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Book Cliffs

BACKGROUND INFORMATION

Welcome to the Book Cliffs. This seminar comprises an intensive field course covering
reservoir characterization of spectacularly-exposed fluvial (braided and meandering), coastal
plain, shoreface/deltaic, and shelf deposits in the Book Cliffs of east-central Utah and western
Colorado. These rocks are direct analogues to many clastic reservoirs worldwide, including
those targeted by most oil and gas companies in North America.

The Book Cliffs form approximately 300 km of continuous exposure of the Upper
Cretaceous (Campanian) Star Point Formation, Blackhawk Formation and Castlegate Sandstone,
comprising a regressive set of fluvial/tide and wave-dominated shoreface/deltaic deposits some
500 meters thick. Most major oil companies have been actively involved in research and
training in this area over the last thirty years as a direct analogue to subsurface hydrocarbon-
bearing reservoirs. The mesa-topography and dissection of the Book Cliffs escarpment allows
full 3D analysis of time-equivalent surfaces from offshore shelf deposits, through shoreface
paraseguences, onshore into the correlative coastal plain, thus providing an ideal proving ground
to test and teach sequence stratigraphic concepts at the outcrop-scale and to determine the
validity of applying such techniques to both exploration plays and field development in the
subsurface.

This seminar has been specifically designed for geologists and engineers from a variety
of disciplines and requires only a minimal background knowledge of sedimentological and
sequence stratigraphic principles. The seminar will comprise field stops supplemented by field
exercises. As such it aims to provide focused training which incorporates the use of the latest
geological concepts and technologies.

Logistics

The outcrops we are visiting occur in the high-plains desert of the Colorado Plateau
(Utah-Colorado). The weather is generally excellent and provides some of the best conditions
for fieldwork. Early morning temperatures of around 10° C are common with afternoon
temperatures approaching 25-30° C. Rain showers and/or snow flurries are unlikely, but
participants should be prepared in case we encounter inclement weather. Keep in mind that
while in Utah we will be at elevations of 1300-2000 meters and storms can occur at any time.

The outcrops which we will visit can only be accessed by driving on reasonably well
maintained dirt and gravel roads and travel will therefore be 4-wheel drive vehicles for safety
reasons. At the outcrops themselves we will undertake several hikes over moderate terrain
which will require strong walking boots with good ankle support (not running shoes or safety
boots). Because of the outcrops which we intend to visit, and the rather large distances involved
following the cliff-line exposures, | have scheduled rather full days. In general we will take
breakfast early and then will depart to the field. Packed lunches, drinks and snacks will be
provided. If you have any special dietary requirements, please let me know in advance.

Safety

Safety is of utmost importance on this trip. Most accidents which have occurred to other
field parties in this area have either involved climbing precipitous slopes in remote areas, or
through speeding on dirt roads. We do not intend to be in either of these situations at any time
during the field seminar. As we will be travelling extensively on dirt roads in Utah, drivers
should exercise caution at all times. The maximum speed on dirt roads should never exceed 30
mph. Many of the corners have positive camber, causing the vehicle to slide towards the outside
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of the bend. As we will be travelling in convoy, drivers should maintain an appropriate distance
from the vehicle in front to avoid flying gravel, and to reduce the amount of dust entering your
vehicle. In the unlikely event we encounter rain or snow in Utah, those tracks which traverse the
Mancos Shale become very slippery and traction will be greatly reduced — be aware. For drivers
and passengers there is also a real need to be aware of traffic when exiting the vehicles as some
of our stops will be adjacent to the roadside

Another safety hazard in Utah comes from dehydration and sunburn. Because of the high
altitude and westerly air flow, humidity rarely exceeds 20 %. This fact in combination with
physical exertion, provides optimum conditions for dehydration. | strongly recommend that you
equip yourselves daily with adequate supplies of water, fruit juices and minerals. In order to
reduce the risk of sunburn and eye-strain, | recommend you bring a hat and polarizing sunglasses
to combat the intense light and high degree of reflectivity off the white rocks. If you are
susceptible to sunburn, bring appropriate protective lotion.

If you have any particular medical condition, please let me know in advance so that if
you should be taken ill on the trip, | am aware of it. If any medical emergencies do arise, a clinic
attended by a physicians' assistant is available in Green River, and fully staffed hospitals are
located in Price Utah and Grand Junction Colorado. | will have several first aid kits for
emergencies in the field.

Hotel Information

Comfort Inn

1975 East Main Street
Green River, UT 84525
Phone: (435) 564-3300
Fax: (435) 564-3299

INTRODUCTION

The Book Cliffs of eastern Utah and western Colorado (Figs. 0-1 and 0-2) are an
excellent outcrop analog for many fluvial, deltaic and shoreface-to-shelf hydrocarbon reservoirs
worldwide. Similarities include the depositional environments, sedimentary processes and
facies, stacking patterns (vertical and lateral), 3D sedimentary architecture, and sequence
stratigraphy. The Book Cliffs region in east-central Utah has been the site for petroleum
industry-based research and training for many decades. For example, many AAPG-sponsored
ancient clastics field seminars have a Book Cliffs component. The continuous outcrop exposure
(100’s of km’s), numerous side canyons (3D control), desert environment (minimal vegetation),
and near-horizontal structural orientation combine to make the Book Cliffs a world-class field
laboratory for studying clastic sedimentology and sequence stratigraphy. It is truly one of the
few areas in the world where you can walk and/or drive-out time equivalent depositional units all
the way from their proximal fluvial/coastal plain environments through the shallow marine
shoreface/deltaic environments and out onto the shelf. This field trip is designed as a practical
and applied field seminar which is targeted to exploration geologists, production/development
geologists, reservoir geologists, geophysicists, petrophysicists, reservoir engineers, production
engineers and managers.




The field guidebook covers the following themes: (a) sedimentology and 3D architecture
of fluvial, coastal plain, deltaic, and shoreface-to-shelf depositional systems, (b) stacking
patterns in high vs. low accommodation settings, (c) distribution of reservoir and non-reservoir
facies in a predictive sequence stratigraphic framework, (d) relative sea level, shoreline position
and stratigraphic architecture, and (e) applications of outcrop analog data to the subsurface. The
latter includes facies identification (core and well logs), stacking patterns (well logs), correlation
(interwell spacing), modelling (exploration- to reservoir-scale), and reservoir geology-
engineering (drilling, completion, perforation and development strategies). Field trip stops are
organized as follows (Figs. 0-1 and 0-2):

Introduction to Fluvio-Deltaic, Coastal Plain and Shoreface-Shelf Deposits

Stop 1: Distal Book Cliffs, Thompson Overview

Stop 2: High Net:Gross Braided Fluvial Deposits, Castlegate Sandstone, Type Section

Stop 3: Low to Moderate N:G Meandering Fluvial and Coastal Plain Deposits, Blackhawk Fm.
Stop 4: River-Dominated Deltas, Distributary Mouth Bars, Gentile Wash

Shoreface-to-Shelf: Stacking, Correlation, Sea Level, and Sequence Stratigraphy

Stop 5: Wave-Dominated Shoreface/Deltaics, High to Low Accomm. Setting, PRC/Woodside
Stop 6: Strike Continuity of Wave-Dominated Shoreface/Deltaic, Beckwith Plateau

Stop 7: Shoreface-to-Shelf Transition, Green River Embayment/Gunnison Valley

Stop 8: Parasequences/Bedsets Compartmentalization, Grassy Member, Tusher Canyon

Incised Valleys or Channels?: Correlation and Sequence Stratigraphy

Stop 9: Channels Cutting Foreshore-Shoreface Deposits, Grassy Member, Tusher Canyon
Stop 10: Shallow Marine Deposits Cut by Channels, Desert Member, Tusher Canyon
Stop 11: Multistory vs. Single-Story Channels, Desert-Castlegate, The Basin

Channels, Coastal Plain & Shoreface-Deltaic Deposits: Architecture and Prediction

Stop 12: Desert-Castlegate Facies and Stratal Architectures, Crescent Canyon-Horse Heaven
Stop 13: Low Accommodation Space Setting, Desert-Castlegate, West of Blaze Canyon
Stop 14: High Resolution Sequence Stratigraphy, Desert-Castlegate, Blaze Canyon

Terrestrial to Marine Facies Belts: Reservoir-to-Exploration Scale
Stop 15: Reservoir-Scale Architecture Channel-Shoreface Reservoir Units, Thompson Canyon
Stop 16: Near-Field Exploration-Scale Terrestrial-Shoreface-Shelf Transition, Sagers Canyon

Book Cliffs Geology

The Cretaceous was a naturally occurring "greenhouse period™ in Earth's history when the
dinosaurs reigned supreme and the Western Interior of North America, from Arctic Canada to
the Gulf of Mexico was flooded with sea water. Global sea level was up to 250 m higher than
present day. The Cretaceous Western Interior Seaway (CWIS) dissected the North American
continent into two parts: a mountainous western half and a lower-lying eastern half. The western
half was tectonically active with only a narrow coastal plain separating the Sevier thrust front
from the CWIS. Small- to moderate-sized, eastward-flowing rivers transported a significant
volume of sediments into the CWIS, depositing a thick succession of sands, silts and clays.

Book Cliffs
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Following deposition and lithification, these sedimentary rocks were slowly uplifted to
form the magnificent scenery in the Western Interior of Canada and the United States. One of
the most spectacular regions is the Canyonlands-area of east-central Utah which is home to two
national parks and one of the longest continuous cliff-lines in the world, the 300-km-long Book
Cliffs (Figs. 0-1 and 0-2). These famous rocks arguably represent the best exposed deltaic rocks
in the world and have been used to develop, test and refine sedimentological and stratigraphic
ideas and models over the years, including the principles and concepts of sequence stratigraphy
(Van Wagoner et al. 1990; Posamentier and Allen 1999).

Study Area

The Book Cliffs extend from Helper, Utah to east of Grand Junction, Colorado (Fig. 0-1).
These cliffs consist of Campanian (Upper Cretaceous) siliciclastic rocks that were sourced from
the Sevier highlands to the west and deposited as a series of north-south trending depositional
belts towards the east (Figs. 0-3 and 0-4). Each rock package consists of fluvial and coastal-
plain deposits in the west, and time-equivalent shoreface-to-shelf deposits in the east (Fig. 0-5).
The research data base used for this field guide consists of measured outcrop sections, well log
suites, paleocurrent measurements, sandstone and mudstone samples for petrographic analysis,
and near continuous photo-panoramas across all four sectors of the Book Cliffs (i.e.
northwestern, central, southern, eastern). Five types of outcrop sections are included in the data
base: (i) regional sections that were used to establish parasequence-scale thickness and sand
content trends for the Blackhawk Formation and Castlegate Sandstone, (ii) detailed
sedimentological, ichnological and stratigraphic measured sections across the Desert Member to
Castlegate Sandstone interval in the Tusher Canyon to Sagers Canyon region, (iii) measured
sections that covered the sedimentology and sequence stratigraphy of the entire Kenilworth
Member, (iv) high-resolution sections that focused on the sedimentology and sedimentary
architecture of a variety of stratigraphic intervals in the Price River Canyon to Sagers Wash area,
and (v) high-resolution outcrop sections through the Hatch Mesa succession. Well log data was
integrated with the outcrop data in order to extend the correlation of key surfaces and rock
packages across a wide swath of eastern Utah and western Colorado (Fig. 0-6).

Reqgional Setting and Structure

The Campanian strata of east-central Utah was uplifted a few thousand meters during the
Tertiary and forms part of the Colorado Plateau. Two structural features, the San Rafael Swell in
east-central Utah and Uncompaghre Uplift in western Colorado, are directly linked to the
generation of the 300-km-long Book Cliffs escarpment (Fig. 0-3). The northwestern, central and
southern sectors of the Book Cliffs have eroded back from the San Rafael Swell, while the
southern and eastern sectors have “peeled-back” from the Uncompaghre Uplift (Fig. 0-3). The
widespread vertical uplift of the Colorado Plateau has lead to the near-horizontal preservation of
stratigraphic rock packages across a wide area of east-central Utah and western Colorado. The
net effect is that the Book Cliffs strata is relatively undeformed and has a gentle structural dip of
1° to 5° north.

Paleogeography

During the Campanian the CWIS covered the eastern half of Utah. Clastic sediments
were supplied from the rising Sevier orogenic belt to the west (Fig. 0-4). At its maximum, the
CWIS extended from the Arctic Ocean to the Gulf of Mexico. Offshore was generally in an
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eastward-direction, however perturbations of the shoreline, such as the Utah Bight, produced
southeasterly- and northeasterly-directed offshore trends (Fig. 0-4).

Paleoshoreline trends were mostly oriented north-to-south (McGookey et al. 1972).
However, the orientation of the shoreline varied considerably through time: W-E oriented
Panther Tongue Member shorelines (Newman and Chan 1991; Hwang and Heller 2002); NNW-
SSE Kenilworth Member shorelines (Taylor and Lovell 1991, 1995; Pattison 1994a, 1994b,
1995; Hampson 2000); N-S or NNE-SSW oriented Grassy shorelines (O’Byrne and Flint 1993,
1995, 1996); NE-SW oriented Desert and Castlegate shorelines (van de Graaff 1972; Fouch et al.
1983; Chan and Pfaff 1991; Van Wagoner 1991, 1995; Miall 1993, 1994; Roberts and
Kirschbaum 1995; Miall and Arush 2001). This reveals a counter-clockwise (Panther Tongue
Member to Kenilworth Member) to clockwise (Kenilworth Member to Castlegate Sandstone)
rotation of the paleoshoreline trends through time.

Stratigraphy

The bulk of the Campanian strata in the Book Cliffs of Utah consists of the Star Point
Formation, the Blackhawk Formation and the Castlegate Sandstone, forming part of the
Mesaverde Group (Young 1955). The Blackhawk Formation is subdivided into six members:
Spring Canyon, Aberdeen, Kenilworth, Sunnyside, Grassy, and Desert (Fig. 0-5). These units
grade from sandstone-dominated intervals in the west to the mudstone-dominated Mancos Shale
in the east (Young 1955; Balsley 1980). Figure 0-5 shows a parasequence-scale correlation for
the main stratigraphic units in the Book Cliffs, that is true to scale (i.e. vertical, lateral) and sand
content, thus providing a “scaled” stratigraphic cross section that links the shoreface-to-shelf
environments in both time and space.

Subsurface Data

There are an abundance of wells that penetrate the Campanian strata in east-central Utah
and western Colorado (Figs. 0-6 to 0-12). The most densely drilled areas of east-central Utah are
the coal bed methane fields in the Price region, Uinta Basin oil and gas fields in northeastern
Utah, Greater Cisco Area gas fields (east of Thompson), and the Utah-Colorado border area gas
fields. Many of the targets are deeper than the Cretaceous Mesaverde Group and therefore the
well logs cover the Castlegate Sandstone-to-Blackhawk Formation-to-Star Point Formation
stratigraphic interval. Six well log suites are included in this guidebook (Figs. 0-7 to 0-12).
These well logs can be used to directly correlate the outcrop expression of our field trip stops
with the subsurface expression of nearby time equivalent units. More importantly, these well log
suites can be used as an “analog-bridge” between the Book Cliffs outcrops and similar clastic
reservoirs, worldwide. A summary of each well log suite is given below.

PRICKLY PEAR U ST 13-16 well (Fig. 0-7). Located at SWSW-16-12S-15E. API Well Number 43-
007-30933. Nine Mile Canyon Field. Gamma ray, SP, and resistivity logs from 8110 to 9150 feet. The
top of the Castlegate Sandstone is 8206 ft. This well has the following stratigraphic-reservoir units:

Channel Sandstones 8206-8440 Castlegate Sandstone
Channel Sandstones and Coastal Plain 8440-8760 Blackhawk Formation
Shoreface/Deltaic Sandstones 8760-9150 Blackhawk Formation

PETERS POINT U FED 36-2 well (Fig. 0-8). Located at NWNW-36-12S-16E. APl Well Number 43-
007-30761. Peter’s Point Field. Gamma ray, SP, and resistivity logs from 8100 to 9240 feet. The top of
the Castlegate Sandstone is 8220 ft. This well has the following stratigraphic-reservoir units:

Channel Sandstones 8220-8420 Castlegate Sandstone
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Channel Sandstones and Coastal Plain (CP) 8420-8672 Blackhawk Formation
Shoreface/Deltaic Sandstones 8672-9184 Blackhawk Formation
Shelf Mudstones 9184-9240 Mancos Shale

UTE TRIBAL 32-2A well (Fig. 0-9). Located at NWNW-32-14S-20E. APl Well Number 43-047-33333.
Flat Rock Field. Gamma ray, SP, and resistivity logs from 6200 to 6750 feet. The top of the Castlegate
Sandstone is 6323 ft. From top to base this well has the following stratigraphic-reservoir units:

Channel Sandstones and Coastal Plain (CP) 6323-6399 Castlegate Sandstone
Shoreface/Deltaic Sandstones 6399-6411 Castlegate Sandstone
Channel Sandstones and Coastal Plain (CP) 6411-6440 Desert Member
Shoreface/Deltaic Sandstones 6440-6510 Desert Member
Shoreface/Deltaic Sandstones-Heterolithics 6510-6611 Desert Member
Shelf Mudstones 6611-6639 Mancos Shale
Shoreface/Deltaic Heterolithics 6639-6750 Grassy Member

MOON CANYON 1 well (Fig. 0-10). Located at NWSW-32-16S-21E. API Well Number 43-019-31398.
Undesignated Field Grand County. Gamma ray, SP, and resistivity logs from 5910 to 6490 feet. The top
of the Castlegate Sandstone is 5986 ft. This well has the following stratigraphic-reservoir units:

Channel Sandstones 5986-6042 Castlegate Sandstone
Shoreface/Deltaic Sandstones 6042-6052 Castlegate Sandstone
Channel Sandstones and Coastal Plain (CP) 6052-6070 Desert Member
Shoreface/Deltaic Sandstones-Heterolithics 6070-6245 Desert Member

Shelf Mudstones 6245-6296 Mancos Shale
Shoreface/Deltaic Heterolithics & Shelf Mudstones 6296-6490 Grassy Mb./Mancos Shale

EPR BLAZE CANYON 1 well (Fig. 0-11). Located at NESW-7-21S-20E. APl Well Number 43-019-
31228. Wildcat Grand County. Gamma ray and resistivity logs from 10 to 364 feet. The top of the
Castlegate Sandstone is O feet (i.e. well spudded on top of the Castlegate Sandstone). From top to base
this well has the following stratigraphic-reservoir units:

Channel Sandstones and Coastal Plain (CP) 0-54 Castlegate Sandstone
Shoreface/Deltaic Sandstones 54-85 Castlegate Sandstone
Channel Sandstones and Coastal Plain (CP) 85-116 Desert Member
Shoreface/Deltaic Sandstones-Heterolithics 116-250 Desert Member
Shelf Mudstones 250-362 Mancos Shale
Shoreface/Deltaic Heterolithics 364-366 Grassy Member

EPR SEGO CANYON 2 well (Fig. 0-12). Located at NW-27-20S-20E. API Well Number 43-019-
31232. Wildcat Grand County. Gamma ray and resistivity logs from 500 to 1090 feet. The top of the
Castlegate Sandstone is 599 ft. From top to base this well has the following stratigraphic-reservoir units:

Channel Sandstones and Coastal Plain (CP) 599-653 Castlegate Sandstone
Shoreface/Deltaic Sandstones 653-671 Castlegate Sandstone
Channel Sandstones and Coastal Plain (CP) 671-710 Desert Member
Shoreface/Deltaic Sandstones-Heterolithics 710-930 Desert Member
Shelf Mudstones 930-987 Mancos Shale
Shoreface/Deltaic Heterolithics 987-1000 Grassy Member
Shelf Mudstones 1000-1090 Mancos Shale
Facies

Thirteen shallow marine, ten channel, and six non-channelized coastal plain facies are noted in
the Blackhawk Formation to Lower Castlegate Sandstone stratigraphic interval, including the
time equivalent Mancos Shale mudstone belt to the east (Figs. 0-13 to 0-15; Table 0-1).



1 - Shallow Marine Facies

1A - Planar Laminated Sandstone

1B - Trough Cross Bedded Sandstone

1C - Swaley Cross Stratified Sandstone

1D - Hummocky Cross Stratified Sandstone

1E - Wave-Rippled Sandstone

1F - Sandy Siltstone
1F-i - Moderate-to-High Bl Sandy Siltstone
1F-ii - Low BI Sandy Siltstone

1G - Silty Mudstone
1G-i - Moderate-to-High BI Silty Mudstone
1G-ii - Low BI Silty Mudstone

1H - Dark Grey Mudstone

11 - Classical Turbidite

1J - Wave-Modified Turbidite

1K - Hyperpycnite

1L - Coarse-Grained Lag Deposit

1M - Oolitic Ironstone

2 - Channel Facies

2A - Cross Bedded Sandstone

2B - Convolute Bedded Sandstone

2C - Planar Laminated Sandstone

2D - Current Rippled Sandstone

2E - Gently-Dipping Interbedded Sandstone and Mudstone (IHS)
2F - Carbonaceous-Rich Sandstone

2G - Carbonaceous-Rich Siltstone

2H - Carbonaceous-Rich Mudstone

21 - Mudstone-Clast Pebble Breccia

2J - Fossiliferous, Fe-Cemented Sandy Breccia (“Coquina”)

3 - Non-Channelized Coastal Plain Facies

3A - Current Rippled Sandstone
3B - Carbonaceous-Rich Sandstone
3C - Carbonaceous-Rich Siltstone
3D - Carbonaceous-Rich Mudstone
3E - Carbonaceous Shale

3F - Coal
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Figure 0-2. (A) Location map showing the entire Book Cliffs regions, from Helper Utah to Grand Junction Colorado.
Book Cliffs are informally subdivided into three regions: western, central-southern, and eastern. Desert-Castlegate
measured sections (grey circles, numbered 1 to 45), well logs (white circles), and Shell cores (black circles) are shown.
Distances between adjacent Desert-Castlegate measured sections are projected orthogonal to the N14°E paleoshoreline
trend, with these distances used for spacing on the high resolution correlation panel. Down-depositional-dip distance
between “end-member” sections 1 (Castle Gate, UT) and 45 (West Salt Creek, CO) is 164 km. Key canyons, creeks,
mesas, washes, buttes, and other landmarks are abbreviated. See legend at top for full names. Latitude and longitude
is marked in 15 minute increments. (B) Map showing field stop localities.
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Figure 0-4. Paleogeography of the Cretaceous Western Interior Seaway (modified from McGookey et al. 1972).
Outline of the Book Cliffs outcrop belt is superimposed onto the paleogeography. Terrestrial environments
(green), shallow marine facies belts (yellow), and shelf environment (grey).
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Figure 0-5. (A) Late Cretaceous depositional environments in eastern Utah (Hintze 1988). (B) Large-scale
progradational stacking of shelf, shoreface-deltaic, and fluvial-coastal plain deposits, Horse Canyon-North. CSs
(Lower Castlegate Sandstone), BH (Blackhawk Formation), GM (Grassy Member), SM (Sunnyside Member), KM
(Kenilworth Member), AM (Aberdeen Member). (C) Scaled stratigraphic dip-oriented cross section of the Book
Cliffs region, Helper Utah to western Colorado (modified from Young 1955; Cole et al., 1997; Pattison et al., 2007,
Pattison 2010). Member boundaries have been extended westward into the undifferentiated Blackhawk Formation
coastal plain, and eastward into the Mancos Shale. The Blackhawk Formation and Lower Castlegate Sandstone
interfinger both laterally and vertically. This is a facies contact, not an unconformity. Key localities are shown along
the top. Horse Canyon-North (red star). Approximate ages for the top of the Lower Castlegate Sandstone (= 78 Ma)
and base Star Point Formation (= 83.5 Ma) is shown to the left (as per Fouch et al., 1983). CH (channels), K1-K4
(Kenilworth Member parasequences 1 to 4), S1-S3 (Sunnyside Member parasequences 1 to 3), G1-G2 (Grassy
Member parasequences 1 and 2).
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PRICKLY PEAR U ST 13-16. Located at SWSW-16-12S-15E. API Well Number 43-007-30933. Nine Mile Canyon Field.

PETERS POINT U FED 36-2. Located at NWNW-36-12S-16E. API Well Number 43-007-30761. Peter’s Point Field.

UTE TRIBAL 32-2A. Located at NWNW-32-14S-20E. API Well Number 43-047-33333. Flat Rock Field.
MOON CANYON 1. Located at NWSW-32-16S-21E. API Well Number 43-019-31398. Undesignated Field Grand County.

EPR BLAZE CANYON 1. Located at NESW-7-21S-20E. API Well Number 43-019-31228. Wildcat Grand County.

EPR SEGO CANYON 2. Located at NW-27-20S-20E. API Well Number 43-019-31232. Wildcat Grand County.
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Figure 0-7. PRICKLY PEAR U ST 13-16 (1 of 2). Located at SWSW-16-12S-15E. API Well Number 43-007-30933.
Nine Mile Canyon Field. C.Ss. (Castlegate Sandstone), BH (Blackhawk Formation), DM (Desert Member), GM
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Mst. (Mudstone).
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Figure 0-7 (con’t). PRICKLY PEAR U ST 13-16 (2 of 2). Located at SWSW-16-12S-15E. API Well Number

43-007-30933. Nine Mile Canyon Field.
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43-007-30761. Peter’s Point Field.
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Figure 0-8 (con’t). PETERS POINT U FED 36-2 (2 of 2). Located at NWNW-36-12S-16E. API Well
Number 43-007-30761. Peter’s Point Field.
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Figure 0-9. UTE TRIBAL 32-2A. Located at NWNW-32-14S-20E. API Well Number 43-047-33333.
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Figure 0-10. MOON CANYON 1. Located at NWSW-32-16S-21E. API Well Number 43-019-31398.
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Figure 0-12. EPR SEGO CANYON 2. Located at NW-27-20S-20E. API Well Number 43-019-31232.
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Figure 0-13. Shallow marine facies. (A) Flat-topped, rooted foreshore sandstones overlying upper shoreface facies in
the upper part of parasequence D10, Horse Heaven NW Bowl. Gently dipping planar laminated sandstones (Facies
1A), trough cross bedded sandstones (Facies 1B), and swaley cross stratified (SCS) sandstones (Facies 1C). Arrows
highlight the offshore-directed dip of the planar laminations. Geologist Mark Kirschbaum for scale. (B) Rooted top
of the foreshore (beach) sandstones (Facies 1A), top of parasequence D10, Horse Heaven, SW Bowl. (C) Hummocky
cross stratified (HCS) sandstones (Facies 1D), parasequence D10A, Thompson Canyon. Bedform has meter-scale
wavelength, with well defined hummocks (H) and swales (S). Rock hammer for scale. (D) HCS sandstones (Facies
1D), basal part of parasequence D11A, West of Blaze Canyon. (E) Thinly bedded HCS and wave-rippled sandstones
(Facies 1D and 1E), within bioturbated sandy siltstones (Facies 1F-i) and bioturbated silty mudstones (1G-i). These
lower shoreface to inner shelf deposits are in Desert Member parasequence D5, Left Fork-The Basin. Geologist Jenna
Phillips for scale. (F) Low BI silty mudstone (Facies 1G-ii) and thinly bedded wave-rippled sandstones (Facies 1E),
parasequence D4, Horse Canyon.
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Figure 0-14. Channel and coastal plain facies. (A) Trough cross bedded fU-mL sandstone (Facies 2A), Lower
Castlegate Sandstone, The Basin. (B) Convolute bedded fU-mL sandstone (Facies 2B), Lower Castlegate Sandstone,
The Basin. (C) Large-scale inclined heterolithic strata (IHS) in parasequence D11, Thompson Canyon (Facies 2E).

Book Cliffs

(D) Fossiliferous/Fe-cemented sandy breccia ("Coquina"; Facies 2J), Lower Castlegate Sandstone, Salt Wash Canyon.

Mold (m). (E) Thick bed of carbonaceous-rich shale and mudstone (Facies 3E and 3D), The Basin. Sharply overlain
by channel sandstones. Geologist for scale. (F) Coal (Facies 3F), Christmas Ridge.
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Figure 0-15. Core photographs of shallow marine facies (A-E), channel facies (F-J), and non-channelized coastal plain
facies (K-O). All core photographs from the Desert Member-to-Lower Castlegate Sandstone interval. Shell cores from
Floy Canyon (FC) and Thompson Canyon (TC). White circles with black latters: Asterosoma (As), Chondrites (Ch),
Cylindrichnus (Cy), Fugichnia/Escape Trace (fu), Ophiomorpha (O), Palacophycus (Pa), Phycosiphon (Ph), Planolites
(P1), Scolicia (Sc), Schaubcylindrichnus (Sh), Skolithos (Sk), Teichichnus (Te). Black circles with white letters:
synaeresis cracks (sy), roots (rts). (A) Facies 1F-I. Thoroughly-bioturbated (BI = 5) sandy siltstone. Parasequence D9.
TC, Depth =401 ft. (B) Facies 1F-ii. Mildly-to-non-bioturbated (BI = 0-2) sandy siltstone, interbedded with wave
rippled very fine-grained sandstone (Facies 2E). Parasequence D9. TC, Depth =438.5 ft. (C) Facies 1G-I. Moderately-
to-thoroughly bioturbated (BI = 4-5) silty mudstone. Parasequence D5. FC, Depth =369 ft. (D) Facies 1G-ii. Mildly-
bioturbated (BI = 2-3) silty mudstone. Base of parasequence D10. TC, Depth =399 ft. (E) Facies IH. Dark grey
mudstone. Very thin-beds of normally-graded siltstone. Low degree of bioturbation (BI = 1-2). Parasequence D4.

FC, Depth =399.5 ft. (F) Channel Facies 2D. Current rippled fL sandstone. Inclined heterolithic strata. Abundant
carbonaceous matter. TC, Depth =219.5 ft. (G) Channel Facies 2E. Gently dipping sandstone and mudstone. Inclined
heterolithic strata with coal clasts. FC, Depth = 156 ft. (H) Channel Facies 2F. Carbonaceous-rich sandstone. Convolute
bedded. FC, Depth =151 ft. (I) Channel Facies 2G. Carbonaceous-rich siltstone. Rhythmically pin-striped laminated.
Fining-upward succession. FC, Depth = 78.5 ft. (J) Channel Facies 2I. Mudstone-clast pebble breccia. FC, Depth =
91.5 ft. (K) Coastal plain Facies 3B. Non-channelized, carbonaceous-rich sandstone. FC, Depth = 116 ft. (L) Coastal
plain Facies 3C. Non-channelized, carbonaceous-rich siltstone. Bioturbated. FC, Depth =150 ft. (M) Coastal plain
Facies 3C. Non-channelized, carbonaceous-rich siltstone. Large angular coal clast. TC, Depth = 258 ft. (N) Coastal
plain Facies 3D. Non-channelized, carbonaceous-rich mudstone. Roots and coal clasts. FC, Depth = 167.5 ft.

(O) Coastal plain Facies 3E. Non-channelized, carbonaceous shale. Large coal clast. FC, Depth = 232 ft.
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FIELD DAY 1

INTRODUCTION, FLUVIAL, COASTAL PLAIN, AND DELTAIC/SHOREFACE

Stop 1:

Stop 2:

Stop 3:

Stop 4A:

Stop 4B:

DEPOSITS

Distal Book Cliffs, Thompson Overview

High Net:Gross Braided Fluvial Deposits, Castlegate Sandstone, Type
Section

Low to Moderate Net:Gross Meandering Fluvial and Coastal Plain
Deposits, Blackhawk Formation

River-Dominated Deltas, Distributary Mouth Bars, Panther Tongue
Member, Gentile Wash

Wave-Dominated Shoreface/Deltaics, High Accommodation Setting,
Storrs-to-Spring Canyon Members, Gentile Wash
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STOP 1: DISTAL BOOK CLIFFS, THOMPSON OVERVIEW

The Book Cliffs are situated on the northern rim of the Colorado Plateau and have been
eroded back from the San Rafael Swell in east-central Utah and the Uncompahgre Uplift in
eastern Utah and western Colorado. This provides a gentle structural dip of 1-5° N throughout
most of this region. The rocks are basically flat lying and are relatively undeformed. Small
normal faults are observed in places. The Campanian strata consists of the Star Point Formation,
Blackhawk Formation and Castlegate Sandstone, forming part of the Mesaverde Group (Fig. 1-1;
Young 1955). The Blackhawk Formation is subdivided into six members: Spring Canyon,
Aberdeen, Kenilworth, Sunnyside, Grassy and Desert (Young 1955). These sedimentary rocks
are Late Cretaceous in age (Campanian), and grade from sandstone-dominated intervals in the
west to the mudstone-dominated Mancos Shale in the east (Young 1955; Balsley 1980).

The Blackhawk Formation spans a 3.5 million year interval from approximately 82.5 Ma
to 79 Ma (Fouch et al. 1983). The main facies belts are braided fluvial, meandering fluvial,
coastal plain, river- and wave-dominated deltas, upper and lower shoreface, and offshore/inner
shelf. During the Campanian, the Cretaceous Western Interior Seaway covered the eastern half
of Utah and paleoshoreline trends were oriented approximately north to south (McGookey et al
1972). During Desert Member and Castlegate Sandstone deposition (i.e. cliff-forming
sandstones in the Book Cliffs at Thompson), shoreline trends were oriented NE-SW with
offshore towards the SE (Van de Graaff 1972; Miall 1993, 1994; Van Wagoner 1995). The
Mancos Shale and the distal expression of the Blackhawk Formation and Castlegate Sandstone
are exposed in the 250 m high Book Cliffs at Thompson (Fig. 1-2). The I-70 rest stop and the
highway are directly on top of the Mancos Shale, which is over 1000 m thick in eastern Utah
(Fig. 1-1). In eastern Utah and western Colorado, a 100 to 400 m thick section of the Mancos
Shale has an anomalously high sandstone content along certain horizons (Kellogg 1977; Cole
and Young 1991). These deposits were originally called the Mancos B interval and are now
formally defined as the Prairie Canyon Member (Fig. 1-1; Cole et al. 1997). The Prairie Canyon
Member is roughly time equivalent to the Star Point and Blackhawk formations further to the
west (Cole et al. 1997; Hampson et al. 1999, 2001). Isolated shelf sandstone bodies are scattered
throughout this region (Pattison 20053, b, c; Pattison et al. 2007a; Pattison and Hoffman 2008).

Shallow marine and channel sandstones of the Castlegate Sandstone and Desert Member
form the ridge-line top in the Thompson area (Fig. 1-2). Careful tracking along the Book Cliffs
outcrop trend reveals an up-depositional-dip thickening (west) and a down-dip thinning (east) of
these sandstones. The amalgamated Castlegate-to-Desert interval is approximately 110 m thick,
with over 60 m of sandstone-dominated deposits. Distal thin-bedded sandstones and siltstones of
the Grassy Member are exposed beneath the cliff-forming Castlegate-to-Desert interval.

Two other features are worth noting at this stop: (i) white caps and (ii) coal burns. The
upper Desert Member is marked by white sandstones in places, called white caps. These white
sandstones are effected by acidic waters sourced from the overlying coal-bearing coastal plain
deposits that leach-out the iron-bearing minerals (Spieker 1931, 1949; Young 1955). The second
feature worth noting are the reddish-brown sandstones that occur in the upper part of the Book
Cliffs. These are called coal burns. The brick red sandstones are evidence of coal combustion,
possibly triggered by lightning strikes. Both white caps and coal burns are indicators of
overlying or interbedded coastal plain deposits and are useful proxies for a low-resolution or
“first-pass” interpretation for the presence of overlying coastal plain deposits.
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Figure 1-1. Geological columns with stratigraphic nomenclature (Hintze 1988). Chart 68: Cisco-Harley Dome,
eastern Utah. This describes the stratigraphy in the vicinity of the Thompson rest stop, off -70. Chart 44: Grand
Junction area, western Colorado. This shows the detailed stratigraphy for the Colorado National Monument region.
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Figure 1-2 Thompson Rest Stop, north side I-70. (A) Scaled stratigraphic dip-oriented cross section of the Book

Cliffs region, Helper Utah to Utah-Colorado border. Member boundaries have been extended both westward into the

undifferentiated Blackhawk Formation coastal plain and Lower Castlegate Sandstone (C.Ss.), and eastward into the
Mancos Shale using high resolution outcrop and subsurface correlations. Key field stop localities are shown along
the top. (B-D) Continuous photo-panorama looking north towards the Book Cliffs. Field of view is approximately

13 km. The Castlegate Sandstone and Desert Member (Blackhawk Formation) combine to form the distinct clift-line

in the foreground. These sandstone-rich units are underlain by the distal Grassy Member (Blackhawk Formation),

which rests on top of over 1000 m of Mancos Shale. Younger stratigraphic units overlying the Castlegate Sandstone

are the Buck Tongue (Mancos Shale), Sego Sandstone, and Neslen Formation.
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STOP 2: HIGH NET:GROSS BRAIDED FLUVIAL DEPOSITS, CASTLEGATE
SANDSTONE, TYPE SECTION

The type section for the Castlegate Sandstone offers an excellent example of a stack of
high net:gross (N:G) fluvial deposits and is located in the extreme northwestern corner of the
Book Cliffs (Figs. 0-1 and 0-2). At this locality, the Lower Castlegate Sandstone rests sharply
on top of the undifferentiated coastal plain deposits of the Blackhawk Formation. The
sandstone-rich Lower Castlegate can be correlated for approximately 150 km down-depositional-
dip into eastern Utah.

Sandstone-rich, braided fluvial channel deposits occur at this stop (Figs. 2-1 and 2-2).
These rocks consist of moderately sorted, fine- to medium-grained, cross bedded and current
rippled sandstones (Fig. 2-2). Convolute bedding, subangular to angular mudstone chips, wood
fragments, coal clasts and finely-comminuted plant debris are common (Fig. 2-2). Laterally-
discontinuous, organic-rich mudstone layers (a few cm’s thick) comprising less than 5 % of the
succession are interbedded with the sandstones. These mudstone layers rarely extend for more
than a few meters. The sedimentary architecture is dominated by channel-bar forms with lateral
and downstream accretion elements, most of which are lens-shaped (Fig. 2-2).

Similar types of high net:gross fluvial deposits have the potential to be excellent
hydrocarbon reservoirs, with very good porosity and permeability. However, a seal is required.
It is unlikely that the interbedded mudstone layers would be a barrier to fluid flow, but would
likely cause a minor baffling effect. The Castlegate Sandstone is an outcrop analog for braided
fluvial reservoirs worldwide, such as the Prudhoe Bay Oil Field in Alaska. Prudhoe Bay is the
16" largest oil field in the world, with over 13 billion barrels of recoverable oil reserves.

Adams and Bhattacharya (2005) have demonstrated that the Castlegate Sandstone
consists of an amalgamated package of sandy channel-belt sheets, up to 80 m thick. Individual
sheets are 4 to 7 m thick and contain less than 5 % mudstone. The average bar accretion
thicknesses are 2 m, which corresponds to a water depth of 2 to 4 m. Adams and Bhattacharya
(2005) argue for a similar fluvial style across the Blackhawk Formation and Castlegate
Sandstone stratigraphic interval. They suggest that all of the Blackhawk and Castlegate rivers
were braided, and that the differences in fluvial architecture (i.e. low net:gross in the Blackhawk
vs. high net:gross in the Castlegate) is caused by tectonically-driven changes in accommodation
space. Adams and Bhattacharya (2005) link the preservation of the thick overbank mudstones in
the Blackhawk Formation to an increase in accommodation space.

The only definitive evidence for an unconformity at the base of the Lower Castlegate
Sandstone is in the Wasatch Plateau, west of the Book Cliffs, where an angular unconformity has
been recorded at a few localities (Spieker and Reeside, 1925; Horton et al., 2004). In proximal-
to-medial Book Cliffs localities, the base of the Lower Castlegate Sandstone varies by + 1-2
channel stories (Fig. 2-3). Therefore, in contrast to conventional sequence stratigraphic models
(Van Wagoner et al. 1990; Van Wagoner 1991, 1995; Miall 1993), there is no single through-
going unconformity separating all of the amalgamated channel sandstones of the Lower
Castlegate Sandstone from the coal-bearing coastal plain deposits of the Blackhawk Formation.
This is a facies contact, which interfingers both laterally and vertically. Two sequence
stratigraphic modeling scenarios are considered: (1) conventional, classic, third-order SB, IVF,
non-linked nearshore terrestrial and shallow marine facies belts, detached sand bodies are likely
down-dip (Fig. 2-3A), and (2) alternative, no SB, no IVF, suite of discrete parasequence-scale
shoreface-incised channels, temporally and spatially linked nearshore terrestrial and shallow
marine facies belts, no detached sand bodies down-dip, attached only (Fig. 2-3B).
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Figure 2-1. High net:gross fluvial deposits, Castlegate Sandstone, type section locality. (A) Panorama of the
Highway 6 road cut (southwest side). Note the discontinuity of organic-rich mudstones and siltstones. According to
locals, this outcrop site had a castle-like top prior to blasting, similar to that observed on the northeast side of the
highway, and therefore was truly a “castle-gate”. (B) Braided stream depositional model (Brown and Fisher 1980).
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Figure 2-2. Sedimentary architecture and facies of braided river deposits, Book Cliffs, Utah. (A) Castlegate
Sandstone type section, north side of Highway 6, approximately 7 km northwest of Helper, UT. Note the high
net:gross ratio, lack of continuous mudstone layers, and meter-scale, lens-shaped, bar form geometries. (B) Cross
bedded sandstones, Castlegate Sandstone type section. Rock hammer handle for scale. (C) Planar laminated fine-
grained sandstones, Castlegate Sandstone, Horse Canyon-South. (D) Convolute bedded sandstones, Castlegate
Sandstone, Crescent Canyon. (E) Abundant angular mudstone clasts at the top of a sandstone bed, USA penny coin

for scale (1.9 cm diameter). Castlegate Sandstone, Highway 6. (F) Current rippled sandstones, Castlegate
Sandstone, Christmas Ridge.
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Figure 2-3. Contrasting sequence stratigraphic interpretations for the base of the Castlegate Sandstone. (A) Conventional sequence
stratigraphic model of the Desert (D) Member to Lower Castlegate (C) Sandstone (C.Ss.) interval (Van Wagoner et al., 1990; Van
Wagoner 1991, 1995). Third-order sequence boundaries (D-SB, C-SB) separate the terrestrial and shallow marine facies belts. HST
(Highstand Systems Tract, LST (Lowstand Systems Tract), TST (Transgressive Systems Tract), G-HSS (Grassy Highstand Sequence
Set), LSS (Lowstand Sequence Set). Modeling scenario 1: conventional, classic, third-order SB, IVF, non-linked nearshore terrestrial
and shallow marine facies belts, detached sand bodies are likely down-dip. (B) Alternative sequence stratigraphic model (this study).
Time lines connect the terrestrial and shallow marine facies belts (i.e. thick coal zones and flooding surfaces). “Shoreface-incised”
channels are tidal-estuarine (light brown) and occur as discrete incisions in most Desert-Castlegate parasequences. Similar
“shoreface-incised” channels exists in other members of the Blackhawk Formation. Modeling scenario 2: alternative, no SB, no
IVF, suite of discrete parasequence-scale shoreface-incised channels, temporally and spatially linked nearshore terrestrial and shallow
marine facies belts, no detached sand bodies down-dip, attached only. (C) Base of the Lower Castlegate Sandstone, type section
locality, Castle Gate, Utah. White arrows point to the base of the stacked-amalgamated channel sandstones. Note that this surface

is not at the same level within the field of view. Castlegate Sandstone (C.Ss.), Blackhawk Formation (BH). (D) Multiple possibilities
for the base of the Lower Castlegate Sandstone (i.e. base of amalgamated channel sandstones), all five levels shown with different
coloured arrows: black, white, red, yellow, and blue. (E) Three different levels for the base of the amalgamated-stacked channel
sandstones. (F) Base of the Lower Castlegate Sandstone (yellow arrows), as identified by Miall and Arush (2001a, b). Type section.
Castle turret on the east side of Highway 6.
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STOP 3: LOW TO MODERATE NET:GROSS MEANDERING FLUVIAL AND
COASTAL PLAIN DEPOSITS, BLACKHAWK FORMATION

This stop is located near the Castlegate Power Station off Highway 6 (Figs. 0-1 and 0-2)
and serves as an introduction to the low-to-moderate net:gross fluvial and coastal plain deposits
of the Blackhawk Formation. These non-marine deposits are time equivalent to the upper part of
the Aberdeen Member and the Kenilworth Member. A shoreface sandstone occurs in the
lowermost part (east) of the road cut and is part of the Aberdeen Member (Fig. 3-1). Itis
interesting to compare and contrast the sorting, grain size, organic content, sedimentary
structures, and vertical facies succession of the Aberdeen shoreface deposits to the overlying
fluvial sandstones and coastal plain deposits of the Blackhawk Formation.

Coastal plain facies are ubiquitous throughout the study area. Coal-bearing, mudstone-
rich deposits are plentiful in the Blackhawk Formation. Coal clasts and roots are abundant.
Sandstone facies are less common forming single story meandering fluvial deposits encased in
fine-grained coastal plain (Figs. 3-1 and 3-2). Most fluvial sandstones are very fine- to fine-
grained with moderate to poor sorting. Fining-upward successions are common. The dominant
sedimentary structures are current ripples, climbing ripple sets and convolute bedding, with
lesser amounts of trough cross bedding and planar laminations (Fig. 3-2). Abundant
carbonaceous matter in the form of wood fragments, coal clasts, and plant remains are scattered
throughout the channel facies (Fig. 3-2). Mudstone and siltstone chips or clasts with a variety of
shapes (SA-A) and sizes are also observed. The degree of bioturbation is mostly low to
moderate (Bl = 0-3), with some Planolites, Chondrites, Skolithos, Palaeophycus, and
Teichichnus. Specific trace fossil suites and bioturbation indices are compiled for all six coastal
plain facies in Table 0-1.

The fluvial architecture at this stop consists of channel bar forms (point bars) with well
defined lateral and downstream accretion surfaces and lens-shaped geometries (Figs. 3-1 and 3-
2). Adams and Bhattacharya (2005) studied similar deposits in the Salina Canyon region,
approximately 100 km south-southwest of Helper, and determined that the Blackhawk channels
comprised isolated channel-belt sheet sandstones, 5 to 8 m thick, that are encased in thick
floodplain mudstones. Average bar accretion thicknesses are 2 m which corresponds to water
depths of 2 to 4 m. Adams and Bhattacharya (2005) suggests that there is no change in fluvial
style across the Blackhawk Formation to Castlegate Sandstone stratigraphic interval, thus casting
doubt on earlier interpretations which suggested that the Blackhawk channels were meandering.
Adams and Bhattacharya (2005) argue that the Blackhawk channels were braided and had a
similar sedimentology, sinuosity, and width:depth ratio as the Castlegate channels. The fluvial
sandstones are interbedded with overbank/floodplain sandstones, siltstones, mudstones and coals
(Fig. 3-2). One type of floodplain sandstone are the crevasse splay deposits (Fig. 3-1), which are
defined as low energy ‘deltas’ that are perpendicular to the main channel and are formed during a
levee break (Jackson 1997).

The main reservoir characteristics of the fluvial and coastal plain deposits of the
Blackhawk Formation are as follows: (i) low-to-moderate net:gross, (ii) moderate porosity, (iii)
low permeability, (iv) small reservoirs, (v) tortuous flow path, (vi) compartmentalization, (vii)
low recovery factor, and (viii) limited pressure support. Crevasse splay sandstones may provide
tortuous 3D pathways for fluid flow via connection with the isolated channel-belt sandstones.
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Figure 3-1. Low to moderate net:gross fluvial and coastal plain deposits, Blackhawk Formation, Castlegate
power station locality. (A) Labelled panorama of the roadcut on the southwest side of Highway 6. (B)
Depositional models of high versus low sinuousity river systems (Moody-Stuart 1966).
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Figure 3-2. Sedimentary architecture and facies of meandering river deposits and fine-grained coastal plain facies,
Book Cliffs, Utah. (A) (B) Current rippled sandstone beds along the lateral accretion surfaces shown in the center
of Part A. (C) Coal bed. Blackhawk Formation, Highway 6 road cut northwest of Helper. (D) Dark grey mudstones
with coal fragments and iron-staining, lower Blackhawk Formation, Castlegate Power Station. (E) Abundant angular
mudstone clasts in ripple laminated fine-grained sandstone, Blackhawk Formation, Highway 6 roadcut northwest of
Helper. Variety of clast shapes and sizes. USA penny coin for scale (1.9 cm diameter). (F) Wood fragments within
dark grey mudstones, upper Blackhawk Formation, Horse Canyon-South.
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STOP 4A: RIVER-DOMINATED DELTAS, DISTRIBUTARY MOUTH BARS,
PANTHER TONGUE MEMBER, GENTILE WASH

Participants will be introduced to river-dominated deltaic deposits at this stop. The
purpose is to closely examine the distributary mouth bar deposits of the Panther Tongue Member
(Star Point Formation). Gentile Wash is located approximately 2 km north of Helper (Figs. 0-1
and 0-2). The emphasis of this stop is as follows: (i) sedimentology and architecture of
distributary mouth bar deposits, (ii) key building blocks of river-dominated deltas, and (iii) 3D
geometry and stacking patterns at a reservoir-scale.

There are a wide variety of deltas worldwide and these have been classified based on the
relative influence of fluvial, wave and tidal processes. The best example of a modern river-
dominated delta is the Mississippi Delta (Fig. 4-1). In river-dominated deltas, sediments are
delivered to the delta front via distributary channels (Fig. 4-1). Field evidence suggests that the
Panther Tongue channels were terminal distributary channels (subaqueous) located in the
proximal portion of a mouth bar (Olariu et al. 2001, 2005: Olariu and Bhattacharya 2006).
Channel facies are characterized by abundant cross bedding, convolute bedding, steep and
overhanging margins, and large mudstone/siltstone clasts floating within the sandstones. High
rates of sedimentation are indicated by the slumped, contorted and over-steepened (i.e. greater
than the angle of repose) sandstone beds. It is likely that the channels were cut and filled very
rapidly. A Teredolites ichnofacies (woodground) is indicative of a salt water or marine
influence.

Distributary mouth bars are built at the terminus of the distributary channels where the
flow becomes unconfined (Fig. 4-1). The distributary mouth bar facies at Gentile Wash includes
interbedded mudstones, siltstones and very fine- to medium-grained sandstones (Fig. 4-2).

These deposits consist of wave-modified Bouma-like Ty, The and T turbidite beds or shallow
water turbidites (Fig. 4-2). The dominant sedimentary structures are current-, combined-flow-
and wave-ripple laminations, planar laminations, hummocky cross stratification (HCS) and
convolute bedding. Numerous sole marks (i.e. groove, flute, tool, prod) occur at the base of the
sandstone beds indicating a southerly flow direction (Fig. 4-2). Regional studies have shown
that the Panther Tongue shorelines were oriented west to east, with offshore directed towards the
south (Newman and Chan 1991; Hwang and Heller 2002). Carbonaceous matter is locally
abundant and consists of wood fragments, coal clasts and finely comminuted plant debris. The
distributary mouth bar deposits are moderately- to thoroughly-bioturbated by Ophiomorpha,
Skolithos, Diplocraterion, Paleophycus, Terebellina, Teichichnus and Rosselia traces (Fig. 4-2).
Evidence for shallow water deposition includes the presence of wave- and combined-flow-ripple
laminated sandstones, HCS sandstones, and a diverse and fully marine ichnofaunal suite.

The Panther Tongue distributary mouth bar deposits exhibit well defined coarsening- and
thickening-upward successions (Fig. 4-2). Up to 5 successions are observed at any given
locality. Mouth bars have lobate geometries with a diameter ranging from hundreds of meters to
a few kilometers. Similar to other river-dominated successions, the Panther Tongue mouth bars
have well defined clinoforms that dip 1-5° (Fig. 4-2). The Panther Tongue Member is capped by
a transgressive lag deposit up to 30 cm thick (Newman and Chan 1991; Hwang and Heller 2002).
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Figure 4-1. River-dominated deltaic deposits: distributary channels and mouth bars. (A) Morphological elements of
the Mississippi Delta (modified from Gould 1970, Elliott 1986). (B) Terminal distributary channel passing down-

depositional-dip into distributary mouth bar facies, Panther Tongue Member.
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Figure 4-2. River-dominated deltaic deposits: distributary mouth bars, Panther Tongue Member, Gentile Wash.
(A) Stacked distributary mouth bar deposits, north wall of Gentile Wash. Overall coarsening-upward succession.
Transgressive surface of erosion (TSE). Person for scale (circle). (B) Stacked distributary mouth bar deposits,
cast side of Highway 6. (C to F) Distributary mouth bar facies: stacked Bouma-like T, and T, turbidite beds (C),
wave ripples capping a Bouma-like T,, turbidite bed (D), Ophiomorpha (E), and sole marks (F).
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STOP 4B: WAVE-DOMINATED SHOREFACE/DELTAICS, HIGH ACCOMMODATION
SETTING, STORRS-TO-SPRING CANYON MEMBERS, GENTILE WASH

We will be examining the wave-dominated shoreface deposits in the Storrs Member (Star
Point Formation) and Spring Canyon Member (Blackhawk Formation) at this locality (Figs. 0-1
and 0-2). The Spring Canyon Member rests stratigraphically above the Star Point Formation and
outcrops further-up-canyon in Gentile Wash compared to the Panther Tongue Member. This
stop is a classic outcrop locality that was prominently featured in the AAPG publication
Siliciclastic Sequence Stratigraphy in Well Logs, Cores and Outcrops, Methods in Exploration
Series No. 7 (Van Wagoner et al., 1990), which integrated outcrop and nearby subsurface data
(i.e. wireline logs and cores).

Despite having examined river-dominated deltaic deposits at the previous stop, most of
the shallow marine deposits in the Book Cliffs are wave-dominated (i.e. deltas, shorefaces), in
both high and low accommodation settings. The focus of this stop is on a high accommodation
setting (Fig. 4-3). We will examine lower accommaodation settings later in this trip. Participants
will have an opportunity to compare and contrast wave-dominated shoreface/deltaic deposits
with the river-dominated deltaic deposits that were observed earlier (Panther Tongue Member).
We will examine the following key building blocks of a wave-dominated shoreface/deltaic
system at this stop: (i) foreshore-upper shoreface sandstones, (ii) lower shoreface heterolithics
(interbedded mudstones and sandstones), and (iii) offshore to inner shelf mudstones (Fig. 4-3;
Table 0-1). These shallow marine deposits stack into coarsening-upward successions that pass
from dark grey mudstones and silty mudstones near the base, through sandy siltstones with thin
bedded wave-rippled sandstones, up to hummocky (HCS) and swaley cross stratified (SCS)
sandstones, and finally to trough cross bedded and planar laminated sandstones (Table 1). A
wide variety of trace fossils are observed throughout the stack of shallow marine facies including
Arenicolites, Asterosoma, Chondrites, Conichnus, Cylindrichnus, Helminthopsis,
Macaronichnus, Ophiomorpha, Palaeophycus, Phycosiphon, Planolites, Rhizocorallium,
Rosselia, Schaubcylindrichnus, Scolicia, Skolithos, Teichichnus, Thalassinoides and Zoophycos.
The bioturbation index is relatively low (Bl = 0-2) in the sandstones, but consistently higher in
the mudstones and siltstones (Bl = 3-6). However, some mudstones and siltstones have a low Bl
(0-2), with associated synaeresis cracks. Details on the Bl and specific trace fossil suites within
each shallow marine facies is provided in Table 0-1.

As we hike up through Gentile Wash, participants will note a stack of coarsening-upward
cycles or parasequences, with at least two parasequences in the Storrs Member and four or five
parasequences in the Spring Canyon Member (Fig. 4-3). A parasequence is defined as “a
relatively conformable succession of genetically related beds or bedsets bounded by marine
flooding surfaces and their correlative surfaces” (Van Wagoner et al. 1990). In general these are
characterized by a coarsening-upward (CU) vertical facies succession, with sandstone beds
getting thicker upwards and the degree of bioturbation decreasing upwards. Parasequences pass
from distal facies at the base to more proximal facies at the top. Parasequences are bounded
above and below by marine flooding surfaces and are the fundamental building block in
sequence stratigraphy. Note that all of the parasequences in the Storrs Member and Spring
Canyon Member show a gradational vertical transition in facies. Gradationally-based shoreface
successions are typical of normal regression (i.e. CU successions), which is the main shoreface
stacking style in a high accommodation setting. In contrast, low accommodation settings are
characterized by forced regressions which are manifested by sharp-based shoreface successions.
We will see some examples of forced regressive shoreface successions later in the field trip.
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FIELD DAY 2

STACKING, CORRELATION, SEA LEVEL AND SEQUENCE STRATIGRAPHY

Stop 5: Wave-Dominated Shoreface/Deltaics, High to Low Accommaodation
Setting, Kenilworth Member, Price River Canyon/Woodside

Stop 6: Strike Continuity of Wave-Dominated Shoreface/Deltaic Deposits,
Beckwith Plateau, Desert Siding, Mile Marker 291

Stop 7: Shoreface-to-Shelf Transition, Kenilworth Member, Green River
Embayment/Gunnison Valley

Stop 8: Parasequence-to-Bedset Compartmentalization, Grassy Member,
Tusher Canyon

50



Book Cliffs

STOP 5: WAVE-DOMINATED SHOREFACE/DELTAICS, HIGH TO LOW
ACCOMMODATION SETTING, KENILWORTH MEMBER, PRICE RIVER
CANYON/WOODSIDE

This stop focuses on the Kenilworth Member which is the third oldest member in the
Blackhawk Formation (Figs. 5-1 to 5-6). The Kenilworth Member consists of a stack of wave-
dominated shoreface/deltaic deposits at Price River Canyon, east of Woodside. This area is
located along the north banks of the Price River, approximately 6 km east of Woodside (Figs. 0-1
and 0-2). The Book Cliffs are approximately 300 m high in the Price River Canyon to Woodside
region. The Kenilworth is the lowermost series of cliff-forming sandstones at this locality (Fig.
5-3). The upper Kenilworth (KPS4) is marked by a 28-33 m thick package of upper shoreface
sandstones. For the purpose of this field trip, the definitions of upper and lower shoreface are
based on practical-applied reservoir geology concepts and are non-traditional (Fig. 5-1). Strictly
speaking, the shoreface zone is defined as being above fair weather wave base and is variously
subdivided in academia (Fig. 5-1). The depth to fair weather wave base varies depending on the
wave energy of the coastline, and is usually 5-15 m water depth. Storm wave base is defined as
the depth to which storm waves can “touch-the-bottom” and generally varies from 30-70 m water
depth. During this field trip, the upper shoreface is defined as the zone of thick bedded shoreface
sandstones, while the lower shoreface is defined as the zone of thin bedded heterolithics
(Williams and Davies 2006). A reservoir geology-based definition of the upper shoreface
encompasses most of the traditionally-defined shoreface zone, while the lower shoreface
definition straddles the traditionally defined shoreface-to-offshore transitional zone (Fig. 5-1;
Williams and Davies 2006). One of the reasons for these reservoir geological subdivisions is
that hydrocarbon production is common from thick and thin bedded shallow marine deposits,
with each having distinct flow behaviors (i.e. kv/kh; Williams and Davies 2006).

A stack of CU successions or shelf-to-shoreface cycles or parasequences comprise the
Kenilworth Member (Figs. 5-3 and 5-5). As we hike up through the side canyon, participants
will note an aggradational to progradational stack of at least four coarsening-upward cycles or
parasequences in the Kenilworth, KPS1 to KPS4 (Figs. 5-3 and 5-5). Most parasequences are
wave-dominated, with abundant wave-rippled, hummocky cross stratified (HCS), swaly cross
stratified (SCS), trough cross bedded and planar laminated sandstones. The only exception is
KPS2 which has Bouma-like Ty, and T beds, wave-modified turbidites, thick packages of
climbing combined flow ripple-laminated sandstones, carbonaceous-rich mudstones, siltstones
and sandstones, and non-bioturbated mudstones, siltstones and sandstones. These suggest a river
influenced shoreface-to-shelf setting, probably a distal delta front to prodelta environment.
Shallow water turbidity currents were triggered during storm events leading to interbedded
classical turbidites, wave modified turbidites, hyperpycnites, and HCS sandstones in KPS2

KPS1 to KPS3 stack to form an aggradational to progradational parasequence set
interpreted as part of a HST, while the strongly progradational KPS4 comprises the falling stage
(FSST) and/or attached lowstand (LSTa) systems tract (Ainsworth and Pattison 1994; Pattison
1995) (Fig. 5-3). A fifth parasequence, KPS5, is located in the western Book Cliffs and
constitutes the transgressive systems tract (TST). Both KPS3 and KPS4 are subdivided into
smaller-scale cycles or bedsets (e.g. K4a-c; Fig. 5-6). The KPS4 bedsets show a retrogradational
bedset stacking pattern, which likely heralded the onset of transgressive ravinement.

The top of KPS4 is marked by a transgressive lag deposit defining the transgressive
surface of erosion (TSE). Two transgressive lag deposits occur in the uppermost part of the
Kenilworth Member (Fig. 5-5). Both of these transgressive lags overlie the shoreface-incised
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channel complex. These lags are 10 to 40 cm thick and consist of coarse- to very coarse-grained
sand, shell fragments, shark’s teeth, granules, pebbles and rare wood fragments. A 2 m thick,
thoroughly bioturbated, transgressive sandstone package is sandwiched between these lags (Fig.
5-5). Thorough bioturbation could result from the slower rates of sedimentation during the turn-
around in relative sea level. The entire transgressive package (i.e. lower lag deposit - bioturbated
transgressive sandstone - upper lag deposit) is interpreted to represent an overall transgression
that was punctuated by a stillstand. The stillstand would allow time for deposition of the
shoreface sandstones and thorough bioturbation prior to renewed sea level rise.

This stop provides the first opportunity to observe a channel complex incising into the top
of a wave-dominated shoreface/deltaic sandstone package (Fig. 5-5). The upper shoreface
sandstones of KPS4 are cut by a 2 to 6 m thick channel complex (Fig. 5-5). The K4-CH is
dominated by cross-bedded sandstones, with some herring-bone cross bedding (tidal channel?).
Organic-rich laminae consisting of finely comminuted plant material (*coffee grounds”) and
organic-rich siltstones are abundant. Bioturbation is moderate and includes Ophiomorpha,
Thalassinoides and Skolithos. Bar-form architectures with lens-shaped geometries and lateral-
downstream accretion surfaces are dominant. Various sequence stratigraphic interpretations are
possible for the K4-CH. Earlier interpretations invoked an incised valley-fill (IVF) resting on
the Kenilworth sequence boundary (K-SB). The K-SB was interpreted as a third-order SB, with
sediment bypass to Hatch Mesa (Taylor and Lovell 1991, 1995). A conventional IVF
interpretation implies a drop in relative sea level and the presence of falling stage or lowstand
sand bodies further down-depositional-dip (Taylor and Lovell 1995). A variation on this
conventional interpretation is a channel “floored” by a high frequency SB (i.e. HFSB), with no
detachment of shallow marine sand bodies. The HFSB interpretation has an attached falling
stage and/or lowstand sand body (Fig. 5-3D; Ainsworth and Pattison 1994; Pattison 1995). This
hybrid modeling scenario includes components of both the conventional and alternative models,
such as HFSBs, parasequence-scale 1\VFs, temporally and spatially linked nearshore terrestrial
and shallow marine facies belts, no detached sand bodies down-dip, attached only (Fig. 5-3D).
An alternative sequence stratigraphic interpretation proposes that the K4-CH is a shoreface-
incised channel (i.e. tidally influenced distributary channel) temporally and genetically related to
the progradation of the K4 shoreface succession (Pattison, 2018, 2019a). This alternative model
has temporal and spatial linkage between the nearshore terrestrial and laterally adjoining shallow
marine facies belts. No SB exists (i.e. no third-order SB nor HFSB), hence no IVF. There is no
evidence of sediment bypass, no detached lowstand deposit further down-depositional-dip, and
K4-CH is interpreted as a tidally influenced distributary or tidal-estuarine channel-fill.

As discussed earlier, two sequence stratigraphic end-member modeling scenarios are
considered throughout this field trip: (1) conventional, classic, third-order SB, IVF, non-linked
nearshore terrestrial and shallow marine facies belts, detached sand bodies are likely down-dip
(Fig. 2-3A), and (2) alternative, no SB, no IVF, suite of discrete parasequence-scale shoreface-
incised channels, temporally and spatially linked nearshore terrestrial and shallow marine facies
belts, no detached sand bodies down-dip, attached only (Fig. 2-3B). Each sequence stratigraphic
interpretation carries a radically different prediction of sand body distribution and lateral extent.
Selecting the correct correlation style for the shoreface-incised channels has implications for
sand body continuity and connectivity between geographically isolated localities (i.e. subsurface
wells), and also for the prediction of falling stage and lowstand sand bodies further basinwards.
These correlation options will be examined in further detail when we study the Desert-Castlegate
interval later in the field trip.
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Figure 5-1. Wave-dominated shallow marine depositional systems. (A) Cross section across a shoreface-to-shelf

environment (Walker 1985). (B) Cross section through a parasequence highlighting the transition from thick bedded
upper shoreface sandstones into thin bedded lower shoreface heterolithics (modified from Williams and Davies 2006).

(C) Progradational stack, Kenilworth Member parasequences KPS3 and KPS4, Woodside-Price River Canyon.

Book Cliffs

53



PROGRADATIONAL PARASEQUENCE SET

RATE OF DEPOSITION >1
RATE OF ACCOMMODATION

LOCATION OF SCHEMATIC
WELL - LOG RESPONSE

@

RETROGRADATIONAL PARASEQUENCE SET

RATE OF DEPOSITION <1
RATE OF ACCOMMODATION

AGGRADATIONAL PARASEQUENCE SET

BASINWARD

RATE OF DEPOSITION =1

RATE OF ACCOMMODATION

SCHEMATIC
WELL-LOG
RESPONSE

SP RES

SP RES

COASTAL PLAIN SANDSTONES
AND MUDSTONES

D SHALLOW MARINE SANDSTONES

@ . @ INDIVIDUAL PARASEQUENCES

- SHELF MUDSTONES

SP RES

Figure 5-2. Parasequence stacking patterns. Progradational, retrogradational and aggradational parasequence sets

(Van Wagoner et al. 1990).

Book Cliffs

54



Book Cliffs

TSE Hybrid Modeling Scenario 1/2: Conventional/Alternative
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Figure 5-3. Wave-dominated shoreface/deltaic deposits: high to low accommodation setting, Kenilworth Member,
Woodside/Price River Canyon. (A) North side of Price River at parking spot. Kenilworth parasequences (KPS1 to
KPS4). (B) Kenilworth Member. (C) Edge of KPS2 outcrop (arrow) mimics a gamma ray profile. (D) Sequence
stratigraphy of the Kenilworth Member. Depositional-dip-oriented schematic cross section. No vertical or lateral
scale is implied. Hybrid modeling scenario 1/2: components of both the conventional and alternative models, HFSBs,
parasequence-scale IVFs, temporally and spatially linked nearshore terrestrial and shallow marine facies belts, no
detached sand bodies down-dip, attached only. Relative sea-level curve at bottom right showing possible genesis of
highstand (HST), falling stage (FSST), and lowstand-attached (LSTa) systems tracts. This is one possible solution in
a sequence stratigraphic solution set (as per Hampson 2016). Other combinations of autogenic and/or allogenic
processes could have generated these stratal architectures. Fluvial-tidal channel sandstones (red), shoreface-deltaic
sandstones (yellow), marine mudstones (gray). Parasequence flooding surfaces shown by bold smooth lines, facies
changes indicated by zigzag lines, erosional surfaces are bold wiggle lines. TSE (transgressive surface of erosion),
IVF (incised valley-fill), MS-CHs (amalgamated multi-storey channels), HF-SBs (high-frequency sequence boundaries).
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Figure 5-4. Wave-dominated shallow marine deposits: foreshore and upper shoreface sandstones (A-C), lower
shoreface sandstones (D), and inner shelf heterolithics and mudstones (E-F). (A) Planar-laminated fine-grained
foreshore sandstones (Facies 1A), Desert Member, Christmas Ridge. (B) Trough cross bedded fine- to medium-
grained upper shoreface sandstones (Facies 1B), Spring Canyon Member, Gentile Wash. (C) Swaley cross-stratified
fine-grained upper shoreface sandstones (Facies 1C), Kenilworth Member, Price River Canyon. (D) Hummocky
cross stratified very fine-grained sandstones (Facies 1D) passing upwards into wave ripple laminated sandstones
(Facies 1E), Storrs Member, Gentile Wash. (E) Thin bedded inner shelf sandstones and mudstones (Facies 1F and
1G), Desert Member, Christmas Ridge. (F) Thin bedded heterolithics (Facies 1G and 1H), upper Aberdeen Member,
northwest of Willow Bend, Gunnison Valley. USA nickel coin for scale (2.1 cm diameter).
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conventional sequence stratigraphic interpretations (i.e. Pattison 1995; Taylor and Lovell 1995). Flooding surface
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Figure 5-6. Down-dip compartmentalization of a shoreface parasequence, KPS4 bedsets, Kenilworth Member,
Woodside/Price River Canyon meander bend. (A) Oblique-to-depositional-strike photo-panorama looking west.
Up-dip to the left. (B) Top of KPS4 splitting into bedsets. Same position as previous photo: close-up of the left-
side of Part A. (C) Depositional-dip-oriented cross section, Kenilworth Member, Price River Canyon (modified
from Pattison 1995). Five closely-spaced measured sections with continuous cliff-forming outcrop between the
sections. Datum is the top Kenilworth Member. Kenilworth parasequences (KPS2 to KPS4), bedsets (4a to 4d),
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STOP 6: STRIKE CONTINUITY OF WAVE-DOMINATED SHOREFACE/DELTAIC
DEPOSITS, BECKWITH PLATEAU, DESERT SIDING, MILE MARKER 291

The Beckwith Plateau strike-section viewing stop at Mile Marker 291 provides an
exceptional opportunity to examine the depositional-strike continuity of wave-dominated
shoreface/deltaic deposits. Pull the vehicles safely off of Highway 6 (west side of road) just
south of Mile Marker 291 and climb the small Mancos Shale hill to view the Book Cliffs (Figs.
0-1 and 0-2). This depositional strike section covers approximately 15 km from Mount Elliott in
the north to Little Elliott Mesa in the south (Fig. 6-1). These along-strike dimensions are
equivalent to the length of many large oil fields including the Brent Field - North Sea (14 km
long) and the Agbada Field - Niger Delta (12 km long), among others. The Book Cliffs are at a
near maximum height at Mt. Elliott (approximately 600 m high), and vary from 300 to 500 m at
this stop. Three main cliff-forming sandstone packages or benches are observed, and from top to
bottom include the following:

Q) Castlegate Sandstone and Desert Member,

(i) Grassy Member and Sunnyside Member, and

(iii)  Kenilworth Member (Fig. 6-1).
The distal deposits of the Aberdeen and Spring Canyon members are in the lower part of the cliff
section. The Spring Canyon Member is marked by a prominent series of mudstone-rich benches
near the base of the Book Cliffs which can be correlated from the area north of Woodside
approximately 30 km southwards into the Battleship Butte-to-Blue Castle region (Fig. 6-1).

The Blackhawk Formation and Castlegate Sandstone define an overall progradational
stacking pattern, which is also manifested or nested at a smaller-scale within each of the main
cliff-forming sandstone packages. In all cases there is an upward increase in proximal facies.
For example, the Castlegate Sandstone consists of high net:gross channel-fill deposits that form a
sheet-like complex resting sharply on top of the Desert Member coastal plain deposits
characterized by lower net:gross channel-fill complexes.

The middle cliff-forming package is dominated by the shoreface sandstones of the Grassy
and Sunnyside members (Fig. 6-1). There are two prominent white caps in this middle cliff-
forming sandstone package: GPS1 and SPS3. These layers can be traced for an additional 80+
km northwards using the subsurface well control north and east of the Book Cliffs outcrop belt.

The lower cliff-forming sandstone package is comprised of the Kenilworth Member. The
uppermost Kenilworth includes the stacked shoreface sandstones of KPS4 which form a 28-33 m
cliff-forming sandstone package. These are underlain by shallow marine sandstones and
mudstones (i.e. heterolithic facies) of KPS3. Together, KPS4 and KPS3 form a 50-60 m thick
cliff-forming sandstone package. Laterally discontinuous mudstone- to heterolithic-dominant
benches of KPS2 and KPS1 occur directly below the KPS4/KPS3 cliff-forming sandstones. The
discontinuity of the KPS2 and KPS1 benches is explained by the intersection of a 2D cliff face
with the 3D gently lobate geometry of these lower shoreface deposits.

Most of the shoreface sandstones in the Kenilworth, Sunnyside, and Grassy members are
wave-dominated successions. These are laterally continuous across the entire 15 km of
depositionally-strike oriented outcrop, attesting to the vigorous storm and wave regime
characteristic of the Campanian Seaway. Sediment input points (i.e. rivers-deltas) are scattered
along the length of the shoreline trends, with the main feeders generally located every 10-20 km
(Hampson and Howell 2005). Evidence from KPS2 indicates river-influenced shoreface-to-shelf
deposits in the Price River Canyon and Gunnison Butte regions, a distance of approximately 15
km along strike (Pattison 2005a, b, c; Pattison and Hoffman 2008).
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Figure 6-1. Strike continuity of wave-dominated shoreface/deltaic deposits, Blackhawk Formation, Beckwith
Plateau, Desert Siding region. (A) Photo-panorama from Mount Elliott (north) to Little Elliott Mesa (south)
covering approximately 15 km. (B to E) Four close-up panoramas with positions shown in (A).
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STOP 7: SHOREFACE-TO-SHELF TRANSITION, KENILWORTH MEMBER, GREEN
RIVER EMBAYMENT/GUNNISON VALLEY

The Gunnison Valley overview stop is a world class example of a depositional-dip
transect that records the transition from wave-dominated shoreface-deltaic deposits to mudstone-
dominated shelf deposits (Fig. 7-1). Drive approximately 6 km north of the city of Green River
along the eastern banks of the Green River and park the vehicles at an overlook point (Figs. 0-1
and 0-2). This locality is approximately 60 km down-depositional-dip from the western-most
Book Cliffs outcrop in the Helper region. Battleship Butte, Blue Castle Butte, Blue Castle,
Middle Mountain, Gunnison Butte, Tusher Canyon and Hatch Mesa are the main physiographic
features in this region. The lateral field of view along Battleship Butte (western edge of the
visible outcrop to the bow of Battleship Butte) is approximately 5 km of depositional-dip-
oriented section (Fig. 7-1). An additional 7 km of depositional-dip-oriented section is
prominently displayed from Blue Castle Butte to the western edge of Tusher Canyon (Fig. 7-1).
The Tusher Canyon to Hatch Mesa outcrop belt spans 20 km representing approximately 8 km of
depositional-dip-oriented section (Fig. 7-1). Therefore the entire field of view at the Gunnison
Valley stop encompasses a staggering 20 km of dip-oriented outcrop section.

The Castlegate Sandstone forms a prominent ridge-line cap along much of the Book
Cliffs in this region and is composed of high net:gross channel-fill deposits (Fig. 7-1). Most of
the Blackhawk Formation is also well exposed in this dip-oriented section. The Desert Member
is comprised of shoreface sandstones, channel sandstones and heterolithics, and fine-grained
coastal plain deposits. The Desert Member frequently merges with the overlying Castlegate in a
sandstone-on-sandstone contact (Fig. 7-1). The Grassy and Sunnyside members are comprised
of a stack of shoreface-to-shelf parasequences showing a gradual basinward (eastward) thinning
and fining. The bow of Battleship Butte is marked by the 30 m thick KPS4 sandstone body (. 7-
1 and 7-2). This sandstone is underlain by lower shoreface heterolithics of KPS3 package on the
extreme eastern edge of Battleship Butte, which in turn is underlain by two ratty cliff-forming
mudstone packages which are KPS2 and KPS1. When tracing the Kenilworth basinwards, these
cliff-forming units occur as three distinct benches (KPS4, KPS3, KPS2/1) near the base of the
Book Cliffs in the Gunnison Butte region (Fig. 7-1). Eventually these mudstone-rich benches
fade into the background marine mudstones. However the top of the Kenilworth can still be
correlated into the Hatch Mesa region because of a prominent colour change in the mudstones
which demarcates the Kenilworth-Sunnyside contact (Pattison 2005a, 2005b) (Figs. 7-1 and 7-2).

The Aberdeen Member is mostly composed of marine mudstones, however, sandstone-
and heterolithic-rich subagqueous channel-fill deposits are observed in the Battleship Butte to
Middle Mountain region, and are extremely well preserved at the base of the Book Cliffs in the
Gunnison Butte to Tusher Canyon region (Pattison 2005c; Pattison et al. 2007) (Fig. 7-2). The
contact between the Aberdeen-Kenilworth is marked by iron-rich siltstones and mudstones, with
isolated pods of fossiliferous coarse-grained lag deposits and oolitic ironstones (Fig. 7-2).
Excellent examples of the latter occur along the extreme eastern edge of Middle Mountain (Toad
Stool outcrop section), between Tusher Canyon and Horse Canyon-South, and in the Hatch Mesa
to Floy Wash region (Chan 1992; Pattison 2005c). The Spring Canyon Member is highlighted
by the mudstone-dominated cliff sections at the base of the Book Cliffs at Battleship Butte and
Blue Castle (Fig. 7-1). These layers can be continuously traced northwards and westwards into
the proximal Spring Canyon Member deposits in the Helper-to-Price region.
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The down-depositional-dip transition from shoreface-to-shelf environments is beautifully
displayed in the wave-dominated Kenilworth Member along the 20 km of dip-oriented section.
The following key points have been revealed from previous studies:

Q) All of the Kenilworth shoreface sandstone successions show a basinward facies
change into offshore or inner shelf mudstones.

(i) Hampson (2000) measured KPS4 clinoform dips of 0.5-0.9° in the upper
shoreface, 0.1-0.7° in the proximal lower shoreface, 0.02-0.1° in the distal lower
shoreface, and 0.01-0.03° in the offshore shelf/ramp in the Battleship Butte to
Gunnison Butte region. These dips are significantly less than the clinoform dips
in a river-dominated system (e.g. anther clinoforms dip 1-5°).

(iti)  The upper shoreface sandstones pass into lower shoreface heterolithics over a
distance of 1 to 2 kilometers down-depositional-dip.

(iv)  The lower shoreface heterolithics pass into offshore mudstones over 1 to 3
kilometers down-dip.

(v) Parasequences split basinward into a series or thinner cycles or bedsets (e.g. 30 m
thick KPS4 sandstone splits into at least 3 bedsets) (Fig. 7-3).

(vi)  Parasequences exhibit a gradual basinward thinning.

(vii)  The bedset stacking pattern is progradational to retrogradational in the uppermost
Kenilworth parasequence, KPS4.

(viii) If the top Kenilworth was picked as the uppermost sandstone body, the top would
drop stratigraphically towards the east (i.e. implications for mis-correlation).

(ix)  KPS2 becomes thicker and sandier towards the east in the Gunnison Butte-Tusher
Canyon and Hatch Mesa regions. These basinward sandying packages are
interpreted as shoreface-detached prodelta turbidite complexes (Pattison 2005a,
2005b, 2005c; Pattison and Hoffman 2008).

A simple set of correlation rules and guidelines have been distilled for similar wave-dominated
shoreface-to-shelf systems (Williams and Davies 2006; Pattison, Williams and Davies 200743,
2007b, 2007c; Pattison 2010):
(M parasequences show a gradual basinward thinning,
(i) parasequences exhibit an abrupt decrease in sandstone content basinwards that is
matched by an equally abrupt increase in mudstone,
(iii)  inner shelf mudstone facies can be quartz-silt dominant and therefore have a
similar compaction factor as the up-dip shoreface sandstones,
(iv)  parasequences split basinward into thinner cycles or bedsets, and
(v) no steeply dipping clinoforms in a wave-dominated shoreface-shelf system.

The subsurface implications of applying the correct correlation scenario for a shallow marine
shoreface/delta-to-shelf environment includes the following (Williams and Davies 2006;
Pattison, Williams and Davies 2007a, 2007b, 2007c; Pattison 2010):

@ avoid cycle or parasequence skips,

(b) develop a tight correlation framework and a robust static geological model,

(©) increase the likelihood of a history matched dynamic reservoir model,

(d) improve the prediction of fluid flow, and

(e) optimize development activities.
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Figure 7-1. Shoreface-to-shelf transition: wave-dominated deltaic system, Kenilworth Member, Green River
embayment depositional-dip section. Location abbreviations given earlier. (A) BB to BCB to BC to western MM
photo-panorama. (B) Western MM photo-panorama. (C) Eastern MM photo-panorama. (D) Eastern MM to GB
photo-panorama. (E) TC to SC to HC-S to HM photo-panorama. (F) Between Tusher Canyon and Coal Canyon.
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Hybrid Modeling Scenario 1/2: Conventional/Alternative
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Figure 7-3. Modified conventional sequence stratigraphic interpretation for the Kenilworth Member (Pattison 1995).
Hybrid modeling scenario 1/2: components of both the conventional and alternative models, HFSBs, parasequence-
scale IVFs, temporally and spatially linked nearshore terrestrial and shallow marine facies belts, no detached sand
bodies down-dip, attached only. The classic conventional interpretation shows detached lowstand sandstone bodies

at Hatch Mesa (Taylor and Lovell 1991, 1995). Both the classic and modified conventional interpretations identify an
incised valley-fill along the top of the progradational parasequence set, with lowstand deposits either attached (LSTa;
Pattison 1995) or detached (LSTd; Taylor and Lovell 1991, 1995) from the highstand. (A) Modified conventional high
resolution sequence stratigraphy of the Kenilworth and Aberdeen members in east-central Utah (modified from Pattison
1995; Pattison et al. 2007a). A2-A5 (Aberdeen parasequences), K1- K5 (Kenilworth parasequences), HST (highstand
systems tract), FSST (falling stage systems tract), LSTa (attached lowstand systems tract), TST (transgressive systems
tract), HF-SB (high frequency sequence boundary), RSME (regressive surface of marine erosion), TSE (transgressive
surface of erosion). (B) Relative sea level curve (dotted line) for the upper Aberdeen Member to lower Sunnyside
Member stratigraphic interval.

65



Book Cliffs

STOP 8: PARASEQUENCE-TO-BEDSET COMPARTMENTALIZATION, GRASSY
MEMBER, TUSHER CANYON

This stop targets the Grassy Member, which is the second youngest member in the
Blackhawk Formation, and specifically focuses on the second Grassy parasequence (GPS2).
Continue driving east on the Tusher Canyon road and stop a few kilometers east of the previous
locality (Figs. 0-1 and 0-2). We will make multiple road side stops in order to allow participants
to study the shoreface/deltaic cyclicity at a variety of scales (Fig. 8-1). O’Byrne and Flint (1993,
1995, 1996) noted that the Grassy parasequences split into a series of reservoir compartments or
bedsets. Bedsets are one level of hierarchy lower than a parasequence (Van Wagoner et al.
1990). GPS2 splits into at least three bedsets in the Tusher Canyon area, with the thickness of
each bedset ranging from 5 to 12 m (Fig. 8-1). At other localities in the Green River area,
O’Byrne and Flint (1993, 1995, 1996) identified up to nine bedsets in GPS2. A near Book Cliffs
well log suite illustrates the subsurface recognition of Grassy bedsets and parasequences (Fig. 8-
2). These are correlated to the nearby outcrop, which is less than 6 km away (Fig. 8-2).

It is important to recognize bedset cycles when establishing a correlation framework in a
shoreface environment. Observations from the Book Cliffs provide some general rules to help in
establishing the correct correlation framework: (i) parasequences gradually thin and fine in a
basinward direction, (ii) parasequences split or subdivide into a stack of thinner coarsening-
upward cycles or bedsets, however, the overall parasequence thickness does not increase but
continues to gradually decrease in a basinward direction, (iii) parasequence flooding surfaces are
of a greater magnitude than bedset flooding events and therefore should be easier to identify on
well logs (i.e. greater contrast in petrophysical properties across the flooding surface: for
example a higher contrast in API units on the gamma ray well logs), and (iv) bedset and
parasequence flooding surfaces can act as baffles and/or barriers to fluid flow. Bedset flooding
surfaces are often very difficult to identify in a landward direction because sandstone-on-
sandstone contacts mask the location of the bedset flooding surface. Similar problems exist on a
bigger scale when trying to identify parasequence flooding events in proximal regions.

However, in the case of parasequence flooding events, these are often manifested as cemented
horizons (i.e. can be identified on density well logs) and/or thoroughly bioturbated intervals (i.e.
could be observed in core) in proximal sandstone-on-sandstone regions.

There are numerous recent studies on the intra-parasequence architecture-anatomy of
solitary regressive wave-dominated shoreline transects (Hampson 2000; Hampson and Storms
2003; Storms and Hampson 2005; Somme et al. 2008; Charvin et al. 2010, 2011; Eide et al.
2014; Forzoni et al. 2015; Ainsworth et al. 2017). Initial oversimplified “sand-tank”
interpretations for wave-dominated shorelines has been superseded via recognition of bounding
surfaces and heterogeneities at the intra-parasequence scale, including nondepositional and
erosional discontinuities (Hampson 2000; Charvin et al. 2010, 2011), and discontinuous
mudstone beds (Eide et al. 2014). These record fluctuations in accommodation and sediment
supply, driven both allogenically and autogenically during a single shoreline transit across the
shelf (Ainsworth et al. 2017). Thus what previously appeared as one “sand-tank” wave-
dominated parasequence is actually a complex assemblage of smaller depositional elements
bounded by surfaces of erosion and non deposition, some draped by mudstones (Eide et al. 2014;
Ainsworth et al. 2017). Bedset flooding surfaces could compartmentalize a hydrocarbon
reservoir and therefore need to be properly identified and correlated in order to optimize
development activities such as drilling (well trajectory), completion-perforation (compartments,
fracing), and production strategies (sweep efficiency, water injection).
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Figure 8-1. Parasequences and bedsets, Grassy Member (GPS2), Tusher Canyon. (A) Northern wall of Tusher
Canyon. (B) Promitory on southern wall of Tusher Canyon. (C) Close-up of left side of previous photo showing
three bedsets in GPS2.

67



Book Cliffs

A L 1 0 T — » & NWSW-33-19S-17E
4 ................................. km :,ﬂ We” Locat|0n

N
©
C
! 5

=i

Ol

£9 |

22 .
2E:;
0w =i

oL i 57
Loy ’
Lo . km
o S d
N i

a®d:
0Q:
w
o
%
=

5

Y Outcrop
Face

T = — ——
== WBW-33-19SH7E R R B , "
H 43-019-30835, . | .. ; ) , N T L1 o 3 Pl
3 AT L 7 oo
,'1 <;—§ B = 1 T % ] . 2 d
I o . ) A C
1| .
g + |Topcss| - . [ B == y .
o T = z P :%i} T n ” — R : QEEE ]
’\?' 4 ! =S | S }’ -
L | - i [ I - 'y s00 L
S i =T ! S ———r
1 c R | i3 =
4 3 . | i Y /?E-:J
4 700 2 15 ;g
; ; CSLs
- 1= 2 i | i Ve
1| i{ | | i ] = = 2
i ! i Lo - -~
H 7 I>‘ N L s L Q‘
== - == E4I] . 200 /ﬁ _
[ — == Iz i" T : . ‘:, -
] . . . . — 1 - L R4 Lo B
i 800 ? |t [ M b { . r,; .
—_K N ’ ! : ) ) = ! r—"ll ’ | i ) . ’
Tyl Dol LT s Y P S al
ST SlLge =7 7 GPS3/4 . - !
: : L S ol
i1 S <3 3 B e
. . . B s 3 - . B .
1 900 7 274 10 NN e
+HEd ‘ ;i B ~"GPS2 3
B X BN
. BT i < 1 N . Py
= ! ! | Top GM ]l Y 1 > ‘ :
;
— I R
<_:\ i GPS3/4 - i 1100 [
4

\
LI~
>
o
=S

Ly
£ 7

T

A

-t

RN
]
GPS2

1200

MW/

T TIrTT1r7Tr _—T T T RIT T T T 117
‘ N 7“1'\
I

Al A A

ol i

1200

Wi
T
\

g

s

®

<

_4 T_
\

WL

e

T
A
AV
'8 =
TN
|
-

b ;
TG ]«
f } 3 4.77 1300 ‘
Figure 8-2. Parasequence- to bedset-scale correlation of the Grassy Member from Tusher Canyon to a near subsurface
well log. (A) Topo map showing the Tusher Canyon outcrop and the well location, which are 5.7 km apart or 3.3 km
along depositional dip (i.e. N4°E paleoshoreline trend from O’Byrne and Flint, 1995). (B) Gamma ray and resistivity
well logs from NWSW-33-19S-17E. (C) Correlation of outcrop and well log, plotted at the same scale.
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Stop 10:

Stop 11:

FIELD DAY 3

INCISED VALLEYS OR CHANNELS?
CORRELATION AND SEQUENCE STRATIGRAPHY

Channels Cutting Foreshore-Shoreface Deposits in a Low
Accommodation Setting, Grassy Member, Tusher Canyon

Strongly Progradational Shallow Marine Deposits Cut By Channel-
Fill Complexes, Desert Member, Tusher Canyon

Multistory vs. Single-Story Channels, Desert-Castlegate, The Basin
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STOP 9: CHANNELS CUTTING FORESHORE-SHOREFACE DEPOSITS IN A LOW
ACCOMMODATION SETTING, GRASSY MEMBER, TUSHER CANYON

The purpose of this stop is to examine the relationship between tidally influenced (tidal-
estuarine?) shoreface-incised channel-fills and foreshore-shoreface sandstones, in a low
accommodation setting (Fig. 9-1). Drive along the Tusher Canyon road and park your vehicle
after entering Tusher Wash (Figs. 0-1 and 0-2). View the cliff face along the northern wall of
Tusher Canyon, which is approximately 1 km to the north. Previous work by O’Byrne and Flint
(1993, 1995, 1996) has led to the identification of four parasequences in the Grassy Member:
GPS1 to GPS4. These parasequences are well exposed in the southern sector of the Book Cliffs,
and are also recognized in the subsurface of eastern Utah. A prominent white cap demarcates the
top of GPS2 (Fig. 9-2). In places, this white cap is erosively removed and replaced by a
heterolithic- and mudstone-rich channel-fill complex. O’Byrne and Flint (1993, 1995, 1996)
identified channel-fill complexes along the tops of GPS2 and GPS4 (Fig. 9-2). The GPS2
shoreface-incised channel complex is “gently” incised into the underlying foreshore-to-upper
shoreface sandstones (Fig. 9-3). The GPS2 shoreface-incised channel is up to 12.3 m thick
(O’Byrne and Flint 1995; Pattison et al. 2007a), and is completely contained within the upper
part of the GPS2 parasequence which has a maximum thickness of 34.2 m in Coal Canyon
(Young 1955; O’Byrne and Flint 1993, 1995, 1996; Pattison 2005a). O’Byrne and Flint (1993,
1995, 1996) assign a third-order sequence boundary (SB) to the base of the GPS2 channel
complex, therefore, interpreting this complex as an incised valley-fill (IVF) (Figs. 9-2B, 9-3).

Criteria used to recognize IVFs include the down-cutting through one or more
parasequences, a basinward shift of facies across the base of the valley, and an abrupt
juxtaposition of channel facies on top of lower shoreface or inner shelf deposits (Fig. 9-2C;
Dalrymple et al. 1992; Zaitlin et al. 1994). IVFs are characterized by tripartite facies zonations,
with fluvial sandstones at the head of the valley and tidal-marine sandstones at the mouth (Fig. 9-
1). A mudstone- or heterolithic-dominant central zone separates the sandstones at either end of
the valley-fill (Fig. 9-1). Itis possible that this gently incised GPS2-“IVF” is similar to the
“unincised valleys™ described by Posamentier (2001), which may form during falling stage and
lowstand on a ramp-like margin (i.e. Type Il sequence boundaries; Van Wagoner et al. 1990).

Detached lowstand sand bodies were interpreted for the “G2-1VF” including small-scale
scours or pods, thought to be the dendritic edges of an IVF complex. Hummocky cross stratified
(HCS) sandstone beds pass completely through the G2 pods, with dark brown iron-cemented
HCS sandstones within the pods, grading laterally on either side into light-coloured non-iron-
cemented HCS beds (Pattison, 2018). These pods do not have a basal erosional surface and are
interpreted as early diagenetic iron-rich concretions, similar to parasequence-capping carbonate
nodules found elsewhere in the Book Cliffs (Taylor et al. 1995, 2000, 2004; Taylor and
Gawthorpe 2003). A larger scale detached IVF-lowstand shoreline complex was identified in
the Bootlegger Wash to Sagers Wash region (O’Byrne and Flint 1993, 1995, 1996; Hampson et
al. 1999). Subsequent work correlates these detached sand bodies to the Aberdeen Member
rather than the G2 parasequence, and re-interprets them as prodeltaic turbidite channel-fill and
lobe complexes, rather than lowstand IVF and shoreline deposits (Pattison 2005c; Pattison et al.
2007b; Buatois et al. 2019). An alternative interpretation is that the GPS2 channel complex is a
shoreface-incised, parasequence-scale, tidally-influenced distributary and/or tidal-estuarine
channel-fill. There is no evidence of a basinward shift of facies across a regionally mappable
sequence boundary, no sediment bypass with concomitant development of detached falling stage
and lowstand shoreface-deltaic sand bodies, and therefore no incised valley-fill deposits.
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Figure 9-1. Tripartite facies model for estuarine/incised valley-fill systems, based on the Gironde-type macrotidal
estuarine facies zones (Allen 1991). The tripartite zonation is defined by the occurrence of sandstone-mudstone-
sandstone along the length of the estuary or valley. The marine sandstones at the mouth of the estuary/valley have
significantly different sedimentological, biological and architectural characteristics (egs. grain size, sorting,
sedimentary structures, trace fossils, degree of bioturbation, body fossils, stacking, sedimentary architecture)
compared to the fluvial sandstones at the head of the estuary/valley. Tidally-influenced deposits occur under meso-
to macro-tidal conditions. Funnel-shaped valleys amplify the tidal energy, leading to deposits shown above.
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Figure 9-2. Wave-dominated low accommodation setting: channels and shoreface, Grassy Member, northwestern
entrance to Tusher Canyon. (A) Photo-panorama along the north wall-entrance to Tusher Canyon. GPS2 (Grassy
parasequence 2) has a white cap at the top which is cut by an incised valley-fill (IVF) complex. (B) Dip-oriented
cross section, Grassy Member, Green River embayment region (modified after O'Byrne and Flint 1993, 1995, 1996;
Williams and Davies 2006). Datum is the top of the Grassy Member. Modeling scenario 1: conventional, classic,
third-order SB, IVF, non-linked nearshore terrestrial and shallow marine facies belts, detached sand bodies are likely
down-dip.Note an IVF? or channel? cutting GPS2. Pod-like concretions shown in the eastern half of the cross section
are tightly cemented with Fe-bearing minerals (Pattison et al. 2009), and are not related to an IVF as originally
interpreted by O’Byrne and Flint (1993). (C) Criteria used to recognize an incised valley-fill system (Zaitlin et al.
1994), as per conventional sequence stratigraphic model.
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Figure 9-3. Depth of incision for the GPS2-IVF (O’Byrne, 1992). Modeling scenario 1: conventional, classic, third-
order SB, IVF, non-linked nearshore terrestrial and shallow marine facies belts, detached sand bodies are likely down-
dip (O’Byrne and Flint 1993, 1995, 1996). Is this a valley-fill or channel network? What field criteria can be used to
distinguish between a valley and shoreface-incised channel? What are the implications for correlation, modelling and
prediction of sand bodies? Deepest incisions on the map are white, while interfluves are black.
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STOP 10: STRONGLY PROGRADATIONAL SHALLOW MARINE DEPOSITS CUT
BY CHANNEL-FILL COMPLEXES, DESERT MEMBER, TUSHER CANYON

This stop concentrates on the Desert Member, which is the youngest member in the
Blackhawk Formation. Drive into Tusher Canyon until the Desert Member is exposed at road
level and park the vehicles where the road bends sharply to the north (Figs. 0-1 and 0-2). This
stop is approximately 6 km down-depositional-dip from the head of Tusher Canyon. From base
to top, the cliff-forming packages exposed at road level consist of wave-dominated shoreface
sandstones of Desert Member parasequences D4 and D5, shoreface-incised channel-fill
complexes, Desert Member fine-grained coastal plain deposits, and Lower Castlegate Sandstone
sheet-like, amalgamated, high net:gross channel-fills (Figs. 10-1 to 10-6). Two basic sequence
stratigraphic interpretations are considered for the channel-fill successions that cut Desert
Member parasequence D5 and occasionally D4: (1) conventional-classic interpretation: IVF with
a third-order SB at the base, IVF and no temporal, genetic or spatial linkage between the laterally
adjoining nearshore terrestrial and shallow marine facies belts (Figs. 2-3A, 10-1), versus (2) an
alternative interpretation: discrete, parasequence-scale, shoreface-incised channels with
temporal, genetic and spatial linkage between the laterally adjoining nearshore terrestrial and
shallow marine facies belts, but no SB, no IVF, and no significant basinward sediment bypass
(Fig. 2-3B). All remaining field stops will concentrate on the Desert-Castlegate interval,
allowing ample opportunity to critically appraise the utility of each sequence stratigraphic model.

The shallow marine facies combine to form five coarsening-upward cycles, Desert
Member parasequences D1 to D5, that are 5 to 16 m thick (Figs. 10-2 and 10-3). The D1 to D3
parasequences are dominated by silty mudstones and sandy siltstones, with thin beds of
hummocky cross stratified (HCS) and wave rippled very fine-grained sandstones near the top of
each cycle. These are interpreted as mid-to-inner shelf deposits (Table 0-1). The D4 and D5
parasequences are dominated by HCS sandstones, with lesser amounts of sandy siltstones, and
are interpreted as lower shoreface deposits (Table 0-1). All five Desert Member parasequences
at Tusher Canyon show a normal regressive coarsening-upward pattern, with the exception of
D5, which in places is characterized by a sharp and slightly erosive contact between the
amalgamated HCS sandstones and underlying shelf mudstones with interbedded gutter casted
HCS sandstones (Figs. 10-4 and 10-5). A regressive surface of marine erosion (RSME) marks
this sharp mudstone-to-sandstone facies contact, which is consistent with forced regression (Fig.
10-4D). Elsewhere this contact is gradational and normally regressive in nature. Therefore the
D5-RSME is linked to an individual ECS or bedset, rather than the entire D5 parasequence.
Hampson (2000) described similar patterns (i.e. sharp and gradational bases) in the lower
portions of Kenilworth Member parasequence K4 at Battleship Butte. Solitary shoreline tongue
trajectories for D1 to D5 are very low to low angle ascending regressive, varying from +0.0004°
to +0.171° (Pattison, 2018, 2019a, 2019b, 2019c¢, in review-a, -b).

Foreshore-shoreface sandstones in the D5 parasequence are cut by a shoreface-incised
channel-fill complex (i.e. D5-CH) that is heterolithic-to-sandstone-rich in proximal regions
(Figs. 10-2 to 10-5). The D5-CH occasionally cuts out the entire D5 parasequence (= 5-7 m),
plus a significant portion of the underlying D4 parasequence. Both single- and multi-story
channel-fill successions are observed, with the latter having a maximum thickness of 19.2 m
(Fig. 10-2). The D5-CH facies at Tusher Canyon include (i) cross bedded sandstones, some with
repetitive pairs (i.e. doublets) of carbonaceous-rich mudstone laminae, herringbone cross
bedding and Teredolites-bored wood fragments, (ii) current rippled sandstones, (iii) inclined
heterolithic strata, and (iv) carbonaceous-rich siltstones and mudstones (Table 0-1, Figs. 10-4
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and 10-5). The D5-CH is capped by a thick coal zone in proximal regions, which is coincident
with the D5 flooding surface (FS) further down-depositional-dip. This D5-FS/coal marker
horizon is correlatable throughout the Tusher Canyon region, and is also traceable westwards
into the coastal plain deposits at Gunnison Butte, Long Canyon and Middle Mountain, landwards
of the D5 foreshore sandstone evolution point. There is no evidence to indicate that the erosional
surface at the base of the D5-CH extends any higher stratigraphically up-section, beyond the D5
FS/coal marker horizon. Shoreface-incised channel-fills, such as D5-CH at Tusher Canyon, are
interpreted as an IVF (Van Wagoner 1991, 1995) or as a tidally-influenced distributary channel-
fill (Pattison, 2018, 2019a, 2019b, 2019c¢, in review-a,-b).

The D5 foreshore-shoreface sandstones and shoreface-incised channel-fill are
consistently overlain by a 7-12 m thick package of coal-bearing coastal mudstones with single-
story meandering fluvial sand bodies (Fig. 10-2). Coal beds are plentiful, as are carbonaceous-
rich mudstones, siltstones and sandstones. Channel sandstones are mostly cross bedded and
convolute bedded, with abundant carbonaceous matter and some rhythmically-laminated/bedded
inclined heterolithic strata, herringbone cross bedding, double mud drapes and Teredolites-bored
wood fragments (Table 0-1).

The coastal plain facies belt laterally adjoins the D5 shallow marine sandstones to the
east and the amalgamated channel sandstones to the west. Facies transitions are both gradational
and sharp between the neighboring facies belts, but always conformable. Vertical transitions
define a progradational stacking at all localities, with the D5 foreshore-shoreface sandstones and
shoreface-incised channel-fills consistently overlain by coastal plain deposits, which in turn are
overlain by the amalgamated channel sandstones. The only exception to the progradational
vertical stacking pattern is the uppermost part of the Lower Castlegate Sandstone which
transitions from the amalgamated sheet-like fluvial sandstones back into the mudstone-
dominated coastal plain deposits (Figs. 10-2 and 10-3E). These cap the upper 3-12 m of the
Lower Castlegate Sandstone throughout the southern Book Cliffs, likely heralding the onset of
the Buck Tongue transgression (Pattison, 2019c, in review-a).

The main cliff-forming Desert-Castlegate package at Tusher Canyon is comprised of a
stack of amalgamated, sheet-like, braided fluvial sandstones with minor discontinuous
carbonaceous-rich mudstones and thin coals, up to 30 m thick (Figs. 10-2, 10-3, 10-6).
Dominant facies are cross bedded, convolute bedded and current rippled sandstones, all with
abundant carbonaceous matter, including finely disseminated sand-sized phyto-detritals and
sand-to-pebble-sized, angular-to-sub-angular coal clasts (Table 0-1). Net:gross ratios vary
between 80-90 percent. Mean cross bed orientations indicate a dominant E36.5°S fluvial
transport pathway (n = 4995; vector magnitude = 66.9; Pattison, 2019¢). Rare landward-
directed cross beds comprise only 4.1 percent of the readings (Pattison, 2019¢). These braided
fluvial channels are smaller compared to the shoreface-incised distributary channels (i.e. D5-
CH) at Tusher Canyon, with a mean bankfull width of 21.8 m and a mean bankfull depth of 5.5
m. Mudstone-dominated coastal plain deposits bound the sheet-like sandstones above and
below. The braided fluvial sandstones also grade into finer-grained coastal plain deposits to the
east. Contrary to conventional sequence stratigraphic interpretations (e.g. Van Wagoner, 1991,
1995; Miall, 1993, 2014), there is no evidence of an unconformity nor sequence boundary at the
base of the amalgamated fluvial sandstone package, nor a valley shape-container along
depositional-strike or —dip (Pattison, 2018, 2019a, 2019b, 2019c¢, in review-a,-b). Although the
facies contact between the coastal plain mudstones and the amalgamated fluvial sandstones is
often sharp, these laterally adjoining facies belts have a conformable contact.
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Figure 10-1. Stratal architectures typical of relative sea level (RSL) fall. Both diagrams depict sequence stratigraphic
modeling scenario 1: conventional, classic, third-order SB, IVF, non-linked nearshore terrestrial and shallow marine

facies belts, detached sand bodies are likely down-dip. (A) Falling stage systems tract and regressive surfaces of

Book Cliffs

marine erosion (Plint and Nummedal 2000). Note that regressive surfaces of marine erosion (i.e. sharp-based shorefaces)
are formed during maximum falls of sea level. (B) Falling stage systems tract with a shelf break (modified from Howell

and Flint 1996). Note that RSL fall has sediment bypass, incised valley (IV) development, and a third-order sequence

boundary, as per conventional sequence stratigraphic model (Van Wagoner et al. 1990).
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Figure 10-2. Measured outcrop section #10, Tusher Canyon, North Side Canyon East. Shoreface-incised channel
along the D5 parasequence level. Cuts into the uppermost part of the underlying D4 parasequence. The maximum
thickness of the D5-CH is 19.2 m. Regional correlation of the D5-CH extends away from the measured section
locality (light grey lines).
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Figure 10-3. Stratal architectures of the Desert Member (DM) to Lower Castlegate Sandstone (C.Ss.) interval in Tusher Canyon. Desert parasequences
D4 and DS. Coastal plain (CP). Note that the amalgamated cliff-forming fluvial sandstones of the C.Ss. are bracketed above and below by coal-
bearing, mudstone-rich coastal plain (CP) deposits. The uppermost 10 m of the C.Ss. is characterized by single-storey fluvial channel sandstones
encased in fine-grained coastal plain deposits. The contact with the overlying Buck Tongue of the Mancos Shale (BT-MS) is usually a mudstone-on-
mudstone contact. (A) Heterolithic-filled shoreface-incised channel (D5-CH) cuts through the D5 shoreface sandstones, N Side Cyn West, Tusher
Canyon. (B) Thinner mudstone-and-heterolithic-filled D5-CH, N Side Cyn Central, Tusher Canyon. A 7-12 m thick coal-bearing CP mudstone
package caps the Lower C.Ss. throughout the Tusher Canyon region. (C) Well defined shoreface-incised channel (D5-CH) in parasequence D5, North
Wall East, Tusher Canyon. Occasionally cuts the uppermost part of the underlying D4 parasequence. Sharp-base to the DS shoreface sandstones is
defined as a regressive surface of marine erosion (RSME). Carbonaceous-rich mudstone top to the C.Ss. (white arrows). Note the black SUV for
scale (black oval) in lower right. (D) Shoreface-incised channel (D5-CH) cutting the D5 and D4 parasequences, Tusher Canyon, North Wall East.
Channel “evolves” from the top D5 surface. Surface of origin for D5-CH is coincident with the D5 flat-topped foreshore (FAF) sandstones elsewhere.
The sharp based D5 shoreface sandstones are marked by a RSME (yellow arrows). (E) Very low net:gross, coal-bearing CP mudstones with isolated
single-storey channel sandstones, uppermost 8-13 m, Lower C.Ss., North Side Canyon-East, Tusher Canyon. Note the road just above the top of the
C.Ss. (F) Heterolithic- to mudstone-rich shoreface-incised channel-fill (D5-CH) cutting the D5 parasequence, Coal Canyon, NW Bowl. Lateral
accretion sets are 7-10 m thick with well-defined inclined heterolithic strata (IHS). Base of the channel-fill shown by a dashed yellow line. Thick

CP deposits blanket the top of D5. Geologist for scale in upper left (black oval and arrow). Grassy Member parasequences (GPS1-GPS4), Sunnyside
Member (SM).
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Figure 10-4. Channels (CH), coastal plain (CP), and shallow marine deposits, Desert Member, Tusher Canyon.
Evidence for a strongly progradational system that was driven by high rates of sedimentation and/or low rates of
accommodation include a channel complex (D5-CH) incised into Desert Member parasequence D5 and sharp-based
shoreface sandstones. (A) Dip-oriented section. D4 and D5 shallow marine sandstones coalesce up-depositional-dip
(left). (B) Desert Member shoreface sandstones cut by the D5-CH complex: dip-oriented section. Note the thick
coal-bearing coastal plain (CP) mudstones that blanket the D5-CH. Person for scale (circle). (C) Desert Member
shoreface sandstones and the D5-CH complex: strike-oriented section. Person for scale (circle). (D) D5-CH complex
cutting upper shoreface sandstones. Possible high frequency sequence boundary (HFSB) marks the channel-shoreface
contact. Upper shoreface rests abruptly on top of thin bedded lower shoreface/inner shelf heterolithic facies, thus
defining a sharp-based shoreface (SBS) which is potentially a regressive surface of marine erosion (RSME).

(E) Carbonaceous-matter-rich, tidally influenced distributary channel deposits. The carbonaceous-matter-rich layers
are rhythmically interbedded with sandstones, and are interpreted as slack water deposits during highest and lowest
tide. These laminae occur in sets or bundles, which define neap and spring cyclicity.
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CP

Figure 10-5. Desert Member (DM) facies, Tusher Canyon. (A) Coarsening-upward shallow marine cycles, D3 and D4
parasequences, North Side Cyn East, Tusher Canyon. Geologist for scale at base of cliff (oval and arrow). The Desert
Member shoreface parasequences are blanketed by up to 15 m of coastal plain (CP) mudstones. (B) Gutter-casted thin
bedded, hummocky cross stratified sandstones, basal part of D5 parasequence, North Side Cyn East, Tusher Canyon.

(C) Cross bedded sandstone with carbonaceous-rich mudstone laminae, shoreface-incised channel (D5-CH), North Wall
East, Tusher Canyon. (D) Cross bedded sandstone with abundant angular-to-sub-angular coal clasts, North Wall East,
Tusher Canyon. USA dime coin for scale in lower middle (1.79 cm diameter). (E) Rhythmically-laminated and -bedded
sandstones and carbonaceous-rich mudstones on lateral accretion surfaces, shoreface-incised D5-CH, North Wall East,
Tusher Canyon. USA dime coin for scale. (F) Pin-stripe laminated current rippled sandstone and mudstone, coastal
plain deposits blanketing the D5 parasequence, North Wall East, Tusher Canyon.
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Figure 10-6. (A) Measured section from Tusher Canyon field stop area. (B) Gamma ray and resistivity well logs

from a near subsurface well at NWSW-33-19S-17E (API 43-019-30835). Key surfaces are correlated between the
outcrop section and the well logs. (C) Topographic map showing the 2.9 km distance between the outcrop section
and the well location, although only 0.2 km of depositional dip distance separates these locations using the N22°E

paleoshoreline trend for the Castlegate Sandstone (van de Graaff 1972).
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STOP 11: MULTISTORY VS. SINGLE-STORY CHANNEL-FILLS, DESERT-
CASTLEGATE, THE BASIN

We next have an opportunity to examine the sedimentology and stratal architectures in
the nearshore terrestrial facies belt of the Desert Member to Lower Castlegate Sandstone
stratigraphic interval. One aspect of this analysis is to compare and contrast the stacking
patterns, size, depth of incision, and facies of single versus multistory channel-fill successions.
Another aspect is to critically appraise the likelihood that the multistory channel-fill complexes
are the nearshore terrestrial expression of an incised valley-fill (IVF). The single and multistory
channel-fills represent two end-member stratal architectural patterns for fluvial sandstones in the
study area. Although often considered to be in separate lithostratigraphic formations (i.e.
Blackhawk-single story, Castlegate-multistory), some of the earliest Book Cliffs studies
identified both single-story and multistory channel sandstones within the Lower Castlegate
Sandstone (Spieker and Reeside 1925; Spieker 1931, 1949; Young 1955).

This stop is located approximately 20 km down-depositional-dip (east) of our previous
stop in Tusher Canyon. We will concentrate our observations in a beautifully exposed, three-
dimensional amphitheater and side canyon along the northwestern edge of Trough Spring Ridge,
approximately 11 km north of 1-70 (Figs. 0-1, 0-2, 11-1 to 11-8). This region is part of the
northwestern extension of the Salt Valley Anticline, which is well exposed to the southeast in
Arches National Park. The central core of the Salt Valley Anticline is characterized by a
collapsed crest or axial graben called the Salt Valley Graben (Fig. 11-1; Walton 1956). This
extends northwestwards across I-70 into the Trough Spring Ridge-to-Christmas Ridge region and
is prominently exposed as we drive into The Basin. Note that the vegetated top of the Lower
Castlegate Sandstone is exposed at road level in The Basin, compared to its cliff-top exposures
along Horse Mesa (to the west) and Trough Spring Ridge (to the east). Up to 200 m of offset is
observed in places. Time permitting, we will park our vehicles at the end of the road next to the
Blaze A-1 well, which has produced oil at a depth of 9045 feet from the Jurassic Navajo
Sandstone (Fig. 11-2). Or alternatively, we will view this well from the top of the white capped
sandstone cliffs in the amphitheater. Southwest-to-northeast trending faults cut the northwestern
nose of the Salt Valley Graben providing structural closure on the Navajo Sandstone (Walton
1956), hence the Jurassic oil production from this well locality.

From base to top, the main architectural elements in The Basin are as follows: (i) marine
mudstones and inner shelf to lower shoreface heterolithics of Desert Member parasequences D1
to D5, (ii) thick bedded foreshore-shoreface sandstones of Desert parasequences D6 to D8, (iii)
shoreface-incised channel-fill successions along the tops of D7 and D8, and (iv) interbedded
coastal plain (i.e. organic-rich mudstones, coal, thin-bedded sandstones) and channel-fill (i.e.
organic-rich cross bedded sandstones) deposits of the amalgamated uppermost Desert Member
and Lower Castlegate Sandstone (Figs. 11-3 to 11-8). Note that the shallow marine section is
easy to correlate along the cliff face, while the fluvial and coastal plain deposits are difficult to
correlate, even at a relatively close spacing of a few hundred meters.

The stop beside the Blaze A-1 well affords an exceptional opportunity to study reservoir-
scale changes in the sedimentary architecture and stacking of channel-fill, coastal plain and
shallow marine depositional systems. Desert Member and Lower Castlegate Sandstone outcrops
are wonderfully exposed and are highly visible in three-dimensions at this locality (Fig. 11-2).
This is an excellent chance to examine the reservoir geology of channel-shallow marine
depositional systems at a quarter-quarter-section or LSD spacing (Figs. 11-2 and 11-3). The near
road outcrop in the Blaze A-1 well vicinity neatly fits into a quarter-section grid (%2 mile x %

82



Book Cliffs

mile), while the section-scale changes can be investigated by hiking through the various side
canyons or carefully climbing nearby ridges (Figs. 11-2 and 11-3). A thick package of fluvial
and coastal plain deposits (Desert Member and Lower Castlegate Sandstone) rests
stratigraphically above the Desert Member shallow marine deposits in this region. The top of the
Desert Member shallow marine section is a prominent white-cap-sandstone which comprises the
floor of the amphitheater or bowl (Figs. 11-5 and 11-6).

Terrestrial facies stacking patterns in The Basin show significant changes over relatively
short distances (i.e. 50-100 m). Note the presence of at least three multistory (MS-1 to MS-3;
Figs. 11-4 to 11-6) channel complexes of variable thickness and lateral continuity, as well as
numerous single-story channel-fills, including some with convolute bedded sandstones (Fig. 11-
5). The excellent 3D outcrop control in this amphitheater allows one to determine the lateral
continuity of each type of channel sandstone package, thus providing an excellent analogue for
correlating similar types of reservoir units in the subsurface (i.e. spatial distribution, net:gross
patterns, sand body continuity and connectivity). Most multistory sand bodies have relatively
flat bases, with the exception of MS-2 which incises 4-5 meters into the underlying fine-grained
coastal plain deposits and coals (Fig. 11-5C). Both allocyclic (i.e. base level fall) and/or
autocyclic (i.e. flow convergence) processes are viable explanations for the origin of the
multistory channel-fill complexes. An allocyclic control (i.e. incised valley) would be
corroborated with evidence of forced regression in the time-equivalent shallow marine section
including a basinward shift of facies, a progradational parasequence set stacking pattern, a
descending shoreline trajectory, and a suite of sharp-based shorefaces with regressive surfaces of
marine erosion. In contrast, an autocyclic origin would be favored if there was no apparent link
between the non-marine facies stacking patterns and the shallow marine stacking patterns or
sedimentary architecture. The answer lies within the observations and descriptions of the
sedimentary rocks down-dip, in the Crescent Canyon-to-Sagers Canyon region. There will be
ample opportunity to observe and describe the Desert Member to Lower Castlegate Sandstone
stratigraphic interval as we progressively move down-dip (i.e. east) throughout the remainder of
this field trip. This will allow participants to formulate, test and refine multiple working
hypotheses, and to select the most viable interpretation.

Overall, the sheet-like geometry of the amalgamated channel sandstones tapers
eastwards, eventually grading into a coal-bearing coastal plain mudstones with single-story
channel sandstones, similar to what we observe in The Basin. Marking this transition is the
break-up of the multistory sheet-like geometry into a multistory ribbon- or finger-like geometry,
with 2 to 5 channel stories per package (Fig. 11-5). Excellent examples occur elsewhere
throughout the Hatch Mesa to Horse Heaven region. Channel-fill successions in the multistory
ribbons have similar dimensions compared to their neighboring multistory sheet-like bodies, with
a mean bankfull width of 15.0 m and a mean bankfull depth of 2.3 m. Channels are incised into
one another with small amounts of erosion, rarely cutting deeper than the uppermost part of the
underlying story (Fig. 11-5). As such, most channel bases are horizontal-to-sub-horizontal (Figs.
11-4 to 11-6). Individual channel-fill successions commonly extend a few meters beyond the
edge of the underlying channel story, generating a wing-like geometry or irregular margin for
many ribbon-to-finger-like multistory channel complexes. Similar geometries have been
described from multistory channel sand bodies in the Williams Fork Formation, Piceance Basin
of Colorado (Pranter et al. 2007, 2009; Pranter and Sommer 2011; Chamberlin and Hajek 2015).
Irregular and uneven margins are one field criterion used to indicate an avulsion origin rather
than an incised valley origin for a multistory channel sand body (Chamberlin and Hajek 2015).
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Figure 11-2. The Basin and Trough Spring Ridge. Topographic map of a four-section-area (Sections 11-14, T21S,
R18E) in The Basin to west side of Trough Spring Ridge region. This 4 square mile area is highlighted by an
excellent three-dimensional view of Castlegate Sandstone and Desert Member outcrop. The top of the Desert
Member shallow marine sandstones are cliff-forming (thick black line). Blaze A-1 oil well (blue star), situated at
NESW-12-21S-18E (API Well Number 43-019-30207). This well has produced oil from the Jurassic Navajo
Sandstone, which is structurally trapped on the NW nose of the NW-SE trending Salt Valley Anticline (i.e. collapsed
crest or axial graben). SW-NE trending faults provide the structural closure in this region (Walton 1956). The field
stop vehicle parking location is at the north edge of The Basin and is marked by a red star.
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Figure 11-4. (A) Interbedded fine-grained coastal plain deposits and channel sandstones, Mid Basin, The Basin (photo

5030; photo location is plotted on Fig. 11-6A). Multistory (MS) channel deposits are recognized at two discrete levels:

MS-2 and MS-3. Geologists for scale near top Castlegate Sandstone. Photo is coincident with section D at the field
stop. (B) Progradational stack of facies and parasequences (D4 to D9A), capped by multi-storey channel complex
MS-1, SE Face, Trough Spring Ridge (photo 1564; location of photo shown on Fig. 11-6A). Note that MS-1 incises
into parasequence D9A and cuts out some of the white cap. GM (Grassy Member), CB (Colour Band), SM (Shallow
Marine).
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N\ MS-2

Cross Bedding

Convolute
Bedding

Figure 11-5. The Basin. Sedimentary architecture and correlation of coastal plain and channel packages. MS
(multistory channel complex). (A) Panorama looks SW to NW. (B) Panorama looks N to E. Geologist for scale
(circle). (C) Panorama in northern part of bowl, looking east. Heterolithic-rich channel-fill of MS-2 cuts deeply

into underlying coal and fine-grained coastal plain facies (arrows). Geologists for scale (circles). (D) Well exposed
MS-3 channel complex in SW part of bowl. Consists of at least 4 stacked channel-fills. MS-2 and MS-1 are labelled
below. (E) Convolute bedded, single-story channel-fill deposits, Left Fork, The Basin. Geologist for scale (circle
and arrow). Inset rectangle shows Part F photo location. (F) Convolute bedding is restricted to the lower half of the
channel-fill.
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Figure 11-8. Measured outcrop section #19, Trough Spring Ridge-The Basin. Desert Member parasequences D3-D8§
are recognized. MS (Multistory Channel), Grassy Member (GM), CSs (Castlegate Sandstone).
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FIELD DAY 4

CHANNELS, COASTAL PLAIN & SHOREFACE: ARCHITECTURE & PREDICTION

Stop 12: Facies and Stratal Architectures of the Desert-Castlegate, Crescent
Canyon to Horse Heaven

Stop 13: Low Accommodation Space Setting, Desert Member and Castlegate
Sandstone, West of Blaze Canyon

Stop 14: High Resolution Sequence Stratigraphy, Desert Member and
Castlegate Sandstone, Blaze Canyon
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STOP 12: FACIES AND STRATAL ARCHITECTURES OF THE DESERT-
CASTLEGATE, CRESCENT CANYON-HORSE HEAVEN

One of the best exposed channel-shoreface packages in the Book Cliffs region straddles
the Desert Member to Castlegate Sandstone stratigraphic interval. Channel-dominated outcrops
are concentrated in east-central Utah while shoreface-dominated outcrops are located further
east. The transition from the channel- to shoreface-dominated intervals are beautifully exposed
in three-dimensions in the numerous canyons and side-canyons in the southern sector of the
Book Cliffs. Crescent Canyon is located approximately 6.5 km east of The Basin (Figs. 0-1 and
0-2), while Horse Heaven is the next locality east (Figs. 12-1 to 12-3). This is an extraordinary
area that is characterized by some of the best three-dimensional outcrop in the entire Book Cliffs,
with numerous side canyons, bowls and cliff-forming walls (Figs. 0-1, 0-2, 12-1 to 12-7). This
region encompasses approximately 30 km?, and is critically positioned at the transition from the
nearshore terrestrial to shallow marine facies belts.

The shallow marine facies include planar laminated, cross bedded, swaley cross stratified
(SCS), hummaocky cross stratified (HCS), and wave rippled sandstones; bioturbated siltstones
and mudstones; and non-bioturbated dark mudstones (Figs. 12-1 to 12-3; Table 0-1). White cap
sandstones and iron-rich nodules/beds occur within the shallow marine deposits forming
excellent marker beds. Most shallow marine facies stack to form gradationally-based
coarsening-upward successions that progressively pass from mudstones and siltstones at the
base, to wave-rippled, HCS, SCS, cross bedded and planar laminated sandstones at the top (Figs.
12-1 to 12-3). Some of these successions are sharp-based, characterized by a rapid vertical
transition from mudstones and siltstones to thickly bedded sandstones (e.g. base of D9A; Fig. 12-
1). Each succession is capped by a flooding surface at the top. The uppermost parasequence
generally shows a gradational facies change into the overlying channel-fill and coastal plain
facies (Figs. 12-1 and 12-2), although these are also cut by shoreface-incised channels (Fig. 12-
3). Deep incisions into the lower shoreface or inner shelf heterolithics, characteristic of incised
valley-fills, are not observed in the Crescent Canyon area. The nearshore terrestrial facies
includes fine-grained coastal plain deposits, single-story channel-fill, and multistory channel-fill
complexes (Figs. 12-1 to 12-7). Fine-grained coastal plain deposits include silty sandstone-to-
sandy siltstone with iron-staining and organic matter; iron-rich siltstone to sandstone with plant
debris and coal fragments; light grey-green organic-rich mudstone; carbonaceous-rich shale
(“carb-shale”); and coal. Thick packages of coastal plain deposits occur throughout the Crescent
Canyon region and these are often highly weathered and covered by vegetation and/or scree.
Coastal plain facies have a wide range of grain size and sorting, and are often iron-stained, rich
in organic matter (i.e. finely comminuted plant debris; wood, leaf and coal fragments; roots and
rootlets), and have a sheet-like geometry. Coals are sub-bituminous-to-bituminous, have
variable thickness (i.e. beds are generally 10 to 100 cm thick), and are locally to regionally
extensive. Channel facies are dominated by cross-bedded, convolute-bedded, planar laminated
and current ripple-laminated sandstones; sandstones with mud- and coal-fragments; and silty
sandstone/sandy siltstone with iron-staining and organic matter.

The “big picture” stratigraphy is a stack of shallow marine facies (Desert Member)
overlain by a stack of non-marine facies (upper Desert Member and Lower Castlegate
Sandstone), thus defining an overall progradational or shallowing-upward vertical facies
succession (Figs. 12-1 to 12-7). Desert Member parasequences D3 to D11 and Lower Castlegate
Sandstone parasequences C1 and C2 are recognized in the Crescent Canyon to Horse Heaven
region. Shoreface-incised channel complexes cut into D10, D11, C1 and C2, and are
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heterolithic- and/or sandstone-rich fills. The uppermost Desert Member is marked by a thick,
heterolithic-rich, channel-fill succession (D11-CH) with large-scale lateral accretion surfaces that
occurs directly beneath a prominent coal (i.e. Upper or Road Level Coal; Figs. 12-1 to 12-7).

Desert Member parasequences D5 to D9 stack to form a progradational parasequence set
(Figs. 12-1 to 12-3). In Crescent Canyon, parasequences D5 to D8 occur as gradationally-based
coarsening-upward (CU) successions, while parasequence D9A occurs as a sharp-based CU
succession with a regressive surface of marine erosion (RSME) at the base of the amalgamated
sandstone beds (Fig. 12-1). To the east, parasequence D9 splits (i.e. along the contact marked by
the white cap layer) into two cycles (D9A and D9B). Parasequence D10 consists of varying
proportions of shallow marine and non/marginal-marine (channel sandstones, coastal plain)
facies. Non/marginal-marine deposits are dominant to the west, while shallow marine
sandstones are abundant towards the east, where package D10 splits into three sub-cycles or
bedsets (D10A to D10C; Figs. 12-5 to 12-7). Parasequence D10 thickens from west-to-east
across the area. Parasequence D11 is comprised of non/marginal-marine strata at Crescent
Canyon, and is highlighted by the sporadic outcropping of channel-fill deposits with large-scale
(i.e. hundreds of meters in length) sandstone- or heterolithic-rich lateral accretion surfaces (Fig.
12-4A). D11 is bounded above and below by coal-bearing, carbonaceous-rich zones. The Upper
Coal zone is labelled Coal 2 or the ““Road Level Coal’*, while the Lower Coal zone is labelled
Coal 1 or the “Cattleguard Coal’’ (Fig. 12-1). Correlation of the Upper and Lower Coal zones is
easily achieved thus forming excellent marker horizons throughout the Crescent Canyon to Blaze
Canyon region (Figs. 12-1 to 12-7). Multistory channel-fill complexes are spread throughout
this region. Some are correlatable for a few hundred meters, while others are not. Most
multistory channel-fill complexes are comprised of a stack of sandstone- and/or heterolithic-rich
channel-fill successions, with a maximum of five channel stories per stack. Individual channel
stories can incise up to 5 m into the underlying channel-fill successions. Some of these are
characterized by large-scale lateral accretion surfaces (Fig. 12-4D).

The Lower Coal zone caps the cliff-forming shallow marine sandstones (i.e. top D10) and
thins eastwards along the South Face of Horse Heaven (Figs. 12-5 to 12-7). This horizon is also
marked by the sporadic outcropping of thin (meter-scale) heterolithic channel-fill deposits in the
South Face-East of Horse Heaven to West of Blaze Canyon (Figs. 12-2, 12-3, 12-7D). Van
Wagoner (1995) interprets this layer as a high frequency sequence boundary. The heterolithic
channel-fill and coal might be indicative of tidal-estuarine conditions and marine flooding,
respectively. A sandstone-rich channel-fill succession topped by a white cap sandstone rests
stratigraphically above the Lower Coal zone and is defined as parasequence D11 (Figs. 12-6 and
12-7). Parasequence D11 first appears in the Horse Heaven region, along with the shoreface-
incised channel-fill complex D11-CH (Fig. 12-6). The Upper Coal zone marks the top of D11,
thus explaining the prominent white cap. The Upper Coal zone extends along the entire eastern
edge of the cliff-forming South Face of Horse Heaven, and is an excellent marker bed for
correlation (Figs. 12-5 to 12-7). It is overlain by the foreshore-shoreface sandstones of
parasequences C1 and C2 in the eastern half of Horse Heaven, and these in turn are cut by a
multistory channel-fill complexes, C2-CH and C3-CH. Similar to D11, all of these rock
packages first appear or evolve in the eastern part of Horse Heaven (Figs. 12-3, 12-6, 12-7).
Collectively, the first appearance of D11, D11-CH, C1, C2, C2-CH, and C3-CH in the eastern
half of Horse leads to a significant thickening of the cliff-forming sandstones in the Desert-
Castlegate interval (Figs. 12-5 to 12-7). The parasequence and shoreface-incised evolution
points can be easily accessed and studied in three-dimensions in this exceptional outcrop region.
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140 24. Crescent Cyn - SW Wall/W-Side Cyn

Key Photos: 6961/6999, 2353/4983 (W Side Cyn), 0037/0038 (Husky May 2012)
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Figure 12-1. Measured outcrop section #24, Crescent Canyon, SW Wall/W-Side Cyn. Desert Member parasequences
D3-D10 are recognized. Time equivalent coastal-plain deposits (parasequence D11) are bracketed by two prominent
coal zones: Lower Coal (Cattleguard Coal) and Upper Coal (Road Level Coal). Legend nested in Figure 10-2. Grassy
Member (GM), CSs (Castlegate Sandstone).
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140 25. Horse Heaven - NW/SW Bowls
Key Photos: 5125, 5149, 5151, 5157 (NW Bowl)
I\?:rfzozog%:?e 1723, 5279, 5353, 5109, 5276, 7009 (SW Bowl)
Top CSs Fs Top CSs
A
)
g
8
©F 120
5 Vector Mean
= (2] 105.3°
e 3 “ ctrisgnude
Vector Magnitude n=4
365 Thick Vector Mean NW Bowl
_L Coal 136°
@ Zones Vector Magnitude i we
CPon .g Thick “; D11 —> CP-011 — SM.p11
o) Coal " > :
HH - NW Bowl Entrance (Photo 7003) = Zones NW Bowl e
oeen we
. 5 1 ]
- $ 00 - we " Vector Mean
Horse H: s 5109, 5353) O we T 216.7°
A we —
we Vector Magnitude
Horse Heaven - SW Bowl (Photo 2333 L ; e - we
o T we - we n=53
i NW Bowl
£Af Fs
S 80 — D9B
w —_—
C‘V_) we — we s =
— . D9A
T = Fs
= D8
60 — ° Fs
D7
e
1_=¢ D6
El
40 = )
D5
o
sEEEEEssEEEEEEEEEEEEE sssEEmsmEEEEEE - EEEEEEEFSEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE
D4
El
ca D3
-
o
v
Top GM 0 Fs Top GM
cB
El
>3
[4e]
8 iy
o= £
8 o
£
"0 I IV S S B
vf m c ve
c sl Sand gr p

Figure 12-2. Measured outcrop section #25, Horse Heaven, NW-SW Bowls. Desert Member parasequences D3-D10

are recognized. Time equivalent coastal-plain deposits (parasequence D11) are bracketed by two prominent
coal zones: Lower Coal (Cattleguard Coal) and Upper Coal (Road Level Coal). Legend nested in Figure 10-2. Grassy
Member (GM), CSs (Castlegate Sandstone). Location shown on Figure 12-5.
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Figure 12-3. Measured outcrop section #26, Horse Heaven, South Face East. Desert Member parasequences D3-
D11, and Lower Castlegate Sandstone parasequences C1-C2 are identified. Prominent shoreface-incised channels
cut the D11 parasequence (i.e. D11-CH) and the C1-C2 parasequences (i.e. C2-CH). These channel-fills are
sandstone- to heterolithic-rich, multistory, and relatively thick (i.e. up to 26.1 m thick). They are interpreted as
tidally influenced distributaries and/or tidal-estuarine channels. Note the thinner, mudstone- to heterolithic-filled
shoreface-incised channels cutting the top of D10. These are interpreted as terminal distributaries. Grassy Member
(GM), CSs (Castlegate Sandstone). Location shown on Figure 12-5. Legend nested in Figure 10-2.
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Figure 12-4. Crescent Canyon. (A) Photo-panorama showing the correlation of Desert Member parasequences D5
to D11, West-Side Canyon to West Wall, Crescent Canyon. Camera position along the Southeast Wall of Crescent
Canyon, looking northwest. White-cap (WC) sandstone within parasequence D9 splits this cycle into two bedsets,
D9A and D9B. The WC is a useful correlation marker. Large-scale lateral accretion surfaces (LAS) highlighted by
dashed lines within the D11 shoreface-incised channel (D11-CH). MS (multistory channel complex). Crescent

Book Cliffs

Canyon road in the upper right. (B) Photo-panorama, Southeast Wall, Crescent Canyon. Note the large-scale incision,
lateral accretion surfaces, and 12-15 m thickness of the MS. (C) Lateral accretion in MS, West Wall, Crescent Canyon.
Desert Member parasequences D9 to D11 are labelled. (D) Deep channel incision (white arrows), northeast face, East

Bowl, Thompson Pass. This channel complex is large-scale, heterolithic-filled with ITHS, and is likely the equivalent
of the C2 and/or C3 shoreface-incised channel complex (i.e. C2-CH and/or C3-CH) observed at Blaze Canyon.
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Figure 12-5. Horse Heaven. (A) Portion of the Crescent Junction USGS topographic map highlighting the location
of Horse Heaven. Informal physiographic subdivisions include the Northwest Bowl, Southwest Bowl and the South
Face (West, Central, East). Location of measured sections 24-26 is also shown. (B) Photo-panorama of the entire
South Face of Horse Heaven. Three informal physiographic zones are recognized: South Face-West, South Face-
Central, South Face-East. Inset box shows the position on Part D. Camera position is along the old highway, looking
north. (C) South Face-West, Horse Heaven. Desert Member parasequences D5 to D10 are highlighted. Underlying
Mancos Shale colour bands correspond to the Grassy Member and upper portion of the Sunnyside Member. Photo
taken from the SE Bowl of Christmas Ridge, looking northeast. (D) Eastern edge of the South Face-West, Horse
Heaven outcrop. Location shown in Part B. Shallow marine sandstone-rich rock packages (i.e. parasequences D9-
D10) split into five smaller packages towards the east (i.e. bedsets D9A-D9B, D10A-D10B-D10C). Note the iron-
rich nodule-bearing layer within bedset D10A (elongated ovals). Top of the channel-rich package (arrows at the cliff
top) is equivalent to the white cap sandstone in the SW Bowl, which demarcates the top of parasequence D11, which
is overlain by the Upper Coal Zone, hence the prominent white-cap.
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Figure 12-6. Horse Heaven, South Face-Central. (A) Photo-panorama of the South Face (Central and East), Horse
Heaven. Camera position on the old highway looking north. South Face-Central ridge-line is 1.3 km long (between
two black arrows), while the South Face-East ridge-line is approximately 1.2 km long (between two black arrows).
Inset rectangles shows the position of Part B, C and D. (B) South Face-Central, Horse Heaven, photographed from
the desert floor looking north. Desert Member parasequences D6 to D10 can be correlated beneath the lower coal

bed (black arrows and labels). The lower coal caps parasequence D10. It thins to the east (right). Channel-fill
sandstones and heterolithics equivalent to parasequence D11 are sandwiched between the lower and upper coals
(white arrows and labels), with the top of D11 corresponding to the white cap channel sandstones observed
throughout the SW Bowl of Horse Heaven. A sandstone-rich rock package consisting of Lower Castlegate Sandstone
parasequences C1 and C2, and the shoreface-incised C2 channel (C2-CH) overlies the upper coal bed. This sandstone-
rich package becomes permanently “fused/welded” onto the underlying D10 sandstone beds from this area, eastwards.
(C) South Face-Central, Horse Heaven, western side. Camera position on top looking west. (D) South Face-Central,
eastern side. Camera position on top looking east.
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Figure 12-7. Horse Heaven, South Face-East. (A) Panorama of the South Face-Central to South Face-East region,
Horse Heaven. West-West of Blaze Canyon is located immediately to the east. Inset rectangle shows the position of
Part C, inset trapeziums show the location of Parts B and D. (B) South Face-East, Horse Heaven, western side.
Location shown in Part A. D9A-D9B and D10A-D10B-D10C are labelled. Lower (black labels and arrows) and
upper (white labels and arrows) coals bound parasequence D11. Amalgamated C1 and C2 parasequences are shown.
These are either gradationally-conformably overlain by coastal-plain mudstones or sharply-conformably cut by the C3
shoreface-incised channel (i.e. C3-CH). The western edge of the South Face-Central outcrop is visible in the distance.
(C) Photo-panorama from the South Face-East, Horse Heaven. Location shown in Part A. Upper coal bed (white
arrows and labels) extends to the eastern edge of the South Face. The lower coal bed horizon is also identified (black
arrows) on the eastern half of the panorama and is marked by a heterolithic channel-fill (black stars), the D10-CH.
This horizon can be confidently correlated further east into West-West of Blaze Canyon, West of Blaze Canyon, and
Blaze Canyon. An additional sandstone-rich layer occurs near the skyline and is “welded/fused” on top of the
underlying sandstones (arrows and dashed line at base). This sandstone package is the C1-C2 parasequences, cut by
C3-CH. (D) South Face-East, Horse Heaven, eastern side. Location shown in Part A. D9A, D9B and D10A have
increased mudstone eastwards. CB (Colour Band), GM (Grassy Member).
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STOP 13: LOW ACCOMMODATION SPACE SETTING, DESERT MEMBER AND
CASTLEGATE SANDSTONE, WEST OF BLAZE CANYON

This region comprises two separate stops, each within an un-named canyon located west
of Blaze Canyon and east of Horse Heaven (Figs. 0-1 and 0-2). The first stop will be an
overview of the West-West of Blaze Canyon region, while the second stop will allow for
examination of the strata at West of Blaze Canyon (Figs. 13-1 to 13-3). The purpose of these
stops is to examine the distribution and 3D sedimentary architecture of non-marine and shallow
marine facies, and to extend the correlation framework that was established in the Crescent
Canyon to Horse Heaven region, eastwards.

West-West of Blaze Canyon is located directly around the corner (east) from the South
Face-East of Horse Heaven. Correlations can be seamlessly extended from the South Face of
Horse Heaven into West-West of Blaze Canyon, where Desert parasequences D7 to D11,
Castlegate parasequences C1 and C2, and shoreface-incised channel-fills D10-CH, D11-CH, and
C3-CH are clearly recognized (Figs. 13-1 to 13-3). Shoreface sandstones of D9 and D10 are
extremely well developed at West-West of Blaze Canyon, forming the lowermost portion of the
sandstone-rich cliff-forming succession (Fig. 13-2A). The amalgamated shallow marine
sandstones near the base of D10 are occasionally sharp-based, defining a regressive surface of
marine erosion. The top of D10 is variably truncated by the D11-CH complex, with up to 5 m of
incision along the West Wall of West-West of Blaze Canyon. The D11-CH has some large-
scale, heterolithic-rich, lateral accretion surfaces, especially along the north and east walls. D11
and the D11-CH are overlain by a thick Upper Coal zone, which in turn is overlain by Castlegate
parasequences C1 and C2 and multistory channel-fill deposits of the C3-CH complex. In some
areas the C1-C2 shoreface package is completely cut-out, leading to a channel-on-channel
contact between the C3-CH and the underlying D11-CH. The Castlegate channel complexes are
characterized by a mixture of sandstone-, heterolithic- and mudstone-rich channel-fill deposits.
These in turn are overlain by at 8-12 m of coal-bearing coastal plain mudstones with single-story
fluvial channels, which caps the uppermost part of the Lower Castlegate Sandstone.

West of Blaze Canyon has a similar suite of sequence stratigraphic rock packages and
surfaces as those observed at the previous field stops (i.e. Crescent Canyon to West-West of
Blaze Canyon). Shallow marine parasequences D7 to D11 and C1 to C2, and shoreface-incised
channels D11-CH and C3-CH are easily identified and correlated (Fig. 13-2B, C). These
combine to form two progradational parasequence sets: Desert parasequences D3-D11 and
Lower Castlegate Sandstone parasequences C1-C2. The Upper Coal zone records the boundary
between the two progradational parasequence sets, thus representing a regional flooding or
landward shift of facies belts. The top of D10 is marked by thin heterolithic channel-fills (D10-
CH) that are coincident with the thin channels observed along the South Face-Central to South
Face-East of Horse Heaven (Fig. 12-7). D11 is comprised of foreshore-shoreface sandstones cut
by the D11-CH shoreface-incised channel. The D11-CH complex is characterized by large-scale
lateral accretion surfaces, with heterolithic-to-mudstone-rich channel-fill deposits. In places, the
D11-CH cuts into D10C. D11 is overlain by the Upper Coal zone, which is spectacularly
exposed in the cliff-forming northern and eastern walls of this canyon. This marks the top of the
Desert Member. Castlegate parasequences C1 and C2 overlie the Upper Coal zone. These are
variably truncated by the overlying multistory channel complex (C3-CH) which is comprised of
sandstone and heterolithic, large-scale lateral accretion surfaces. In places, the C3-CH entirely
cuts out the C1 and C2 sandstones (Figs. 13-2B, C). However it does not appear to cut through
the Upper Coal zone as it conformably rests or “seats” on the top of this interval (Fig. 13-2).
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27. West of Blaze Canyon - East Wall

Key Photos: 5865, 5773, 6235-6236; 1802/1804 (West Wall)
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Figure 13-1. Measured outcrop section #27, West of Blaze Canyon, East Wall. Desert Member parasequences D3-
D11, and Lower Castlegate Sandstone parasequences C1-C2. Two large-scale shoreface-incised channels: D11-CH
and C3-CH. Both are heterolithic- to sandstone-rich, multistory, tidally influenced distributaries/tidal-estuarine
channel fills. Thinner mudstone-filled terminal distributaries in the upper part of D10 (i.e. D10-CH). Grassy
Member (GM), CSs (Castlegate Sandstone). Legend nested in Figure 10-2.

103



Book Cliffs

10 m

10 m

Figure 13-2. (A) West-West of Blaze Canyon, East Wall. Desert Member parasequences D7 to D11, and overlying
Lower Castlegate Sandstone parasequences C1 and C2 are correlated. Two prominent shoreface-incised channels
cut the shallow marine sandstones: D11-CH and C3-CH. The top of D10 (black arrows) is time equivalent to the
lower coal zone at Horse Heaven, while the top of D11 is coincident with the upper coal zone (white arrows). The
D11 shoreface-incised channel (i.e. D11-CH) has well-defined, large-scale lateral accretion surfaces that are mostly
heterolithic-rich. (B) West of Blaze Canyon, East Wall. Similar rock packages as Part A. Note that the top D10
horizon (black arrows) has thin shoreface-incised channel-fill successions (i.e. D10-CH), and that the C3-CH entirely
cuts out the C1 and C2 shoreface sandstones in places. Well defined heterolithic channel-fill deposits (i.e. D11-CH)
incise into the upper part of D11. (C) Close-up view of the D3 to D11 parasequences, C1 and C2 parasequences,
DI11-CH, and C3-CH. East Wall, West of Blaze Canyon. Colour Band (CB).
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Figure 13-3. (A) Topographic map showing the location of the two Exxon Production Research Company wells in
the southern Book Cliffs: EPR Blaze Canyon 1 and EPR Sego Canyon 2. These wells are 6.6 km apart, which is
approximately 2 km along depositional dip. The latter is calculated by projecting van de Graaft’s (1972) N22°E
paleoshoreline trend for the Castlegate Sandstone. Corresponding outcrop photograph locations are shown along
depositional dip at West of Blaze Canyon (East Wall) and Blaze Canyon (SE Wall). (B) EPR Blaze Canyon 1 well
log suite. Stratigraphic tops of the Grassy Member (GM), Desert Member (DM) and Castlegate Sandstone (CSs) are
highlighted by coloured lines, as are parasequences D5-D11, and C1-C2. The thickness of the entire DM-CSs
interval is 424 feet or 129.2 m, while the thickness of the Castlegate Sandstone is 72 feet or 21.9 m.
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STOP 14: HIGH RESOLUTION SEQUENCE STRATIGRAPHY, DESERT MEMBER
AND CASTLEGATE SANDSTONE, BLAZE CANYON

Blaze Canyon is located 25 km down-depositional-dip (east) from Tusher Canyon, and is
approximately 1.4 km east of our previous stop (Figs. 0-1 and 0-2). Our purpose here is to
examine the high resolution sequence stratigraphy of the Desert Member to Castlegate Sandstone
stratigraphic interval, and to compare and contrast with our observations from West-West of
Blaze Canyon and West of Blaze Canyon (Figs. 14-1 to 14-5). A similar suite of facies,
sequence stratigraphic rock packages and surfaces are observed at Blaze Canyon. The “big-
picture” stratigraphy is delineated by a stack of two shallow marine-to-channel-fill vertical facies
successions, one each for the Desert and Castlegate. In the Desert Member, parasequences D4 to
D11 stack to form a progradational parasequence set which is capped by the Upper Coal zone
(Figs. 14-1 and 14-2). Compared to previous stops, the shallow marine deposits in
parasequences D7 to D10 are noticeably muddier and slightly thinner, with a greater portion of
heterolithic facies between the sandstone beds. The topmost Desert Member parasequence D11
is cut by a thick, heterolithic-rich, channel-fill complex. The Upper Coal zone drapes both the
top of the D11 parasequence and the top of the shoreface-incised channel-fill, D11-CH. A
prominent white cap marks the top of D11. Van Wagoner (1995) interpreted the D11-CH
complex as an incised valley-fill (IVF) that rests on top of a third-order sequence boundary, the
Desert-SB. The contact between the Desert Member and overlying Lower Castlegate Sandstone
is marked by the thick Upper Coal zone. Parasequences C1 and C2 overlie the Upper Coal and
these are cut by the multistoryC3-CH shoreface-incised channel-fill complex (Fig. 14-2).

Similar rock packages and facies stacking patterns are observed in the near subsurface.
The EPR Sego Canyon 2 well was drilled to a total depth of 2,236 feet in September 1986. This
well penetrated the top of the Lower Castlegate Sandstone at 597 feet and the top of the Grassy
Member at 1,113 feet drillers depth (Fig. 14-3). A high quality density, neutron, gamma ray and
resistivity well log suite is available to be used as comparison to the nearby outcrop (Fig. 14-3).

At least eleven shelf to shoreface parasequences are identified in the Desert Member-to-
Lower Castlegate Sandstone stratigraphic interval in the Crescent Canyon to Blaze Canyon area:
D3to D11, and C1 to C2. Additional parasequences have been identified and correlated to the
east (i.e. C3 to C6) and west (i.e. D1 to D2). Collectively, these parasequences stack to form two
progradational parasequence sets (Pattison 1994a,b, 2010, 2018, 2019a, 2019b, 2019c¢, in review-
a,-b; Pattison et al. 2007b). The top of parasequence D11, which is capped by the Upper Coal
zone, defines the contact between the two progradational parasequence sets, and also defines the
contact between the Desert Member and Lower Castlegate Sandstone.

Modeling Scenario 1: Conventional

Van Wagoner (1991, 1995) studied the Desert Member to Castlegate Sandstone across a
wide swath of eastern Utah and used a comprehensive descriptive foundation, which included 68
measured sections and numerous photo-panels, to build a sequence stratigraphic interpretation.
Van Wagoner (1995) clustered together all of the channel and coastal plain facies in the Desert-
Castlegate interval, and separated them from all of the shallow marine facies through the
identification and correlation of two sequence boundaries (i.e. Desert SB and Castlegate SB).
Van Wagoner (1991, 1995) also identified a number of “high frequency” sequence boundaries at
the tops of some parasequences, such as those at the top of parasequence D10 in the Horse
Heaven to Blaze Canyon region. Van Wagoner (1995) used the Desert SB and Castlegate SB to
subdivide the Desert-Castlegate strata into two broad rock packages: channel-coastal plain facies
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and shallow marine facies (Figs. 14-4 and 14-5). By grouping all non-to-marginal-marine facies
together, Van Wagoner’s (1995) interpretation of the non-to-marginal-marine facies belts more
closely resembles a lithostratigraphic (i.e. similar lithologies lumped together) rather than a
chronostratigraphic correlation (Fig. 14-4). According to Van Wagoner’s (1995) interpretation,
high energy braided river systems in the Desert-Castlegate interval did not deliver sediments to a
coastline, but instead “petered-out” into a low energy coastal plain/lacustrine setting, prior to
reaching the coastline (Fig. 14-5).

This model begs at least two questions: (i) How can a high-energy fluvial system (i.e.
braided) be totally disconnected from a nearby shallow marine system?, and (ii) Where are the
time-equivalent non-marine deposits for the Desert-Castlegate shallow marine bodies? Van
Wagoner’s (1995) interpretation shows absolutely no temporal or spatial relationship between
the non-marine and shallow marine rock types in the Desert-Castlegate interval (Figs. 14-4 and
14-5), which is inconsistent with the field observations presented in this guidebook.

Modeling Scenario 2: Alternative

A critical re-examination of the Campanian Desert Member-to-Lower Castlegate
Sandstone interval has shed new light on the relationship between laterally adjoining nearshore
terrestrial and shallow marine environments (Pattison 2018, 2019a,b,c, in review-a,-b). The
temporal and spatial linkage is contrary to the conventional sequence stratigraphic model. The
alternative sequence stratigraphic framework of the Desert-Castlegate interval is a markedly

different scheme compared to the conventional model (Van Wagoner, 1995). Each model carries

a significantly different prediction regarding the three-dimensional distribution and architecture
of reservoir and non-reservoir bodies in a fluvio-deltaic system. This has considerable
implications for modelling in similar clastic settings worldwide. Key differences include:

1. High resolution shoreface-incised channels occur in most parasequences. Their envelope
of incision is generally restricted to the shoreface deposits in which they are “housed”,
occasionally cutting into underlying parasequences. These higher frequency erosional
surfaces do not coalesce into a third-order sequence boundary. Some are HFSBs. A
similar pattern of shoreface-incised tidal-estuarine channel-fills exists in all other
members of the Blackhawk Formation.

2. All shoreface sandstones “evolve” out of fine-grained coastal plain deposits. Evolution
points have been studied and mapped. Progradational distances are modestly long, while
flooding surface distances are shorter.

3. All facies belts are temporally-, spatially- and genetically-linked: (i) amalgamated fluvial
sandstones, (ii) fine-grained, coal bearing coastal plain deposits, and (iii) shoreface
sandstones with incised tidal-estuarine channels. Lateral facies transitions, from west-to-
east, are (1) — (i1) — (i11). Vertical transitions, from base to top, are the reverse order:
(ii1)) — (i1)) — (i). Conformable facies contacts are the norm. Application of Walther’s
Law implies time equivalency of neighboring facies belts.

No gigantic incised valleys exist within the Desert-Castlegate interval.

Prominent coal beds correlate to marine flooding surfaces, thus linking facies zones (ii)

and (ii) in both time and space.

6. Progradational stacking patterns are the norm for both the nearshore terrestrial and
shallow marine facies belts.

7. Incised channels thin and narrow basinwards to a feathered edge, transitioning into
shoreface sandstones. There is no evidence for sediment bypass in the shoreface-to-shelf
environment, and hence no reason to prospect down-dip for detached sand bodies.
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28. Blaze Canyon - East Side Cyn

Key Photos: 1872/1874, 7123, 5888, 5890, 5921, 5986

Buck Tongue
M. hal
ancos Shale Top CSs i} Top CSs
Lower Castlegate A 140 o ean
Sandstone o Magritde

n=14

NW Wall

Blaze

Blaze Cyn - E;
SE

all (Pho

Deep D11-
Cuts the Enti

— Fe —\4
100 — i
We we we e T osate Thi DTo.CH -
— D10C
= Fs
[
§ -g D10B D10
8 9] Fs
=
D10A
Fs
D9B
LO_ s
N DOA
q- —5
-
D8
®
Weak
60 — =
Fs
D7
1 e
Weak D6
cB
40 — r
D5
1 e
D4
LI mmmmmmErs LT
e Cyn (Photo
8 D3 89
fu Cemented Cliff-Forming “Patches
Along CB Level
o
Datum v
— Top GM 0 £ Top GM
o cs
o
23
c & Iy
o= El ¢
P
8
£
o
£
-20 T T T T T T T T ]
vf f m c ve
cl sl Sand g p

Figure 14-1. Measured outcrop section #28, Blaze Canyon, East Side Cyn. Legend nested in Figure 10-2.
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Figure 14-2. Blaze Canyon. (A) Photo-panorama along the northeast-wall and east-side-canyon of Blaze Canyon.
Desert Member parasequences D7 to D11 are highlighted. The upper coal zone is prominently exposed, representing
the top of the Desert Member (i.e. top D11). It is overlain by shallow marine sandstones of parasequences C1 and C2,
and the multistory C3-CH. The red double arrow identifies the cliff face shown in Part B which was photographed
from the side canyon red star) looking north. Note the Fe-cemented layer in the lower part of D10 (brown arrows).
(B) East-Side Canyon of Blaze Canyon. Similar stratigraphy to West-West and West of Blaze Canyon. Heterolithic-
rich shoreface-incised channel (i.e. D11-CH) dominates the uppermost Desert Member. Geologist for scale in upper
left (yellow arrow, yellow circle). (C) Desert Member parasequences D3 to D11, SE Wall, Blaze Canyon. CSs
(Castlegate Sandstone), DM (Desert Member), GM (Grassy Member), CH (Channel), Shallow Marine (SM), CB
(Colour Band). Castlegate Sandstone is 23.6 m thick (77.4 feet) along the SE Wall of Blaze Canyon.
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Figure 14-3. (A) Topographic map showing the location of the two Exxon Production Research Company wells in

the southern Book Cliffs: EPR Blaze Canyon 1 and EPR Sego Canyon 2. These wells are 6.6 km apart, which is
approximately 2 km along depositional dip. The latter is calculated by projecting van de Graaft’s (1972) N22°E
paleoshoreline trend for the Castlegate Sandstone. Corresponding outcrop photograph locations are shown along
depositional dip at West of Blaze Canyon (East Wall) and Blaze Canyon (SE Wall). (B) EPR Sego Canyon 2 well
log suite. Stratigraphic tops of the Desert Member (DM) and Castlegate Sandstone (CSs) are highlighted by coloured
lines. Parasequences D3 to D11, and C1 to C2 are marked. The entire DM-CSs interval is 468 feet (142.6 m) thick,
while the Castlegate Sandstone is 78 feet (23.8 m) thick. Note the high density, low porosity, and high resistivity
well log spike at 777 feet (brown arrows). This well log kick corresponds to the Fe-cemented layer (siderite) that
occurs in the basal part of parasequence D10, which is visible in outcrop.
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Modeling Scenario 1: Conventional

Modeling Scenario 2: Alternative

Figure 14-4. A comparison of two possible correlation styles for the Desert-Castlegate interval: “Sequence
Stratigraphy Interpretation” and “Lithostratigraphy Interpretation” (Van Wagoner 1995). (A) Van Wagoner's (1995)
“Sequence Stratigraphy Interpretation” clusters all channel and coastal plain facies together, separating them both
temporally and spatially from all laterally adjoining shallow marine facies, thus resembling a lithostratigraphic (i.e.
similar lithologies lumped together) rather than a chronostratigraphic correlation style. This is modeling scenario 1:
conventional, classic, third-order SB, IVF, non-linked nearshore terrestrial and shallow marine facies belts, detached
sand bodies are likely down-dip. (B) In contrast, Van Wagoner’s (1995) “Lithostratigraphy Interpretation” actually
shows a chronostratigraphic correlation between the non-marine (i.e. coal beds, multistory channel complexes) and
shallow marine (i.e. flooding surfaces, progradational parasequence set) facies belts, which is somewhat similar to
the field observations presented herein. This is similar to modeling scenario 2: alternative, no SB, no IVF, suite of
discrete parasequence-scale shoreface-incised channels, temporally and spatially linked nearshore terrestrial and
shallow marine facies belts, no detached sand bodies down-dip, attached only.
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Modeling Scenario 1: Conventional

Modeling Scenario 2: Alternative

Figure 14-5. Two contrasting depositional environment and paleogeographic interpretations of the Desert Member
to Lower Castlegate Sandstone stratigraphic interval: “Sequence Stratigraphy Interpretation” and “Lithostratigraphy
Interpretation” (Van Wagoner 1995). (A) The “Sequence Stratigraphy Interpretation” shows no temporal or spatial
relationship between the laterally adjoining nearshore terrestrial and shallow marine facies belts. This is modeling
scenario 1: conventional, classic, third-order SB, IVF, non-linked nearshore terrestrial and shallow marine facies belts,
detached sand bodies are likely down-dip. (B) In contrast, the “Lithostratigraphy Interpretation” shows linkage of
the laterally adjoining non-marine-to-shallow marine facies in both time (i.e. chronostratigraphy) and space, through
correlation of key marker beds (i.e. coals-to- marine flooding surfaces), and is a better fit with field observations
presented herein. This best fits modeling scenario 2: alternative, no SB, no IVF, suite of discrete parasequence-scale
shoreface-incised channels, temporally and spatially linked nearshore terrestrial and shallow marine facies belts, no
detached sand bodies down-dip, attached only.
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FIELD DAY 5

TERRESTRIAL TO MARINE FACIES BELTS:
RESERVOIR-TO-EXPLORATION SCALE

Stop 15: Reservoir-Scale Architecture Channel-Shoreface Reservoir Units,
Desert Member and Castlegate Sandstone, Thompson Canyon

Stop 16: Near-Field Exploration-Scale Terrestrial-Shoreface-Shelf Transition,
Sagers Canyon
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STOP 15: RESERVOIR-SCALE ARCHITECTURE CHANNEL-SHOREFACE
RESERVOIR UNITS, DESERT MEMBER AND CASTLEGATE SANDSTONE,
THOMPSON CANYON

Thompson Canyon is located approximately 34 km down-depositional-dip from the head
of Tusher Canyon and 3 km east of Blaze Canyon (Figs. 0-1, 0-2, and 15-1 to 15-10). The
Desert-Castlegate stratigraphic interval is best viewed from the pictograph and petroglyph picnic
site (Fig. 15-3). Beautiful exposures of sandstone-rich shallow marine and channel-fill deposits,
as well as some world-class outcrops of heterolithic-rich IVF deposits and carbonaceous-rich
shales and coals occur at this stop. All of the key sequence stratigraphic rock packages and
surfaces examined from Crescent Canyon to Blaze Canyon are visible at this stop (Fig. 15-8).
From bottom to top, this section consists of lower shoreface heterolithics (parasequence D9);
thickly bedded upper shoreface sandstones (parasequences D10 and D11); a sandstone- to
heterolithic-rich shoreface-incised channel-fill complex (D11-CH); interbedded carbonaceous-
rich shales and coals (Upper Coal zone); thickly-bedded upper shoreface sandstones
(parasequences C1 and C2); a multistory, sandstone- to heterolithic-rich shoreface-incised
channel-fill complex (C3-CH); a 6-10 m thick package of coal-bearing coastal plain mudstones
with single-story channel sandstones capping the uppermost part of the Lower Castlegate
Sandstone (Figs. 15-1, 15-2, 15-4, 15-5). The Upper Coal zone marks the contact between the
Desert Member and the overlying Lower Castlegate Sandstone, which is coincident with the
contact between the two progradational parasequence sets. Shell Core Hole #2 is located 1.6 km
north of the field stop (Fig. 15-3) and provides an excellent opportunity to examine the core-
scale sedimentology and stratigraphy of the Desert-Castlegate interval. The simplified core
description and low resolution logs for Shell Core Hole #2 (Fig. 15-6) can be compared to the
higher quality EPR Sego Cyn 2 well log suite that were collected 1.3 km north (Fig. 14-3B).

Van Wagoner (1991, 1995) argued that the channel/coastal plain deposits in the Desert
Member to Lower Castlegate Sandstone stratigraphic interval are collectively younger than the
laterally adjacent shallow marine (shoreface/deltaic) deposits, with low frequency sequence
boundaries separating the shoreface/deltaic facies from the laterally adjacent channel and coastal
plain facies (i.e. Desert SB and Castlegate SB; Figs. 15-7A, 15-9A). Van Wagoner’s (1991,
1995) conventional sequence stratigraphic model shows no genetic nor temporal link between
non-marine and shallow marine facies belts within the Desert-Castlegate stratigraphic interval.

In contrast, an alternative sequence stratigraphic model shows that the laterally adjoining
channel-coastal plain and shallow marine facies belts are genetically-, temporally- and spatially-
related (Figs. 15-7B, 15-8, 15-9B, 15-10). Evidence includes, but is not limited to, the (i)
gradational and conformable transitions between adjoining facies belts, accentuated by the
ubiquity of flat-topped, rooted foreshore sandstones passing upwards into carbonaceous-rich-
mudstone-dominated coastal plain, (ii) parasequence-scale interfingering of coastal plain-channel
and foreshore-shoreface deposits with channels, white caps and coals embedded within stacked
shoreface parasequences, and (iii) regional correlation of coals and flooding surfaces. Terminal
channels incise into proximal foreshore-shoreface sandstones in all parasequences. Incisions are
confined to the parasequence in which the channels are nested, rarely cutting deeper. These
shoreface-incised channels are cut and filled at a parasequence-scale, and are bounded above by
the same flooding surface that caps each foreshore-shoreface package. The ubiquity of
ascending regressive shoreface trajectories and near absence of descending regressive trajectories
that intersect depositional slope argues against any significant relative sea level fall. Therefore
the alternative model is the best fit with the field observations (Figs. 15-7B, 15-8, 15-9B, 15-10).
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30. Thompson Canyon - East Side Cyn

Key Photos: 6484/6516/6118 (SE Face), 6380
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*"\ EPR Sego Cyn #2
NWNW-27-20S-20E

*\Thompson Canyon
Shell Core No. 2
@ SWSW-27-20S-20E

Thompson Canyon _s
Field Stop

Petroglyph/Pictograph Picnic Site

e @30

ThC
BzC

@ - Measured Section Localities

Figure 15-3. Topographic map of the Thompson Canyon (ThC) region. The field stop is located at the petroglyph
and pictograph site. Shell Core Hole #2 (SWSW-27-20S-20E) is located 1.6 km north of the field stop, while the
EPR Sego Canyon #2 (NWNW-27-20S-20E) well is located a further 1.3 km up-canyon. BzC (Blaze Canyon).
Measured section localities #28 (Blaze Cyn), #29 (Thompson-West), and #30 (Thompson-East) are shown.
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Figure 15-4. Desert Member (DM)-to-Lower Castlegate Sandstone (C.Ss.) stratal architectures, Thompson Canyon. (A) Uppermost DM shallow marine (SM) sandstones of parasequence D11 are
completely cut-out in places by a deep shoreface-incised channel (D11-CH), Thompson Canyon, West Side Cyn. The D11-CH is characterized by large-scale inclined heterolithic strata (THS) and
lateral accretion surfaces (LAS). It is overlain by parasequences C1 and C2 of the Lower Castlegate Sandstone, which in turn are cut by the C3-CH, thus defining an overall SM-CH-SM-CH stacking
pattern. CB (Colour Band). This outcrop locality is approximately 3 km south-southwest of Shell Core Hole #2. (B) Similar stratigraphy as shown in Part A, Thompson Canyon, West Side Cyn.
This outcrop locality is approximately 3 km south of Shell Core Hole #2. (C) Thick Desert Member shoreface sandstones of parasequences D10 and D11 are well exposed and easily accessible,
Thompson Canyon, NE Wall. A large-scale shoreface-incised channel (D11-CH) cuts through parasequence D11 and into the upper part of parasequence D10. A variety of fill types are observed
including sandstone-rich (left side of photograph), inclined heterolithic strata (IHS) with well defined lateral accretion surfaces (LAS), and mudstone-rich. The top D11-CH is overlain by Lower
Castlegate Sandstone parasequences C1 and C2, which in-turn are cut by the C3-CH complex. This outcrop locality is approximately 1.5 km south-southwest of Shell Core Hole #2, and is directly
across the road from the petroglyph/pictograph picnic site. (D) Pictographs are prominently displayed along the cliff-face bordering the corral, NE Wall, Thompson Canyon. Parasequence D11 has
upper shoreface sandstones incised by sandstone-rich and inclined heterolithic strata (IHS) of the D11-CH. (E) Cliff section immediately south of the picnic site, NE Wall, Thompson Canyon. The
upper coal zone caps the top of parasequence D11. Both heterolithic- and sandstone-rich channel-fill deposits occur in the D11-CH, while the C3-CH is mostly comprised of heterolithic-rich, multi-
story, channel-fill deposits. (F) Similar sedimentology and stratigraphy is observed, defining a stacked pair of SM-CH rock packages, one each for the top DM and C.Ss., Thompson Canyon, NE
Wall. This locality is approximately 2 km south of Shell Core Hole #2. (G) Cliff section stratigraphy from the Mancos Shale/Grassy Member (GM) equivalent, to the top of the Lower Castlegate
Sandstone (C.Ss.), southeast face, Thompson Canyon. The Lower Castlegate Sandstone is 25.6 m (84 feet) thick at this locality. DM (Desert Member), CB (Colour Band).
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Figure 15-5. Desert Member (DM) facies, Thompson Canyon region. (A) Hummocky cross stratified (HCS) sandstones,
D11B parasequence, NW Side Cyn, West Wall, Salt Wash Canyon. Approximately 2.5 km east of the Thompson

Canyon petroglyph-pictograph site. (B) HCS sandstones, D11A parasequence, West Side Cyn, Thompson Canyon.

(C) Shoreface-incised channel cutting the D11 shallow marine sandstones, NW Side Cyn, West Wall, Salt Wash

Canyon. (D) Cross bedded sandstones with organic-rich laminae, shoreface-incised D11-CH, NW Side Cyn, West

Wall, Salt Wash Canyon. USA penny coin for scale in lower left (1.905 cm diameter). (E) Teredolites-bored wood
fragment on a bedding plane within the D11 shoreface-incised channel, NW Side Cyn, West Wall, Salt Wash Canyon.

(F) Carbonaceous-rich mudstone laminae and coal clasts, D11-CH, NW Side Cyn, West Wall, Salt Wash Canyon.

USA penny coin for scale.
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Modeling Scenario 1: Conventional

10m

Nearshore Terrestrial
Facies Belt: CH and CP

Caétlegate
Sandstone

Upper Ceal 2

Desert
Member

D9B
D9A @

,D_8| D9A

D7]

D9B

Legend
—_—

| 10 m Parasequence

Modeling Scenario 2: Alternative - Shoreface-Incised Channel (parasequence-scale)

= Time-Line (Flooding Surface and/or Coal)

....... “High Frequency” Sequence Boundary

Figure 15-7. Portion of Van Wagoner's (1995) regional cross section that documents sequence stratigraphy and
facies distribution in the Desert Member to Castlegate Sandstone interval, from Crescent Junction to Thompson
Canyon. Vertical scale on measured sections is marked at five foot intervals, with thickness recorded every ten feet.
(A) Conventional sequence stratigraphic correlation (as per Van Wagoner 1995). Modeling scenario 1: conventional,
classic, third-order SB, IVF, non-linked nearshore terrestrial and shallow marine facies belts, detached sand bodies are
likely down-dip. Highlighting the interpreted Desert Member and Lower Castlegate Sandstone Sequence Boundary
(D-SB, C-SB) and Incised Valley-Fill (D-IVF, C-IVF). Van Wagoner (1995) interprets the D-SB and C-SB as third-
order SBs, and also identifies high frequency sequence boundaries (HFSB). (B) Alternative sequence stratigraphic
interpretation (as per Pattison, 2018, 2019a, 2019b, 2019c, in review-a, -b). Modeling scenario 2: alternative, no SB,
no IVF, suite of discrete parasequence-scale shoreface-incised channels, temporally and spatially linked nearshore
terrestrial and shallow marine facies belts, no detached sand bodies down-dip, attached only. With superimposed
terminology from this study: parasequences D5 to D11 and C1 to C2, discrete parasequence-scale shoreface-incised
channels (D10-CH, D11-CH, C3-CH), nearshore terrestrial channels (CH) and coastal plain (CP) facies, coal beds
(lower, upper), and white cap (WC) sandstone at the D9A-D9B contact. Each shoreface-incised channel first appears
in the same location as the parasequence evolution point in which it is “housed”. These discrete shoreface-incised
channels do not amalgamate into a third-order IVF, as per conventional model The Upper Coal zone/top D11 marks
the contact between the Desert Member and overlying Castlegate Sandstone. Legend applies to Part B only.
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Figure 15-8. Alternative sequence stratigraphic model of the Desert Member (DM) to Lower Castlegate Sandstone

Book Cliffs

(C.Ss.) interval. Modeling scenario 2: alternative, no SB, no IVF, suite of discrete parasequence-scale shoreface-incised
channels, temporally and spatially linked nearshore terrestrial and shallow marine facies belts, no detached sand bodies
down-dip, attached only. (A) High resolution sequence stratigraphy and facies distribution, Crescent Canyon to Sagers

Canyon region. Schematic cross section is oriented orthogonal to the paleoshoreline trend of N14°E, and covers
approximately 21 km. Desert parasequences D8 to D11, and Castlegate parasequences C1 to C3 are shown. Discrete
shoreface-incised channels (D9-CH, D10-CH, D11-CH, C2-CH, C3-CH) cut most parasequences. Time equivalent

coastal plain (CP) deposits are demarcated. Coals correlate to flooding surfaces, with the lower coal corresponding to

the top of D10, and the upper coal coincident with the D11 flooding surface. Lateral accretion surface (LAS), white-cap

(WC), regressive surface of marine erosion (RSME), net:gross ratio (N:G). The upper part of the Lower Castlegate
Sandstone is comprised of 4-7 m of lower net:gross, coal-bearing coastal plain deposits with interbedded single-story
fluvial channels across the study area. Upper contact with the overlying Buck Tongue of the Mancos Shale is often a
mudstone-on-mudstone contact. No lag deposit has been found. (B) Close-up of the D10-D11 sequence stratigraphy,
Horse Heaven area. Shoreface-incised channels cut both parasequences, with the thickest channel-fills along the D11
level. (C) Shoreline position curve for the mid-Desert Member to lower-Castlegate Sandstone stratigraphic interval.
Parasequences D8 to C2 are shown. (D) Parasequence-scale model. Schematic cross section is oriented west-to-cast

across the nearshore terrestrial and shallow marine facies belts. Discrete parasequence-scale, shoreface-incised channels

include river-dominated distributaries, tidally influenced distributaries, terminal distributaries and/or tidal-estuarine

channels. Many form multistory channel complexes incised into the shallow marine (SM) sandstones. Only the foreshore

and shoreface sandstones are cut within each parasequence. These channels do not extend basinwards into the lower
shoreface or inner shelf facies belts.
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Figure 15-10. Non-linked conventional (left column) versus linked alternative (right column) sequence stratigraphic models. IVF (Incised Valley-Fill), MS-CHs
(Multistory Stacked Fluvial Channels), CP (Coastal Plain), SM (Shallow Marine), | A | /'S (Accommodation-to-Sediment Supply Ratio), SB (Sequence Boundary),
HFSB (High Frequency Sequence Boundary), HST (Highstand Systems Tract), FSST (Falling Stage Systems Tract), LST (Lowstand Systems Tract), TST (Transgressive
Systems Tract), E- (Early), L- (Late). (A) “Unique solution”, sinusoidal relative sea level (RSL) curve used to explain the stratal architectures in the conventional model.
Lower resolution third-order RSL curve (black line) with superimposed parasequence-scale higher resolution RSL curve (grey line). Hypothetical stack of 22 parasequences
is shown for modelling purposes. SB placed at start of fall (black star) by Posamentier and Morris (2000) or end of fall (white star) by Plint and Nummedal (2000).

(B) “Non-unique solution”, sinusoidal RSL curve explains stratal architectures depicted in the alternative model. Other third-order RSL curves are equally likely (i.e.
inset box). Higher resolution parasequence-scale RSL curve (black line), superimposed onto a lower resolution RSL curve (grey line). Same hypothetical stack of 22
parasequences as depicted in A. (C,D) Depositional dip-oriented cross section with the same parasequence numbers. (E,F) Depositional strike-oriented cross section,
medial location. (G,H) Expected vertical contacts between SM and overlying CH-CP facies displayed using 12 pseudo-wells (dashed vertical lines). Rooted, flat-topped
foreshore (FAF) is unlikely in G, as proximal foreshore-shoreface sandstones are continually cut during valley development. FAF may occur at the top of the L-HST in
inter-valley regions only. Conventional model has a greater number of distal shoreface to IVF vertical contacts. Rooted, flat-topped foreshore is extremely common in H,
as per Desert-Castlegate interval. Channels mostly cut proximal foreshore-shoreface, rarely into the distal shoreface. Legend at lower left. (I,J) Contrasting stacking
patterns of fluvial and tidal-estuarine channels. Dip-oriented cross section. Non-linked model has fluvial channels passing stratigraphically up-section into tidal-estuarine
channels, while the opposite occurs in the linked model. Field data from the Desert-Castlegate supports the scenario depicted in J.
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STOP 16: NEAR-FIELD EXPLORATION-SCALE TERRESTRIAL-SHOREFACE-
SHELF TRANSITION, SAGERS CANYON

Sagers Canyon is located approximately 8 km down-depositional-dip from Thompson
Canyon and is 42 km down-dip from the head of Tusher Canyon (Figs. 0-1, 0-2, 16-1 to 16-7).
We will possibly have two stops here, time permitting: one to examine the regional-scale
changes in architecture within the Desert-Castlegate stratigraphic interval by viewing from the
road side on the desert floor, and the second to examine the up-close sedimentological and
stratigraphic details by climbing up the canyon slope (Fig. 16-1). Our desert floor vantage point
encompasses 13 km of depositional-dip-oriented Book Cliffs outcrop from Thompson Canyon in
the west to Pinto Wash in the east (Fig. 16-2). On a clear day one can also see the edge of Corral
Point to the east which is an additional 14 km down-dip. This regional-scale field of view
clearly shows the transition from the sandstone-rich shallow marine and non-marine sections in
the west, to the heterolithic- and mudstone-dominated sections to the east (Figs. 16-2 to 16-6). It
also highlights the stack of two progradational parasequence sets: Desert Member parasequences
D1 to D11, and Castlegate parasequences C1 to C6.

Time permitting, our second stop in this area involves a moderate climb up the Sagers
Canyon scree slope to view the facies, stacking patterns and sequence stratigraphy of the Desert
Member-to-Castlegate Sandstone interval (Fig. 16-1). In general, the Desert-Castlegate interval
is shallow marine-dominant and finer grained at Sagers Canyon compared to Thompson Canyon.
Desert Member shoreface successions were sharp-based up-dip, but transition into gradationally-
based shoreface successions down-depositional-dip. From base to top, the main architectural
elements observed in the Sagers Canyon region are: (i) Desert Member parasequences D1 to
D11, (ii) a thin (< 2 m) shoreface-incised channel (i.e. D11-CH) cutting the top of parasequence
D11, (iii) Lower Castlegate Sandstone parasequences C1 and C2, (iv) a heterolithic-dominant
Lower Castlegate Sandstone shoreface-incised channel-fill complex (C3-CH) cutting into
parasequences C2 and C1, and (v) a 2-5 m thick package of coastal plain mudstones with thin
sandstone beds capping the Lower Castlegate Sandstone (Figs. 16-1 and 16-2E).

The Book Cliffs region offers exceptional outcrop and subsurface data that can be used to
examine thickness trends and correlation styles in wave-dominated shoreface-to-shelf
environments (Tables 16-1 to 16-6). Our last stop provides a glimpse into this outstanding data
base by highlighting one of many depositional-dip-oriented panoramic vistas. We will also have
the opportunity to examine thickness trends and correlation styles on a regional well log cross
section and to compare it with our field observations at this locality (Fig. 16-7).

Outcrop Data

High resolution outcrop data clearly shows a gradual basinward thinning from the distal
lower shoreface to the inner shelf environment. Using mid-point thickness and distance data
(Tables 16-1 and 16-2), the following trends are observed: (i) the Kenilworth Member thins from
115 m to 78 m (32 % thinning) over 43.6 km (Middle Mountain to Sagers Canyon), with most of
the thinning occurring in the first 10 km to 15 km, and (ii) the combined Grassy Member and
Sunnyside Member interval thins from 140 m to 108 m (23 % thinning) over 33.5 km (Tusher
Canyon to Sagers Canyon).
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Subsurface Data

Regional well log cross section AA’ consists of 14 wells across the Star Point Formation
to Lower Castlegate Sandstone stratigraphic interval, and covers 130 km of depositional-dip-
oriented distance in eastern Utah (Fig. 16-7). Distance and thickness data are summarized in
Tables 16-3 to 16-5. Well log cross section AA’ documents a gradual basinward thinning in
parasequence- and member-scale rock packages from shoreface-to-shelf environments, as
demonstrated by the following (Tables 16-3 and 16-4):

1) The Kenilworth Member thins from 118 m (McKnight A Fed 2) to 66 m (Barnhill Federal
1) which represents a 44 % thinning over 73.6 km. Most of this thinning occurred in the
first 15.0 km (i.e. 118 m to 89 m), as the Kenilworth had a 25 % in decrease in thickness
from the McKnight A Fed 2 well to the Butler Cyn U USA well. The remainder of the
thinning is spread over 58.6 km (i.e. 89 m to 66 m), from the Butler Cyn U USA well to
the Barnhill Federal 1 well (Table 16-5).

(2)  The combined thickness of the Grassy and Sunnyside members interval thins from 148 m
at the Butler Cyn U USA 33-12 well to 110 m at the Barnhill Federal 1 well, which
represents a 26 % thinning over 58.6 km (Table 16-5).

(3) The Sunnyside Member thins from 83 m at the Tusher Creek #1 well to 61 m at the State
411-2 well, which is a 27 % thinning over 16.4 km.

4) The Grassy Member thins from 74 m at the Butler Cyn U USA 33-12 well to 57 m at the
Rattlesnake State 2-12 well, which is a 23 % thinning over 20.0 km.

Summary

The time equivalent Mancos Shale offshore mudstone belt extends basinward for over
100 km with no significant decrease in thickness, no evidence of clinoforms, nor any indication
of a basinward translation of the shoreline during sea level fall. Outcrop and subsurface data
reveals a gradual basinward thinning in parasequence- and member-scale rock packages (Tables
16-1 to 16-6). There are no abrupt changes in thickness nor any pronounced clinoform
geometries. As described earlier, a simple set of correlation rules and guidelines have been
distilled for wave-dominated shoreface-to-shelf systems using Book Cliffs outcrop and
subsurface data (Williams and Davies 2006; Pattison, Williams and Davies 2007a, 2007b, 2007c;
Pattison 2010):
@) parasequences show a gradual basinward thinning,
(b) parasequences exhibit an abrupt decrease in sandstone content basinwards that is
matched by an equally abrupt increase in mudstone,
(©) inner shelf mudstone facies can be quartz-silt dominant and therefore have a
similar compaction factor as the up-dip shoreface sandstones,
(d) parasequences split basinward into thinner cycles or bedsets, and
(e) there are no steeply dipping clinoforms in wave-dominated shorefaces-shelves.

Similar thickness trends are manifested at a variety of scales, from micro- (bedset) to macro-
scale (basin). The latter is highlighted in the classic basin-scale stratigraphic cross section
published by Armstrong (1968) which shows gradual basinward thinning from Utah to Colorado.
Other wave-dominated shoreface-to-shelf systems are likely to exhibit similar thickness trends
and correlation styles worldwide.
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33. Sagers Canyon - NW Wall

Key Photos: 0828, 0831 (SW Wall); 0605, 7400 (West Bowl);
0740 (NW Wall); 0717, 0804 (North Wall);
0755 (NE Wall/Bowl); 0575 (SE Wall)
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Figure 16-1. Measured outcrop section #33, Sagers Canyon, NW Wall. Legend nested in Figure 10-2.
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Figure 16-2. Near-field exploration-scale transition: channel-to-shoreface-to-shelf, Desert Member to Castlegate
Sandstone stratigraphic interval, Sagers Canyon overview. (A) Photo-panorama from Thompson Canyon to the
west edge of Pinto Wash. Field of view is approximately 13 km. (B to D) Three close-up photo-panoramas with
the positions shown in Part A, extending from Thompson Canyon to Pinto Wash. (E) Sagers Canyon, North Wall.
A significant muddying of the shallow marine parasequences D10, D11, C1, and C2 occurs between Thompson
Canyon and Sagers Canyon, along with the thinning of the D11-CH and transition of the C3-CH from a sandstone-
rich fill to a heterolithic-dominanted shoreface-incised channel fill. The upper 8-10 m of the Lower Castlegate
Sandstone is comprised of coastal plain (CP) mudstones with single-story fluvial sandstones.
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Figure 16-3. (A) Topographic map of the Book Cliffs region from Blaze Canyon to Corral Point. The location of

key photographs from Bootlegger Wash Canyons to Pinto Wash, measured sections 26 to 41, and the depositional dip
distance between adjacent photos are shown. Near subsurface well log data from SWSE-15-18S-22E is projected to
the SSW into equivalent outcrop positions at Strychnine Wash and Pinto Wash using the N22°E paleoshoreline trend
of van de Graaff (1972). (B) Desert Member (DM) to Castlegate Sandstone (C.Ss.) stratigraphic interval, West Face,
Bootlegger Wash Canyons. DM parasequences D7 to D11 and C1 to C3 are labelled. Two shoreface-incised channels
are recognized, a thin D11-CH and a thick C3-CH. The C.Ss. is 27.5 m (= 90 feet) thick. CB (Colour Band), SM

(Shallow Marine), CH (Channel), RSME (Regressive Surface of Marine Erosion).
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Figure 16-4. Desert Member (DM) to Castlegate Sandstone (C.Ss.) stratigraphic interval. DM parasequences D7,
D10, and D11 are confidently picked. Thin bedded heterolithics of D8 and/or D9 are also shown. Lower Castlegate
Sandstone parasequences C1 to C3 are recognized. A thick shoreface-incised channel-fill, C3-CH, cuts the underlying
shallow marine (SM) deposits. CB (Colour Band). (A) East Face, Bootlegger Wash Canyons. The C.Ss. is 28.3 m

(= 92.9 feet) thick. Geologist for scale at top C.Ss. (white circle). (B) Southeast Wall, Sagers Canyon. The C.Ss. is
29.1 m (= 95.5 feet) thick.
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Figure 16-5. Desert Member (DM) to Castlegate Sandstone (C.Ss.) stratigraphic interval. DM parasequences D7,
D10, and D11 are easily identified. Thin bedded heterolithics of DM parasequences D8 and/or D9 are also shown.
Lower Castlegate Sandstone parasequences C1 to C3. Shoreface-incised channel C3-CH. CB (Colour Band),

CH (Channel). Uppermost 8-10 m of the Lower Castlegate Sandstone is dominated by coastal plain (CP) mudstones.
(A) East Wall, Pinto Wash West Fork Canyon. The C.Ss. is 29.3 m (= 96.1 feet) thick. (B) Southeast Face, Pinto
Wash West Fork Canyon. The C.Ss. is 29.4 m (= 96.5 feet) thick. Geologist for scale at top C.Ss. (white circle).
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Figure 16-6. Near subsurface well log suite including gamma ray, neutron-density porosity, SP, and resistivity logs
from SWSE-15-18S-22E (API Number 43-019-30770), located approximately 18 km north of Big Hole Wash, Book
Cliffs. Lower Castlegate Sandstone (CSs) shoreface-incised channel C3-CH, parasequences C1 to C3, Desert Member
(DM) parasequences D3, D5, D7, D10, and D11, and the top of the Grassy Member (GM) are identified. The CSs is

91 feet thick (27.7 m). This well has been projected SSW into the Book Cliffs using van de Graaft’s (1972) N22°E
paleoshoreline trend, and is coincident with outcrops at Strychnine Wash and Pinto Wash (Fig. 16-3A), nicely matching
the Desert-Castlegate outcrop stratigraphy in these regions. CH (Channel).
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Location CS + BH C-P CS + DM GM SM KM
PCto HC-N 89-141 na 0-16 27 - 66 94 - 141
PRC to BB 85 -89 18-37 85 -87 120- 146
MM to GB 77 -84 36-52 78 - 85 99-131

TCto UC 74 - 100 57 -84 57-81 88-103
HM to FW 102 - 108 111-125 81-100
CR to BzC 103-115 108 -120 76 - 89
ThC to SaC 106 - 125 103-113 73-82

Table 16-1. Outcrop thickness (meters) of key rock packages in the Castlegate Sandstone (CS) to Blackhawk
Formation (BH) stratigraphic interval, east-central Utah (Pattison 2005a). DM (Desert Member), GM (Grassy
Member), SM (Sunnyside Member), KM (Kenilworth Member), C-P (Coastal Plain). PC (Pace Canyon), HC-N
(Horse Canyon North), PRC (Price River Canyon), BB (Battleship Butte), MM (Middle Mountain), GB (Gunnison
Butte), TC (Tusher Canyon), UC (Unnamed Canyon), HM (Hatch Mesa), FW (Floy Wash), CR (Christmas Ridge),
BzC (Blaze Canyon), ThC (Thompson Canyon), SaC (Sagers Canyon).

Outcrop Data Up-Dip Down-Dip Rate of Thinning Distance
Thickness Thickness (%) (km)
(m) (m)
Kenilworth 115 78 32 43.6
Grassy/Sunnyside 140 108 23 335

Table 16-2. Summary of the up-depositional-dip versus down-depositional-dip thickness of the Kenilworth Member
and combined Grassy-Sunnyside members, based on outcrop measurements. Note the gradual rate of basinward
thinning within each stratigraphic interval.

Well Name Well Name Distance (km)
Federal 6-8 to Whitmore Unit #1 10.1
Whitmore Unit #1 to Iriart Fee 1 11.4
Iriart Fee 1 to Keel Ranch No. 1 10.3
Keel Ranch No. 1 to Gov't Arnold #25-1 12.6
Gov't Arnold #25-1 to McKnight A Fed 2 11.3
McKnight A Fed 2 to Wilcox 1-24 1.1
Wilcox 1-24 to Butler Cyn U USA 33-12 13.9
Butler Cyn U USA 33-12 to Tusher Creek #1 13.6
Tusher Creek #1 to Rattlesnake State 2-12 6.4
Rattlesnake State 2-12 to State 411-2 10.0
State 411-2 to Great Yellowstone BC #1 10.9
Great Yellowstone BC#1 to Diamond Ridge Unit #3 5.0
Diamond Ridge Unit #3 to Barnhill Federal 1 12.7
Total Down-Dip Distance = 129.3 km

Table 16-3. Depositional-dip-oriented distance between adjacent wells on cross section AA”. Assumes a north-
south oriented paleoshoreline trend, with offshore towards the east. Well locations are projected into a west-to-east
oriented dip location. A total distance of 129.3 km of dip-oriented strata is transected on this cross section.
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Well o/c* | BHCP cs DM GM SM KM AM scMm
1 KW 304 9% 92
2 StrC 229 101 87
3 DC 219 110 101
4 BrC 100 89 149 104
5 G 61 52 73 127 91
6 MM 49 28 67 75 118 80
7 MM 48 35 64 65 106 79
8 cc-s 36 58 74 74 89
9 CR 29 70 59 83 73
10 crC 19 78 57 61 70
11 BW 16 83 115 71
12 NW 11 86 99 72
13 cpP 6 95 103 71
14 BCW 4 94 110 66

Table 16-4. Subsurface thickness (meters) of key rock packages in the Castlegate Sandstone (CS) to Blackhawk
Formation (BH) stratigraphic interval, east-central Utah. Data from 14 well logs shown on cross section AA’, and
these are numbered consecutively from west-to-east. * Closest outcrop (o/c) projection assumes a north-to-south
oriented paleoshoreline trend, with offshore towards the east. The projected outcrop locality is therefore due south
of the subsurface location. Stratigraphy: C-P (Coastal Plain), DM (Desert Member), GM (Grassy Member), SM

(Sunnyside Member), KM (Kenilworth Member), AM (Aberdeen Member), SCM (Spring Canyon Member).

Localities: KW (Kenilworth Wash), StrC (Straight Canyon), DC (Dugout Creek), BrC (Bear Canyon), G (Grassy),

MM (Middle Mountain), CC-S (Coal Canyon-South), CR (Christmas Ridge), CrC (Crescent Canyon), BW
(Bootlegger Wash), NW (Nash Wash), CP (Corral Point), BCW (Buck Canyon Wash).

Subsurface Data Up-Dip Thickness | Down-Dip Thickness | Rate of Thinning Distance
(m) (m) (%) (km)
Kenilworth 89 66 26 58.6
Grassy/Sunnyside 148 110 26 58.6

Table 16-5. Summary of the up-depositional-dip versus down-depositional-dip thickness of the Kenilworth Member
and combined Grassy-Sunnyside members, as revealed from the well logs on cross section AA”. Note the gradual
basinward thinning within each stratigraphic interval.

Combined Up-Dip Thickness | Down-Dip Thickness | Rate of Thinning Distance
Subsurface and (m) (m) (%) (km)
Outcrop Data
Kenilworth - ss 89 66 26 58.6
Kenilworth - o/c 115 78 32 43.6
Grassy/Sunnyside - ss 148 110 26 58.6
Grassy/Sunnyside - o/c 140 108 23 335

Table 16-6. Summary of the up-depositional-dip versus down-depositional-dip thickness of the Kenilworth Member
and combined Grassy-Sunnyside members, based on both subsurface and outcrop measurements. Note the gradual
basinward thinning within each stratigraphic interval.
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APPENDIX 1: DEAD HORSE POINT STATE PARK

SALT VALLEY ANTICLINE-COLLAPED CENTRAL GRABEN, PALEOZOIC-
MESOZOIC STRATA & OVERVIEW OF CANYONLANDS NATIONAL PARK

Our drive to Dead Horse Point State Park, east along I-70 and south along Highway 191,
provides a wonderful overview of the Salt Valley Anticline (Fig. A1-1). Similar structures occur
throughout the Late Paleozoic Paradox Basin, which is an asymmetric foreland basin located in
southeastern Utah to southwestern Colorado. A series of NW-SE trending anticlines and
synclines are testament to the salt tectonism in this region (Fig. A1-1). Renewed movement
along basement faults led to the fracturing of the overlying rock, thus producing the NW-SE
trending joint pattern within this area. Neogene uplift of the Colorado Plateau triggered the
erosion of the strata. This eventually allowed for the percolation of surface and groundwater into
the salt layers causing widespread dissolution in places. Salt dissolution caused the collapse of
some of these salt-cored anticlines, forming central grabens (i.e. collapsed crests) oriented NW-
SE (Fig. Al1-2). Subsequent erosion has deepened and widened these NW-SE trending valleys.

The rocks exposed in the collapsed/breached central graben of the Salt Valley Anticline
include the Pennsylvanian Paradox Formation (evaporites - central core of graben), Triassic
Moenkopi Formation (brown sandy shale and micaceous silty sandstone), Triassic Chinle
Formation (reddish-brown silty fine-grained sandstone - uranium mineralization), Late Triassic-
Early Jurassic Wingate Sandstone (massive fine-grained well-sorted sandstone), Early Jurassic
Kayenta Formation (lavender-grey, locally white and dark brown sandstone), Early Jurassic
Navajo Sandstone (massive eolian sandstone), and Jurassic Entrada Sandstone (light yellow to
orange-red fine-grained eolian sandstone). The well defined sandstone cliffs on the flanks of the
Salt Valley Anticline are the Entrada Sandstone (Figs. Al-1 and Al-2).

As we continue south along Highway 191 we can observe excellent exposures of cliff-
forming Jurassic and Triassic sandstones, as well as the overlying Cretaceous Cedar Mountain
Formation, Dakota Sandstone, and the Lower Ferron Sandstone. Continue driving south towards
Arches National Park and then turn right (west) onto Highway 313. Travel approximately 35 km
to reach Dead Horse Point State Park. The mesa at Dead Horse Point State Park (SP) provides
breathtaking views of the canyon country of southeastern Utah and the pinnacles and buttes of
Canyonlands National Park (NP), with a 600-meter elevation drop to the Colorado River below
(Figs. A1-3 and A1-4). This unique promontory provided a natural corral in the 19" century into
which the horses were driven by cowboys, with the only escape through a narrow 30-meter neck
of land controlled by fencing. Dead Horse Point derived its name from horses that died of thirst
after being corralled on the waterless point. One story suggests that although the gate was left
open, the horses remained on the point and died of thirst. Dead Horse Point SP overlooks the
northern edge of Canyonlands NP. A spectacular sequence of rocks is exposed from the
Pennsylvanian Hermosa Group (includes the Paradox Formation) at river level, through the
Permian Cutler Group (capped by the White Rim Sandstone — a prominent white canyon rim —
lower part of the Shafer Trail is on this layer below), Triassic Moenkopi and Chinle formations,
and part of the Glen Canyon Group (thick cliff-forming Wingate Sandstone and red Kayenta
Formation, on which we stand) (Fig. A1-4). Environments ranged from shallow marine
carbonates (Pennsylvanian Hermosa Group) to shallow marine clastics (Permian White Rim
Sandstone) to tidal flat (Triassic Moenkopi Formation) to fluvial (Late Triassic Chinle
Formation, Jurassic Kayenta Formation) to eolian (Late Triassic-Early Jurassic Wingate
Sandstone, Jurassic Navajo Sandstone).
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Figure Al-1. Salt Valley Anticline with a collapsed central graben. (A) Structure and resource map of Grand
County (Doelling et al. 1987). Approximate position of cross section XX' in Part B is shown as the solid black
line. (B) Cross section XX' across the north end of the Salt Valley (Doelling 1985).

153



La Sal Mtns

La Sal Mtns

Salt Valley
Anticline
Central Graben

* * i

Figure A1-2. (A) Genesis of a collapsed central graben above a salt anticline (Doelling 1985). (B) Northern end of
the Salt Valley Anticline with a collapsed central graben. Photo taken from the south edge of Christmas Ridge
looking south-southeast towards the La Sal Mountains. (C) Thick cliff-forming Jurassic sandstones (Entrada
Sandstone) dip in opposite directions on either side of the collapsed central graben. Photo taken from the southeast
face of Christmas Ridge, Book Cliffs. (D) Photo taken from the top of the southeast bowl of Hatch Mesa, Book
Cliffs. At least two half graben blocks (yellow stars) are clearly visible on the east (left) side of the central graben.
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Figure A1-3. Canyonlands National Park location map. Dead Horse Point State Park and the Potash solution mine
are a few kilometers northeast of the national park, and are highlighted in the upper right corner.
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Figure A1-4. Rock formations in Canyonlands National Park.
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APPENDIX 2: ARCHES NATIONAL PARK
STRUCTURE (NORMAL FAULTS) AND STRATA (EOLIAN SANDSTONES)

Arches National Park (NP) has the greatest concentration of rock arches in the world
(Figs. A2-1to A2-6). These are formed through a fortuitous combination of geology-structure-
environment that includes differential weathering of different members of the Entrada Sandstone
(e.g. softer Dewey Bridge Member at base of arches versus a more competent overlying Slick
Rock Member and/or Moab Tongue), extensional tectonics (i.e. salt anticline), closely-spaced
northwest-southeast trending joints (i.e. zones for weathering to produce parallel fins of rock),
and a modern arid environment (Fig. A2-4).

Most faults in this region are normal faults, and many are related to the salt tectonism
discussed earlier in the trip. One example is a prominent normal fault in the Moab area that is
magnificently exposed along Highway 191 near the entrance to Arches NP (Fig. A2-2). The
highway parallels the Moab Fault line with the eastern block (i.e. hanging wall block)
downthrown by approximately 800 m relative to the western block. The thick eolian sandstones
that are exposed along the switch-back road leading into Arches NP are part of the Jurassic
Navajo Sandstone and overlying Jurassic Entrada Sandstone, while the thick sandstones that cap
the ridge-line on the western part of the highway (i.e. footwall block) are composed of the Late
Triassic to Early Jurassic Wingate Sandstone. The age of this fault movement dates to the latter
part of the Neogene (approximately 6 million years ago), and is associated with the salt
tectonism that created the Moab-Spanish Valley.

Smaller normal faults can be observed throughout the park, some of which have well
defined relay ramp structures. One of the best exposed and most easily accessible relay ramps
forms part of the hiking trail to the Delicate Arch (Figs. A2-5 and A2-6). Although relay ramps
are effective conduits for fluid flow between overlapping fault blocks, Rotevatn et al. (2007)
have demonstrated that these zones are often cut by smaller ramp-diagonal, ramp-parallel and
curved cataclastic deformation bands that would likely impede (baffle) fluid flow. Their study
clearly indicated that although relay ramps are conduits for fluid transmissibility over geological
time, their effectiveness over production time needs to be challenged in the light of the type and
density of cross-cutting cataclastic deformation bands.

Northwest-to-southeast trending joints are abundant throughout Arches NP, which is an
expression of the principal stress regime linked to basement faults and salt tectonism (Figs. A2-1
and A2-2). These joints are chiefly extensional and are well exposed in the Entrada Sandstone
(Slick Rock Member and overlying Moab Tongue). The Slick Rock Member is the main body of
the Entrada Sandstone and consists of orange-red fine-grained eolian sandstone. This unit rests
stratigraphically on top of the Dewey Bridge Member (formerly known as the Carmel
Formation) of the Entrada Sandstone which is a dark red fine-grained silty sandstone with
contorted bedding (Fig. A2-3).

Time permitting, we will make a number of stops within Arches National Park, including
stops to examine the Moab Fault (Fig. A2-2), La Sal Mountains and Courthouse Syncline
viewpoint, Balanced Rock and The Windows Section (Fig. A2-3), Delicate Arch relay ramp
(Figs. A2-5 and A2-6), and a hike to Delicate Arch (Fig. A2-4).
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Figure A2-1. Structure and geography in east-central Utah (Doelling et al. 2002).
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Figure A2-2. Moab fault. Northwest corner of the Moab quadrangle geologic map, and cross section AA'.
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Figure A2-3. (A) Map of Arches National Park (US Park Service). (B) Balanced rock. (C) Windows.
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Slick Rock Member

Figure A2-4. (A) Sequence of arch formation (Kiver and Harris 1999). (B) Fin and arch development, Arches NP
(Doelling 1985). (C) Delicate Arch with the Slick Rock and Moab Tongue members of the Entrada Sandstone.
(D) Late afternoon to early evening light brings out the red-orange vibrant colours of the Entrada Sandstone.

162



Book Cliffs

(d)

Figure A2-5. Delicate Arch region, Arches National Park. (a-c¢) Maps showing the location and structural geology
of the normal faults and the relay ramp in the Delicate Arch region (Rotevatn et al. 2007). (d) Cross section AA'
highlighting the relay ramp on the Slick Rock Member of the Entrada Sandstone (Rotevatn et al. 2007).

163



Book Cliffs

Figure A2-6. Relay ramp, Delicate Arch region. (A) Block diagram showing a relay ramp in relation to two normal
faults (Peacock and Sanderson 1994). (B) Relay ramp along the Slick Rock Member of the Entrada Sandstone,
Delicate Arch hiking trail. Photo looks east-northeast. Northern fault zone and southern fault zone are highlighted.
People walking on the trail and up the relay ramp, for scale.
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