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1 STRESS AND STRAIN CALCULATION 

To monitor the strain during deformation gold foils that acted as strain markers in X-ray 

radiographs were placed at the bottom and the top of the sample. The powder diffraction 

patterns gave access to the differential stresses sustained by lattice planes of a certain phase 

due to the distortion of the Debye rings in an anisotropic stress field. Hilairet et al., (2012) 

give further details on the strain and stress calculation. These differential stresses were 

calculated on the (-201), (111), (002), and the (-220) lattice planes of plagioclase using 

available elasticity data (Brown et al., 2006) and thermal expansion coefficients (Tribaudino 

et al., 2010) from literature. The mean stresses of each experiment were re-calculated using 

the average of the differential stress on the (002) and the (111) lattice planes of plagioclase 

and the confining pressure (Pc). The confining pressures (see the table in Fig. 1) were 

estimated using the peak shift in the diffraction pattern taken at ambient conditions and after 

pressurization and heating. Because calculating stress using triclinic symmetry did not lead to 

reliable results, the calculation was performed with orthorhombic crystal symmetry. Prior to 

deformation, the powder samples were hot-pressed in-situ, at their respective confining 

pressures and their minimum temperatures (table in Fig. 1). After hot-pressing the samples for 

around one hour, deformation started at a controlled constant strain rate of ~5·10-5 s-1. 

2 ANALYTICAL METHODS 

All samples were investigated using the Zeiss Sigma field-emission scanning electron 

microscope (FE-SEM) at Ecole Normale Supérieure, Paris. Backscattered electron (BSE) 



images were acquired with an acceleration voltage of 15 kV. For the energy-dispersive X-ray 

spectroscopy (EDS) element distribution maps, the acceleration voltage was lowered to 10 kV 

to obtain a higher resolution. The electron backscatter diffraction (EBSD) analyses were 

performed using an Oxford instruments EBSD detector installed on the same SEM at Ecole 

Normale Supérieure Paris. Analyses were conducted at an acceleration voltage of 15 kV and 

the EBSD data was generated using the Oxford Instruments AZtecHKL EBSD system. To 

investigate the nanostructure, a focused ion beam (FIB) section was cut using a FEI Strata DB 

235 at IEMN at the University of Lille, France. The transmission electron microscopy (TEM) 

analyses were performed on a JEM 2011 at the Laboratoire de Réactivité de Surface at 

Université Pierre et Marie Curie Paris, France. The TEM images were taken in bright field 

(BF) mode with an acceleration voltage of 200 kV. 

3 CALCULATION OF ࢇࡱ (EXPLANATIONS TO FIGURE 4) 

To calculate the activation energy ܧୟ, an Avrami type equation (Poirier, 1982) 

X (t)= 1 - exp(-ktn)      (1) 

was used, with X, the advancement of reaction, t, the time in seconds, and k the kinetics factor 

that can be written as an Arrhenius function  

k=k0 ൈ	exp(-Ea/RT),     (2) 

where Ea is the activation energy term, R the gas constant and T the temperature in K. 

Assuming n=1 for nucleation at grain boundaries (Cahn, 1956), equations (1) and (2) derive 

into: 

ln(X(t))= k0ൈexp(-Ea/RT)	ൈ t.    (3) 

where X is the reacted granulite volume over t the finite duration of the experiments and is 

measured from microstructural observations. Considering that dX/dt, the instantaneous 

reaction rate is constant over the short duration of our experiments yields: 



ln(X/(1- X))/t = k0	ൈ	exp(-Ea/RT),    (4) 

For the two experiments performed at constant temperature, NG_2.5_1023 and NG_2.5_1173, 

we plotted ln k0 over 1/(RT). The slope of the regression line between these two points is the 

activation energy with Ea≈ 215 kJ·mol-1. However, the reacted volumes cannot be estimated 

precisely and any change would affect the slope. The exact determination of Ea for anorthite 

breakdown in the presence of fluid exceeds the scope of the present study and since it lies in 

the same order of magnitude as Ea for other known transitions, e.g. 162 kJ·mol-1 for the 

quartz-coesite (Perrillat et al., 2003) and 259 kJ·mol-1 for the olivine-spinel transition (Poirier, 

1981), we consider that for our purpose the calculated Ea represents a reasonable estimate of 

the activation energy. 
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