GSA DATA REPOSITORY 2019119

Blackburn, T., et al., 2019, Composition and formation age of amorphous silica coating glacially polished surfaces: Geology, https://doi.org/10.1130/G45737.1

Pg. 2: Appendix DR1. Sample locations and additional compositional data
Pg. 3: Appendix DR2. LA-ICPMS analyses and Data Reduction
Pg. 4-5: Appendix DR3: SHRIMP ${ }^{230} \mathrm{Th},{ }^{232} \mathrm{Th},{ }^{234} \mathrm{U},{ }^{238} \mathrm{U}$ analytical methods and data reduction
Pg. 6: Appendix DR4. Ablation rate determination

Table DR1.1: Sample locations.
Figure DR1.1: Map showing field location and sample sites.
Figure DR2.2: Major and minor element concentrations vs. SiO_{2} for sample: Daff.
Figure DR2.3: Major and minor element concentrations vs. SiO_{2} for sample: MaClure03.
Figure DR2.4: Major and minor element concentrations vs. SiO_{2} for sample: MaClure05.
Figure DR2.5: Major and minor element concentrations vs. SiO_{2} for sample: Lyell 08.
Figure DR2.6: Major and minor element concentrations vs. SiO_{2} for sample: Lyell 09.
Figure DR2.7: Major and minor element concentrations vs. SiO_{2} for sample: Lyell 10.
Figure DR2.1: LA-ICPMS compositional data for Secondary standard ATHO
Figure DR2.2: LA-ICPMS compositional data for manually polished (non-glacial)
Cathedral Peak Granodiorite
Table DR3.1: SHRIMP-RG ${ }^{230} \mathrm{Th},{ }^{232} \mathrm{Th},{ }^{234} \mathrm{U},{ }^{238} \mathrm{U}$ data
Figure DR4.1: Laser pit ablation depth vs. cumulative number of laser pulses

Appendix DR1. Sample locations and additional compositional data. The Glacial polish samples studied here were collected from Yosemite National Park (YNP), California. A total of 6 samples from the Lyell canyon and Tuolumne meadows area, were used to collect major and trace element data (Fig. DR1.1). Lyell and MaClure samples were collected from elevation, towards the glacier accumulation area for this catchment, while DAFF is located farther below (Fig. DR1.1).
In figure 2 of the main text the major and trace element data for DAFF dome is presented. For brevity, this figure excluded $\mathrm{Al}_{2} \mathrm{O}_{3}$ and Th . These additional elements for DAFF dome are presented here as a modified version of the figure 2 included in the main text (Fig. DR1.2). The same compositional analysis was performed on the 5 additional MaClure and Lyell basin samples. These data are presented within this appendix as figures DR1.3-1.7. A k-means cluster analysis from MATLAB was performed on these data to identify the polish composition and underlying minerals for each spot analysis. A k-means cluster analysis partitions the calculated element concentrations at each ablation depth into one of two clusters (defined by user) with the nearest mean. The center of each cluster is a collection of values that are interpreted to best define the resulting group. These data (black circles) are what is presented in the main text's figure 3.

Appendix DR2. LA-ICPMS methods and Data Reduction

All LA-ICPMS analyses were conducted using a Photon Machines Analyte 193H Excimer Laser outfitted with Helex 2-Volume Cell feed into a Thermo Scientific X-series quadrupole ICP-MS. Laser spot sizes were set to $25 \mu \mathrm{~m}$, a minimum size found to meet instrument detection limits for selected major elements: Na, Mg, Al, Si, Ca, Fe. Elements U and Th were also measured but often below detection limits, in particular at depth within host minerals. Laser parameters include: 80 bursts at a 4 Hz shot rate. Sample unknowns were measured along with standard NIST-610. Spot analyses were conducted by ablating from the glacially polished surfaced downwards through the amorphous layer and into the coarse minerals of the underlying host rock. It was not possible to utilize the traditional LA-ICPMS data reduction technique of internal normalization because the proportions of all elements change within this depth profile. We instead adopted a sumnormalization technique, applied to each cycle of masses within the ICPMS data. By dividing the proportions of each cycle by the sum we can roughly determine the relative proportions of each element as a function of depth. This data reduction includes: 1) blank correction; 2) conversion of signal intensities (cps) to elemental concentrations using measured NIST 610 intensities; 3) Conversion of isotopic concentrations to total elemental abundances; 4) Conversion of elemental concentrations to oxides; 5) Normalization of the total oxide for a given mass cycle. We find that the sum normalization technique leaves this final data output from this reduction technique highly insensitive to data reduction steps 2 and 3 . Rather the results seemingly deliver a reliable measure of the relative proportion of elements at any depth for a given analyses. It thus remains only to evaluate whether there is inherit bias with a single spot analyses between shallow and deep parts of the laser pit, which we will address below. Our use of this "sum-normalization" techniques makes several assumptions including: 1) That sum normalization is not "missing" any large component of the material (e.g. that $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$, $\mathrm{Si}, \mathrm{Ca}, \mathrm{Fe}, \mathrm{U}$ and Th constitute 99% or more of the total material). 2) That element allocation in oxides is valid 3) that elemental fractionation in the NIST standards is identical to the samples, and 4) that down hole changes do occur but they do not cause elemental fractionation (e.g. the relative delivery of different to the mass spectrometer remains constant during spot analyses.

We can evaluate all of these assumptions by through collection and reduction of secondary standard data. Here we present LA-ICPMS analyses from ATHO (Fig. DR1.1) and a analyses collected from multiple minerals on a manually polished section of Cathedral Peak Granodiorite (Fig. DR2.2). The ATHO analyses reveal that there is no inherent bias corresponding with sample depth (e.g. blue and yellow data points cluster in same region). This implies that the compositional trends comparing shallow amorphous material and the underlying host minerals remains a viable conclusion for this paper. This statement is supported by the data collected from a manually polished sample of Cathedral peak granodiorite. The compositional of host minerals are discrete resolved with compositions independent of ablation depth (Fig. DR2.2). These secondary data no not nearly as precise ($\sim 10 \%$ uncertainties) as other in situ techniques (i.e. electron microprobe), however the technique provides the ability to measure continuous compositional not offered by other these more precise methods.

Appendix DR3: SHRIMP ${ }^{230} \mathrm{Th},{ }^{232} \mathrm{Th},{ }^{234} \mathrm{U},{ }^{238} \mathrm{U}$ analytical methods and data reduction

Opal in situ U-Th isotopic measurements were performed using the SHRIMP-RG (sensitive high-resolution ion microprobe with reverse geometry) operated by Stanford University and the U.S. Geological Survey during five analytical sessions between March 2017 and July 2018. Fragments (10 to 24 mm) Daff granite with polish coating was cast in a 25 mm diameter epoxy disc with pre-polished reference materials (BZVV opal and NIST-SRM-611 glass. BZVV is a ca. 2.83 Ma porcelaneous biogenic opal (Virgin Valley, NV, USA), that is relatively high U (748-888 ppm U) used as a secular equilibrium reference material (Paces et al., 2004; Amelin and Back, 2006). The mounted samples were rinsed with a 10% EDTA solution (ethylenediaminetetraacetic acid) and thoroughly rinsed in distilled water and dried in a vacuum oven. The sample surface was coated with $\sim 100 \mathrm{~nm}$ Au and inspected to ensure uniformity and conductivity, stored in a pre-evacuation chamber at $\sim 10-7$ torr overnight prior to analysis to minimize degassing of the epoxy.

All analyses were performed by depth profiling through the surface into the amorphous silica polish. Because the polish is relatively thin and low U, the objective was to obtain a large spot ($30-50$ microns) that was as flat-bottomed as possible to minimize the sputter rate while maximizing secondary ion intensity. The second analytical session utilized an O- primary ion beam with intensity ranging from 45-55 nA. Although the secondary ion yield was $\sim 35 \%$ higher using O -, the sputter rate was higher and thus sputtered through the polish more quickly. Therefore, for all subsequent sessions, we used an O2- primary ion beam with intensity ranging from 12-19 nA. The acquisition routine included the following masses: $28 \mathrm{Si} 416 \mathrm{O}+$, $197 \mathrm{Au}+$, $238 \mathrm{U}+, 232 \mathrm{Th} 12 \mathrm{C}+$, $232 \mathrm{Th} 16 \mathrm{O}+$, background measured at $0.05 \mathrm{~m} / \mathrm{z}$ above 232 Th 16 O , $234 \mathrm{U} 16 \mathrm{O}+$ and $238 \mathrm{U} 16 \mathrm{O}+$. All peaks were measured on a single ETP ${ }^{\circledR}$ discrete-dynode electron multiplier operated in pulse counting mode. Analyses were performed with 9-12 scans (peak-hopping cycles from mass 192 through 254) and count times for 232 Th 16 O and $234 \mathrm{U} 160+$ ranging from 90 to 120 seconds and 35 to 50 seconds, respectively. Individual analyses took 45 to 60 minutes and with sputtered pit depths estimated to be 5$8 \mu \mathrm{~m}$. Measurements were performed at mass resolutions of $\mathrm{M} / \Delta \mathrm{M}=7,000-8,500(10 \%$ peak height) to avoid interfering isobaric interferences.

Measured isotopic ratios were corrected for detector deadtime, background, and calculated cycle-by-cycle (i.e., depth into the polish). As discussed in the text, not all the polish material is amorphous silica or enriched in U ; the surface layer (typically $<1 \mu \mathrm{~m}$ thick; Fig. 1) can be phyllosilicate alteration and polish can contain micron- to submicron-sized mineral fragments in secular equilibrium. As a result, the initial scan intersecting phyllosilicate material was typically omitted. Additionally, scans lacking U and 230 Th or those in secular equilibrium were also omitted, which typically were deeper in the sputter pits (scan number >8), likely due to intersection of mineral fragments or the underlying host minerals that lack U and/or were in secular equilibrium. Based on these criteria, typically $30-80 \%$ of the measurement results were used from each spot, and ratios were calculated using methods outlined by Ludwig (2009) with calculated into activity ratios (AR) using $238 \mathrm{U}, 232 \mathrm{Th}, 230 \mathrm{Th}$, and 234 U decay constants of $1.55125 \times 10-7, \quad 4.9475 \times 10-8,0.0091577,0.002834$, respectively. BZVV opal reference material were repeatedly measured throughout the analytical sessions.

Measured $238 \mathrm{U} / 232 \mathrm{Th}$ AR and $230 \mathrm{Th} / 238 \mathrm{U}$ AR were corrected for correct for mass discrimination based on session-averaged measurements of $230 \mathrm{Th} / 238 \mathrm{U}$ for BZVV, which should be unity based on U-Th isotopes measurements Amelin and Back (2006) and measurements of a similar opal, M-21277, from the same locality by Paces et al. (2004). Uranium concentrations for glacial polish were calculated relative to BZVV opal, using an average concentration of 840 ppm U from Amelin and Back (2006).

This geochronologic method used in figure 4 assumes that upon formation, this fractionation was complete (e.g. $230 \mathrm{Th} / 238 \mathrm{U} \sim 0$), an assumption that is supported by a regressed $230 \mathrm{Th} / 232 \mathrm{Th}$ activity ratio initial for the Daff Dome polish of 1.6 ± 1.3 (Fig. DR. 3.1).

References

Amelin, Y., and Back, M., 2006, Opal as a U-Pb geochronometer: Search for a standard: Chemical Geology, v. 232, p. 67-86.

Ludwig, K. R., 2009, SQUID 2: A User's Manual, rev. 12. Berkeley Geochron. Ctr. Spec. Pub. 5110 p.

Paces, J.B., Neymark, L.A., Wooden, J.L. \& Persing, H.M., 2004, Improved spatial resolution for U-series dating of opal at Yucca Mountain, Nevada, USA, using ionmicroprobe and microdigestion methods, Geochimica et Cosmochimica Acta, v. 68, p. 1591-1606.

Appendix DR4. Ablation rate determination: We can empirically calibrate the depth at which compositional changes occur by ablating samples for a range of laser pulses from 5 to 80 and with inferometer measurements of laser pit depths (Fig. DR 4.1) These data are used to assign approximate depths to compositional data (Fig. 1-2). A total of 80 pulses were used for all analyses presented in this manuscript. The ablation rate varies between $0.08 \mu \mathrm{~m} /$ pulse at shallow depths decreasing to $0.05-0.06 \mu \mathrm{~m} /$ pulse at greater depths (Fig. DR4.1). A maximum $0.08 \mu \mathrm{~m} /$ pulse was assumed to the depth assignments in figures 1 and 2 of the main text. This rate does not influence the data reduction in any way and only permits rough estimates on the depth of chemical transitions to be assigned.

Table. DR1.1 Sample locations.

Sample name	Coordinate	N	W
Daff	$37^{\circ} 52^{\prime} 39.4^{\prime \prime} \mathrm{N} 119^{\circ} 24^{\prime} 52.3^{\prime \prime} \mathrm{W}$	37.877611	-119.414528
Lyell08	$37^{\circ} 45^{\prime} 17.5^{\prime \prime} \mathrm{N} 119^{\circ} 15^{\prime} 35.6^{\prime \prime} \mathrm{W}$	37.754861	-119.259889
Lyell09	$37^{\circ} 45^{\prime} 20.3^{\prime \prime} \mathrm{N} 119^{\circ} 15^{\prime} 35.3^{\prime \prime \mathrm{W}}$	37.755639	-119.259806
Lyell10	$37^{\circ} 45^{\prime} 24.2^{\prime \prime} \mathrm{N} 119^{\circ} 155^{\prime} 57.5^{\prime \prime} \mathrm{W}$	37.756722	-119.265972
Maclure03	$37^{\circ} 45^{\prime} 16.1^{\prime \prime} \mathrm{N} 119^{\circ} 16^{\prime} 52.6^{\prime \prime} \mathrm{W}$	37.754472	-119.281278
Maclure05	$37^{\circ} 45^{\prime} 56.2^{\prime \prime} \mathrm{N} 119^{\circ} 16^{\prime} 25.8^{\prime \prime W}$	37.765611	-119.273833

Fig. DR1.1

Figure DR1.1 Map of Lyell Canyon and Tuolumne Meadows, Yosemite National Park (YNP), CA. Compositional data were collected on 6 samples near the top of the Lyell canyon catchment, and 1 at Daff dome. U-series analyses were only conducted on the sample collected from Daff dome.

Figure DR 1.2.

Figure DR1.2 Compositional data from Daff dome. The same data presented in Figure 2 of the main text, presented here with $\mathrm{Al}_{2} \mathrm{O}_{3}$ and Th data.

Figure DR 1.3

Figure DR1.3 Compositional data from sample MaClure03. Polish compositions for each laser spot analysis are defined as black circles and presented in Figure 3 of the main text. As in figure 2, yellow colors are deep reflecting the bottom of laser pits and the composition of underlying host minerals, while blue colors mark shallow depths and that of the glacial polish. Ablation rate was not calibrated for this sample, thus depths are relative.

Figure DR 1.4

Figure DR1.4 Compositional data from sample MaClure05. Polish compositions for each laser spot analysis are defined as black circles and presented in Figure 3 of the main text. The polish covering high Fe and Mg amphiboles are was measured on this sample, with compositions the same as those above quartz and feldspar. As in figure 2, yellow colors are deep reflecting the bottom of laser pits and the composition of underlying host minerals, while blue colors mark shallow depths and that of the glacial polish. Ablation rate was not calibrated for this sample, thus depths are relative.

Figure DR 1.5

Figure DR1.5 Compositional data from sample Lyell08. Polish compositions for each laser spot analysis are defined as black circles and presented in Figure 3 of the main text. As in figure 2, yellow colors are deep reflecting the bottom of laser pits and the composition of underlying host minerals, while blue colors mark shallow depths and that of the glacial polish. Ablation rate was not calibrated for this sample, thus depths are relative.

Figure DR 1.6

Figure DR1.6 Compositional data from sample Lyell09. Polish compositions for each laser spot analysis are defined as black circles and presented in Figure 3 of the main text. As in figure 2, yellow colors are deep reflecting the bottom of laser pits and the composition of underlying host minerals, while blue colors mark shallow depths and that of the glacial polish. Ablation rate was not calibrated for this sample, thus depths are relative.

Figure DR 1.7

Figure DR1.7 Compositional data from sample Lyell10. Polish compositions for each laser spot analysis are defined as black circles and presented in Figure 3 of the main text. As in figure 2, yellow colors are deep reflecting the bottom of laser pits and the composition of underlying host minerals, while blue colors mark shallow depths and that of the glacial polish. Ablation rate was not calibrated for this sample, thus depths are relative.

Figure DR 2.1

Figure DR2.1 Compositional data for secondary standard data ATHO. Crosses mark accepted values. As in figure 2, yellow colors are deep while blue colors mark shallow depths. Data are reduced using the sum normalization technique discussed in DR2. The apparent lack of depth vs. compositional bias suggests that this technique, while not delivering the most precise data do not deliver data that are inherently biased by laser ablation depth. The apparently inaccurate Mg value likely reflects the use of NIST610 Mg concentrations that are incorrect. Ablation rate was not calibrated for this sample, thus depths are relative.

Figure DR 2.2

Figure DR2.1 Compositional data from a manually, non-glacially polished sample of cathedral peak shown at the same scale as figure 2 to illustrate the differences between glacially polished samples and those of the host minerals. The apparent lack of depth vs. compositional bias suggests that this technique is not inherently biased by laser ablation depth. Note that the distinct host mineral compositions are separately resolved and that shallow analyses do not artificially yield compositions consistent with the glacial polish as shown in figure 2. For example, the Mg, Fe and U enrichment in the surface of glacial polish (Fig. DR1.2-1.7) is not recorded on the manually polished sample. Ablation rate was not calibrated for this sample, thus depths are relative.

Table DR 3.1: SHRIMP-RG ${ }^{230} \mathrm{Th},{ }^{232} \mathrm{Th},{ }^{234} \mathrm{U},{ }^{238} \mathrm{U}$ data, note ${ }^{234} \mathrm{U}$ was not acquired during sessions 1-2 and thus not included in Figure 4. Spot analyses below $10 \mathrm{ppm} U$ are not included in figure 4 and struck through and red in the tables below. All Daff analyses are from the same Daff01 samples described in the text and figures 1-2.
Session 1 March 6-7, 2017 Primary: $\mathrm{O}^{-}{ }^{-}$

Spot	U/Si	1s	$\begin{aligned} & \left(238 \mathrm{~V} /{ }^{\mathrm{a}}\right. \\ & (232 \mathrm{Th}) \end{aligned}$	1s	$\begin{aligned} & (230 \mathrm{Th}) / \mathrm{a} \\ & (238 \mathrm{U}) \end{aligned}$	1s	$\begin{aligned} & \begin{array}{l} \operatorname{corr}(238 \mathrm{U}) /{ }^{\mathrm{b}} \\ (232 \mathrm{Th}) \end{array} \end{aligned}$	1s	$\begin{aligned} & (230 \mathrm{Th}) /{ }^{\circ} \\ & (232 \mathrm{Th}) \end{aligned}$	1s	$\begin{aligned} & \begin{array}{l} \operatorname{corr}(230 \mathrm{Th}) /{ }^{\circ} \\ (238 \mathrm{U}) \end{array} \\ & \hline \end{aligned}$	1s	$\begin{array}{ll} \begin{array}{ll} (2340) /]^{\circ} \\ (238 U) \end{array} & 1 \mathrm{~s} \\ \hline \end{array}$	U (ppm)	Th/U	Scans	Notes
Daff-01b-1.12-2	0.0025	0.0012	8.414	1.380	4.406	0.977	7.662	4.380	41.700	25.448	4.544	0.977		0.2	0.41	6/9	low-U, no 230Th, likely not polish
Daff-01 b-1.12-4	0.0045	0.0005	5.320	0.308	4.942	3.658	4.845	${ }^{\text {Q }}$. 308	43.040	11.575	5.427	3.658		0.4	0.65	6/9	low-U, no 230Th, likely not polish
Daff-01a-1.6-1	0.0186	0.0039	10.247	1.015	0.464	0.686	9.331	1.015	1.973	3.595	0.509	0.686		1.5	0.34	$4 / 9$	low-U
Daff-01a-1.12-1	0.0198	0.0020	7.604	0.217	4.376	0.525	6.924	8.248	10.716	3.993	4.514	0.525		1.6	0.45	$7 / 9$	Iow-U, no 230Th, likely not polish
Daff-01b-1.12-1	0.036	0.008	6.274	1.142	2.873	0.869	5.714	4.142	26.625	8.502	3.155	0.869		2.8	0.55	6/8	Iow-U, no 230Th, likely not polish
Daff-01b-1.8-2	0.0364	0.0036	11.706	0.986	0.428	Q. 374	10.660	8.886	6.949	5.465	0.470	0.372		2.9	0.29	5/9	big error in $230 \mathrm{Th} / 232 \mathrm{Th}$
Daff-01a-1.12-3	0.0467	0.0088	5.625	0.483	0.445	0.323	5.122	0.483	2.444	1.638	0.489	0.324		3.7	0.61	719	low-U
Daff-01b-1.12-3	0.0571	0.0068	15.492	1.931	0.455	0.188	14.108	1.931	4.161	1.643	0.500	0.188		4.5	0.22	$7 / 9$	low-U
Daff-01b-1.8-1	0.0807	0.0298	17.375	0.921	0.614	0.316	45.822	8.924	40.714	5.972	0.670	0.316		6.4	0.20	6/9	big error in 230Th/232Th
Daff-01a-1.5-2	0.0913	0.0331	10.235	1.008	0.776	0.300	9.324	4.008	8.682	3.454	0.852	0.300		7.2	0.34	5/9	in secular equilibrium
Daff-01a-1.12-2	0.1720	0.0560	16.518	1.558	0.188	0.088	15.042	1.558	3.758	1.488	0.206	0.089		13.6	0.21	719	
Daff-01a-1.7-1	0.1802	0.0816	24.814	2.997	0.209	0.162	22.597	2.997	7.573	3.404	0.229	0.163		14.2	0.14	5/9	
Daff-01a-1.8-1	0.1876	0.0347	13.208	1.185	0.402	0.068	12.028	1.185	4.747	0.803	0.442	0.070		14.8	0.26	6/9	
Daff-01a-1.7-2	0.1959	0.0320	11.035	1.868	8.287	8.098	10.049	4.869	11.865	2.847	0.315	0.099		15.5	0.31	719	in secular equilibrium
Daff-01b-1.8-4	0.2616	0.0316	60.702	3.538	0.228	0.073	55.278	3.538	16.079	6.003	0.251	0.075		20.7	0.06	5/9	big error in 230Th/232Th
BzvV-1.2	6.86	1.77	2247	504	0.921	0.026	2046	504	2262	762	1.011	0.031		542.1	0.0015	8/8	
BZVV-3.2	7.57	1.52	14094.4	1786.1	0.939	0.024	12834.9	1786.1	14562.9	726.8	1.031	0.029		598.2	0.0002	8/8	
BZVV-4.1	8.57	2.88	5693.6	1374.4	0.889	0.024	5184.8	1374.4	6312.5	311.7	0.977	0.029		677.2	0.0006	8/8	
BZVV-3.1	10.18	2.89	10990.9	1885.6	1.024	0.026	10008.8	1885.6	12316.7	2337.6	1.125	0.031		804.2	0.0003	8/8	
BZVV-1.1	11.78	2.64	16658.4	1745.3	0.901	0.020	15169.9	1745.3	16224.4	1492.3	0.989	0.026		930.6	0.0002	8/8	
BZVV-2.1	18.83	3.85	8522.7	1598.3	0.903	0.024	7761.1	1598.3	8934.7	1974.1	0.991	0.029		1487.7	0.0004	8/8	
								average	(230Th/238	U) for BzVW:	0.911	0.017					
Session 2	March 7-8, 2017 Primary: ${ }^{-}$																

Spot	U/Si	1s	$\begin{aligned} & (238 \mathrm{U}) \mathrm{I}^{\mathrm{a}} \\ & (232 \mathrm{Th}) \end{aligned}$	1s	$\begin{aligned} & \begin{array}{l} (230 \mathrm{Th}) / \mathrm{a} \\ (238 \mathrm{U}) \end{array} \\ & \hline \end{aligned}$	1s	$\begin{aligned} & \begin{array}{l} \operatorname{corr(238U)} / \mathrm{b} \\ (232 \mathrm{Th}) \end{array} \\ & \hline \end{aligned}$	1s	$\begin{aligned} & \begin{array}{l} (230 \mathrm{Th}) / \mathrm{a} \\ (232 \mathrm{Th}) \end{array} \\ & \hline \end{aligned}$	1s	$\begin{aligned} & \text { corr(230Th)/ }{ }^{\circ} \\ & (238 \mathrm{U}) \end{aligned}$	1s	$\begin{aligned} & (234 U) /{ }^{a} \\ & (238 U) \\ & \hline \end{aligned}$	1s	U (ppm)	Th/U	Scans	Notes
Daff_01b-2.5	0.000	0.000	1.897	0.289	-85.013	68.433	4.728	0.290	-166.603	461.919	-93.355	68.433			0.0	1.81	10/10	low-U, no 230Th, likely not polish
Daff-01A-2.3	0.002	0.000	12.203	0.995	-4.834	5.797	11.113	0.995	-69.993	87.120	-5.308	5.797			0.0	0.28	10/10	low-U, no 230Th, likely not polish
Daff_01b-2.2	0.036	0.005	15.911	0.598	-1.620	0.923	44.489	0.598	-6.959	48.366	-1.779	0.923			0.5	0.22	5/10	low-U, no 230Th, likely not polish
Daff-01A-2.4	0.044	0.017	17.906	1.703	0.682	0.434	46.306	4.703	11.014	6.909	0.749	0.435			0.6	0.19	4/10	low-U, big error in 230Th/232Th
Daff01b-2.7	0.084	0.006	7.415	0.174	4.828	4.234	6.753	0.175	13.576	9.522	2.008	4.234			1.2	0.46	$2 / 10$	low-U, no 230Th, likely not polish
Daff-01b-2.4	0.086	0.027	13.164	0.765	4.060	0.475	41.988	0.765	43.094	6.272	4.164	0.475			1.3	0.26	8/10	low-U, Old
Daff_01b-2.8	0.091	0.027	32.667	2.322	0.829	0.619	29.748	2.323	33.718	25.930	0.914	0.619			1.3	0.11	4/10	low-U, no 230Th, likely not polish
Daff_01b-2.9	0.107	0.071	4.685	0.341	4.387	0.565	4.266	0.344	8.038	2.977	4.523	0.565			1.5	0.73	6/10	low-U, Old
Daffolb-2.6	0.240	0.119	9.819	1.543	0.782	0.386	8.942	4.543	9.359	3.690	0.858	0.386			3.5	0.35	6/10	in secular equilibrium
Daff-01A-1.7-3	0.490	0.046	1.513	0.246	0.445	0.097	1.378	0.247	0.859	0.201	0.488	0.098			7.1	2.28	8/10	
Daff_01b-2.3	0.528	0.145	28.563	1.526	0.542	0.274	26.014	4.526	15.892	8.035	0.596	0.271			7.7	0.12	3/10	big error in 230Th/232Th
Daff-01A-2.6	0.533	0.462	37.081	2.965	0.319	0.074	33.768	2.965	13.238	3.101	0.350	0.076			7.7	0.09	6/10	
Daff01b-2.1	0.582	0.201	19.231	1.085	0.511	0.135	17.513	1.085	10.364	2.574	0.561	0.136			8.4	0.18	6/10	
Daff-01b-1.8-5	1.11	0.62	31.408	3.648	0.488	0.109	28.602	3.648	19.816	4.516	0.535	0.111			16.1	0.11	6/10	Old?
Daff-01A-2.5	1.315	0.824	26.450	2.804	0.374	0.073	24.087	2.804	12.217	2.479	0.410	0.075			19.0	0.13	$7 / 10$	
Daff-01A-2.2	2.198	1.398	35.786	4.057	0.165	0.037	32.588	4.057	5.241	1.098	0.181	0.040			31.8	0.10	6/10	
Daff-01A-2.1-1	2.374	1.383	36.960	2.957	0.376	0.048	33.657	2.957	46.914	2.233	0.413	0.051			34.4	0.09	6/10	Old?
NIST611-1.1	4.292	0.066	3.148	0.022	-0.007	0.003			-0.024	0.009	-0.008	0.017			62.2	1.09	9/9	
BZVV-5.4	58.01	10.09	3014.2	728.2	0.902	0.014	2744.9	728.2	2855.6	818.7	0.990	0.022			840.0	0.0011	8/8	
BZVV-5.1	153.56	23.16	9503.3	1217.9	0.920	0.012	8654.1	1217.9	8999.2	1372.0	1.010	0.021			2223.4	0.0004	8/8	
Session 3	June 3	, 2018	Primary:															
Spot	U/Si	1 s	$\begin{aligned} & \begin{array}{l} \left(238 \mathrm{~V} /{ }^{2}\right. \\ (232 \mathrm{Th}) \end{array} \end{aligned}$	1s	$\begin{aligned} & (230 T h)^{\prime \prime} \\ & (238 \mathrm{O}) \end{aligned}$	1 s	$\begin{aligned} & \hline \operatorname{corr}(238 \mathrm{U}))^{b} \\ & (232 \mathrm{Th}) \end{aligned}$	1 s	$\begin{aligned} & \begin{array}{l} (230 \mathrm{Th}))^{2} \\ (232 \mathrm{Th}) \end{array} \\ & \hline \end{aligned}$	1s	$\begin{aligned} & \begin{array}{l} \operatorname{corr}(230 \mathrm{Th}) /^{\text {c }} \\ (238 \mathrm{U}) \end{array} \\ & \hline \end{aligned}$	1s	$\begin{aligned} & (234 \mathrm{U}) /^{\mathrm{a}} \\ & (238 \mathrm{U}) \\ & \hline \end{aligned}$	1 s	U (ppm)	Th/U	Scans	Notes
Daff-8.1	1.54	1.13	14.517	1.422	0.684	0.040	13.484	1.422	8.219	1.466	0.736	0.040	4.432	0.521	2.7	0.23	5/10	low U
Daff-13.5	2.59	2.04	44.665	1.220	0.892	0.243	43.622	4.220	43.928	3.302	0.964	0.243	4.842	1.458	4.6	0.23	8/10	low U , secular equilibrium
Daff-12.3	4.76	1.36	19.308	0.604	0.513	0.055	17.934	0.604	6.452	1.591	0.553	0.056	4.860	4.094	8.5	0.17	5/10	big error in $234 \mathrm{U} / 238 \mathrm{U}$
Daff-11.5	8.87	2.53	6.604	0.475	4.779	0.148	6.134	0.475	45.655	2.883	4.915	0.148	7.013	0.587	15.7	0.51	5/10	low 230Th, likely not polish

Table DR 3.1 continued:

Table DR 3.1 continued:

Daff-T-1.6	25.71	21.89	25.264	0.249	0.438	0.082	19.647	0.250	6.488	1.384	0.564	0.084	3.967	0.245	37.3	0.16	7110	
Daff-T-1.6-2	27.78	50.37	37.210	0.430	0.396	0.039	28.938	0.430	14.267	0.909	0.509	0.043	2.832	0.082	40.3	0.11	5/10	
Daff-T-1.1-4	38.04	85.79	22.526	0.238	0.429	0.036	17.518	0.238	9.966	1.831	0.552	0.041	3.982	0.303	55.2	0.18	6/10	
Daff-T-1.8	40.56	25.60	15.145	1.644	0.523	0.167	11.778	1.645	7.420	1.694	0.672	0.168	3.977	0.059	58.8	0.27	3/10	
Daff-T-1.1	41.77	4.07	113.476	3.222	0.224	0.082	88.249	3.222	36.275	0.996	0.288	0.084	1.624	0.048	60.6	0.04	5/10	last five scans
Daff-T-1.9	44.78	32.06	23.803	0.199	0.339	0.020	18.511	0.199	7.436	0.416	0.436	0.027	3.659	0.385	65.0	0.17	6/10	
Daff-T-1.8-3	71.54	61.81	19.597	0.282	0.371	0.099	15.241	0.282	5.944	0.729	0.477	0.101	4.689	0.223	103.8	0.21	6/10	
Daff-T-1.1	88.99	37.40	30.785	0.258	0.404	0.033	23.941	0.259	13.764	1.217	0.519	0.038	2.974	0.369	129.1	0.13	5/10	first 5 scans
Daff-T-1.8-2	90.64	41.63	18.450	0.151	0.291	0.122	14.349	0.152	5.630	0.658	0.375	0.123	3.740	0.457	131.5	0.22	6/10	
Daff-T-1.8-6	104.62	54.23	24.417	0.351	0.353	0.027	18.989	0.352	4.461	0.635	0.454	0.032	3.073	0.100	151.8	0.17	7110	
Daffl-1.1.2	128.40	30.92	32.695	0.393	0.442	0.122	25.426	0.393	8.794	1.988	0.568	0.123	2.504	0.121	186.3	0.12	6/10	
Daff-T-1.8-5	134.26	73.25	29.383	0.428	0.275	0.051	22.851	0.429	7.813	0.599	0.353	0.054	3.400	0.333	194.8	0.14	6/10	
NIST611-1.1	3.37	1.03	3.102	0.072	-0.03	20.74			-0.08	32.99	-0.036	20.743	19.98	0.52	4.9	1.0108	67	
BZVVs-1.1	392.1	56.1	1054.9	18.9	0.772	0.085	820.4	18.9	918.9	137.3	0.993	0.087	1.119	0.028	569.0	0.0038	5/7	
BZVV-3.1	490.76	76.19	6883.9	246.3	0.769	0.024	5353.5	246.3	5877.9	1460.2	0.988	0.030	1.063	0.011	712.1	0.0006	$6 / 7$	
BZVV-2.1	546.34	48.03	12835.8	619.6	0.769	0.005	9982.2	619.6	10321.2	1428.4	0.989	0.019	1.031	0.014	792.8	0.0003	67	
BZVV-1.9	611.74	88.44	7277.748	234.176	0.753	0.018	5659.8	234.2	5523.7	636.7	0.969	0.025	1.052	0.004	887.6	0.0006	67	
BZVVs-1.4	695.10	50.78	11229.3	596.4	0.802	0.032	8732.9	596.4	9521.6	1954.6	1.031	0.036	0.987	0.032	1008.6	0.0004	577	
BZVWs-1.2	737.4	81.5	78255.2	7218.8	0.777	0.011	60857.8	7218.8	59778.9	8350.4	0.999	0.021	0.874	0.042	1069.9	0.0001	67	
BZVV-1.10			16054.6	1492.7	0.794	0.021	12485.4	1492.7	14362.3	4276.5	1.021	0.027	0.979	0.012		0.0003	$6 / 7$	
BZVVs-1.3			7440.516	326.336	0.803	0.018	5786.4	326.3	6007.3	890.2	1.033	0.025	1.020	0.013		0.0005	$6 / 7$	
BZVV-1.8			122414.6	19004.1	0.759	0.010	95199.7	19004.1	93262.4	13476.4	0.977	0.020	0.993	0.006		0.0000	$6 / 7$	
								average	(230Th/238)) for BzVV:	0.778	0.018						

ratios highlighted red and crossed-out were omitted from Fig. 4 (see Notes and text or criteria)
a: measured ratios
b: measured $(238 \mathrm{U}) /(232 \mathrm{Th})$ * [session average $(230 \mathrm{Th}) /(238 \mathrm{U})$ for BZVV to correct for mass discrimination
${ }^{\text {: }}$: measured $(230 \mathrm{Th}) /(238 \mathrm{U})$ / [session average $(230 \mathrm{Th}) /(238 \mathrm{U})$ for BZVV] to correct for mass discrimination

Figure DR 3.1

Figure DR 3.1 ${ }^{230} \mathrm{Th} /{ }^{232} \mathrm{Th}$ vs ${ }^{238} \mathrm{U} /{ }^{232} \mathrm{U}$ for Daff dome sample set (Table 3). ${ }^{230} \mathrm{Th}{ }^{232} \mathrm{Th}$ intercept near zero justifies age determinations presented in figure 4 and that ${ }^{230} \mathrm{Th}$ as excluded from polish formation

Figure DR 4.1

Figure DR4.1 Laser pit depth vs. number of laser bursts for a glacial polish sample from Daff dome. Measurement of the laser pit depth at 5 burst intervals provides a rough estimate of the ablation rate and is used to assign approximate depths to compositional data (Fig. 1-2). A total of 80 pulses were used for all analyses presented in this manuscript. The ablation rate varies between $0.08 \mu \mathrm{~m} /$ pulse at shallow depths decreasing to $0.05-0.06 \mu \mathrm{~m} /$ pulse at greater depths. A maximum $0.08 \mu \mathrm{~m} /$ pulse was assumed to the depth assignments in figures 1 and 2 of the main text. This rate does not influence the data reduction in any way and only permits rough estimates on the depth of chemical transitions to be assigned.

