrator, and then using the 'ellipse fit' function in ImageJ (Schneider et al., 2012). The long and short axes of each ellipse were then converted into the diameter of a circle with an equivalent area.

REFERENCES CITED

Beyssac, O., Goffe, B., Petitet, J.P., Froigneux, E., Moreau, M., and Rouzaud, J.N., 2003, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy: Spectrochimica Acta Part A, v. 59, p. 2267-2276, https://doi.org/10.1016/S1386-1425(03)00070-2.
Cooper, F.J., Hodges, K.V., and Adams, B.A., 2013, Metamorphic constraints on the character and displacement of the South Tibetan fault system, central Bhutanese Himalaya: Lithosphere, v. 5, p. 67-81, https://doi.org/10.1130/L221.1.
Dunnet, D., 1969, A technique for finite strain analysis using elliptical particles: Tectonophysics, v. 7, p. 117-136, https://doi.org/10.1016/0040-1951(69)90002-X.

Faleiros, F.M., Moraes, R., Pavan, M., and Campanha, G.A.C., 2016, A new empirical calibration of the quartz c-axis fabric opening-angle deformation thermometer: Tectonophysics, v. 671, p. 173-182, https://doi.org/10.1016/j.tecto.2016.01.014.
Fossen, H., and Tikoff, B., 1993, The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics:

Journal of Structural Geology, v. 15, p. 413-422, https://doi.org/10.1016/0191-8141(93)90137-Y.
Hunter, N.J.R., Luzin, V., and Wilson, C.J.L., 2017, Direct measurement of the quartz c-axis using neutron diffraction: Tectonophysics, v. 712-713, p. 464-468, https://doi.org/10.1016/j.tecto.2017.05.019.
Johnson, S.E., Lenferink, H.J., Price, N.A., Marsh, J.H., Koons, P.O., West, D.P., Jr., and Beane, R., 2009, Clast-based kinematic vorticity gauges: The effects of slip at matrix/clast interfaces: Journal of Structural Geology, v. 31, p. 1322-1339, https://doi.org/10.1016/j.jsg.2009.07.008.
Kellett, D.A., and Grujic, D., 2012, New insight into the South Tibetan detachment system: Not a single progressive deformation: Tectonics, v. 31, TC2007, https://doi.org/10.1029/2011TC002957.
Kruhl, J.H., 1998, Prism- and basal-plane parallel subgrain boundaries in quartz: A microstructural geothermobarometer [Reply]: Journal of Metamorphic Geology, v. 16, p. 142-146.

Law, R.D., 2010, Moine thrust zone mylonites at the Stack of Glencoul: II - results of vorticity analyses and their tectonic significance, in Continental Tectonics and Mountain Building The Legacy of Peach and Horne, edited by R.D. Law, R.W.H. Butler, R. Holdsworth, M. Krabbendam, and R.A. Strachan, Geological Society of London Special Publication, v. 335, p. 579-602, doi: https://doi.org/10.1144/SP335.24.

Law, R.D., 2014, Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review: Journal of Structural Geology, v. 66, p. 129-161, https://doi.org/10.1016/j.jsg.2014.05.023.
Law, R.D., Stahr, D.W., Francsis, M.K., Ashley, K.T., Grasemann, B., and Ahmad, T., 2013, Deformation temperatures and flow vorticities near the base of the Greater Himalayan Series, Sutlej Valley and Shimla Klippe, NW India: Journal of Structural Geology, v. 54, p. 21-53, https://doi.org/10.1016/j.jsg.2013.05.009.

Lisle, R.J., 1977, Estimation of the tectonic strain ratio from the mean shape of deformed elliptical markers: Geologie \& Mijnbouw, v. 56, p. 140-144.
Lisle, R.J., 1979, Strain analysis using deformed pebbles: the influence of initial pebble shape: Tectonophysics, v. 60, p. 263-277, https://doi.org/10.1016/0040-1951(79)90163-X.
Lisle, R.J., 1985, The use of the orientation tensor for the description and statistical testing of fabrics: Journal of Structural Geology, v. 7, p. 115-117, https://doi.org/10.1016/0191-8141(85)90119-1.
Lister, G.S., Paterson, M.S., and Hobbs, B.E., 1978, The simulation of fabric development in plastic deformation and its application to quartzite: The model: Tectonophysics, v. 45, p. 107-158, https://doi.org/10.1016/0040-1951(78)90004-5.

Lister, G.S., and Williams, P.F., 1979, Fabric development in shear zones: theoretical controls and observed phenomena: Journal of Structural Geology, v. 1, p. 283-297, https://doi.org/10.1016/0191-8141(79)90003-8.
Lister, G.S., and Hobbs, B.E., 1980, The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history: Journal of Structural Geology, v. 2, p. 355-370, https://doi.org/10.1016/0191-8141(80)90023-1.
Long, S.P., McQuarrie, N., Tobgay, T., Grujic, D., and Hollister, L., 2011, Geologic map of Bhutan: The Journal of Maps, v2011, p. 184-192, 1:500,000-scale, doi:10.4113/jom.2011.1159.

Long, S.P., Gordon, S.M., Young, J.P., and Soignard, E., 2016, Temperature and strain gradients through Lesser Himalayan rocks and across the Main Central thrust, south-central Bhutan: implications for transport-parallel stretching and inverted metamorphism: Tectonics, v. 35, https://doi.org/10.1002/2016TC004242.
Long, S.P., Gordon, S.M., and Soignard, E., 2017, Distributed north-vergent shear and flattening through Greater and Tethyan Himalayan rocks: insights from metamorphic and strain data from the Dang Chu region, central Bhutan: Lithosphere, v. 9, p. 774-795, https://doi.org/10.1130/L655.1.
Morgan, S., and Law, R.D., 2004, Unusual transition in quartzite dislocation creep regimes and crystal slip systems in the aureole of the Eureka Valley-Joshua Flat-Beer Creek pluton, California: A case for anhydrous conditions created by decarbonation reactions: Tectonophysics, v. 384, p. 209-231, https://doi.org/10.1016/j.tecto.2004.03.016.
Passchier, C.W., and Trouw, R.A.J., 2005, Micro-tectonics, 2nd edition, Springer, New York, 366 p.
Peternell, M., Hasalová, P., Wilson, C.J.L., Piazolo, S., and Schulmann, K., 2010, Evaluating quartz crystallographic preferred orientations and the role of deformation partitioning using EBSD and fabric analyser techniques: Journal of Structural Geology, v. 32, p. 803-817, https://doi.org/10.1016/j.jsg.2010.05.007.
Rahl, J.M., Anderson, K.M., Brandon, M.T., and Fassoulas, C., 2005, Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece: Earth and Planetary Science Letters, v. 240, p. 339-354, https://doi.org/10.1016/j.epsl.2005.09.055.

Ramsay, J.G., 1967, Folding and fracturing of rocks: McGraw-Hill, New York, 560 p.
Ramsay, J.G., and Huber, M.I., 1983, Techniques of Modern Structural Geology, Vol. 1: Strain Analysis: Academic Press, London, 307 p.
Robinson, D.M., DeCelles, P.G., and Copeland, P., 2006, Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models: Geological Society of America Bulletin, v. 118, p. 865-885, https://doi.org/10.1130/B25911.1.
Sander, B., 1950, Einführung in die Gefügekunde der Geologischen Körper, Zweiter Teil, Die Korngefuege: Springer-Verlag, Wein-Inssbruck, 412 p, https://doi.org/10.1007/978-3-7091-7759-4.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis: Nature Methods, v. 9, p. 671-675, https://doi.org/10.1038/nmeth.2089.
Tikoff, B., and Fossen, H., 1995, The limitations of three-dimensional kinematic vorticity analysis: Journal of Structural Geology, v. 17, p. 1771-1784, https://doi.org/10.1016/0191-8141(95)00069-P.
Vollmer, F.W., 1990, An application of eigenvalue methods to structural domain analysis: Geological Society of America Bulletin, v. 102, p. 786-791, https://doi.org/10.1130/00167606(1990) $102<0786: A A O E M T>2.3 . C O ; 2$.
Vollmer, F.W., 2017, [Spherical projection and orientation data analysis program. www.frederickvollmer.com]: Orient (Paris), v. 3, p. $\cdot \cdots$.
Wallis, S.R., 1992, Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan: Journal of Structural Geology, v. 14, p. 271-280, https://doi.org/10.1016/0191-8141(92)90085-B.

Wallis, S.R., 1995, Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan: Journal of Structural Geology, v. 17, p. 1077-1093, https://doi.org/10.1016/0191-8141(95)00005-X.
Webb, A.A.G., 2013, Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India): Geosphere, v. 9, p. 572-587, https://doi.org/10.1130/GES00787.1.
Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: The American Mineralogist, v. 95, p. 185-187, https://doi.org/10.2138/am.2010.3371.
Wilson, C.J.L., Russell-Head, D.S., Kunze, K., and Viola, G., 2007, The analysis of quartz c-axis fabrics using a modified optical microscope: Journal of Microscopy, v. 227, p. 30-41, https://doi.org/10.1111/j.1365-2818.2007.01784.x.
Xypolias, P., Spanos, D., Chatzaras, V., Kokkalas, S., and Koukouvelas, I., 2010, Vorticity of flow in ductile thrust zones: examples from the Attico-Cycladic Massif (Internal Hellenides, Greece): in Continental Tectonics and Mountain Building - The Legacy of Peach and Horne, edited by R.D. Law, R.W.H. Butler, R. Holdsworth, M. Krabbendam, and R.A. Strachan, Geological Society of London Special Publication, v. 335, p. 687-714, doi: https://doi.org/10.1144/SP335.28.
Yonkee, A., 2005, Strain patterns within part of the Willard thrust sheet, Idaho-Wyoming-Utah thrust belt: Journal of Structural Geology, v. 27, p. 1315-1343, https://doi.org/10.1016/j.jsg.2004.06.014.

