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This file consists of supplementary information required to reproduce the work presented in the main 
paper.  

1. The computation of the onset time

We use a least-squares regression technique to fit for the parameters  and  in Eq. 1 (main text). 
These two parameters are mutually dependent, however, we do not explore that dependence in detail. 
This is valid because we do not interpret the parameters further. Nevertheless, the parameters are 
given here in Table DR1.  

Table DR1. Experimental conditions and fitting parameters for the two different glasses 

We note that  is poorly constrained simply by extrapolating Eq. 1 (main text) to the value of /  
where the resolution of the press is reached. Therefore, in order to compute an uncertainty on  we 
first calculate the sum of the squared residuals , for the number of samples , between the 
strength data points measured , and the model’s predictions (calculated using Eq. 1)  as 
follows 

	 ∑ (S1)

This is then used to calculate the standard error of estimate on strength recovery of the model, : 

(S2) 

Since at short timescales, the model overestimates the strength recovery, we can then provide the 
confidence interval of the model, , for any strength recovery: 

	 (S3)

Glass 
Temperature 

(ºC) 
Viscosity 

(Pa.s) 
τ (s) K (s-1) α λc (s) 

NIST 560 1.27x1010 1.27 1.031x10-3 0.396 7.63 

SDGS 
590 1.54x1011 15.45 2.684x10-5 2.627 29.14 
630 1.56x1010 1.56 1.008x10-3 0.231 11.23 
645 7.08x109 0.71 1.546x10-3 0.293 5.77 
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We use this in Figure DR1 to find the minimum and maximum values of , which are, in turn, 
plotted as a vertical bar in Figure 1C (main text). Although not shown here, a similar result for  is 
found if we use / 	ln	  and extrapolate to the value of /  at which the press 
resolution is reached. 

 

 

Figure DR1. Here each dataset (each sample at a temperature corresponding to a viscosity given on 
each panel) is plotted along with the prediction of Eq. 1 (main text; solid curve). The solid curve 
minus the standard error is given as the dashed curve. Both curves are used to predict the maximum 
and minimum  given in Figure 1C (main text), termed here  and , respectively.  

 

  



2. Fracture surface geometry 

In Figure DR2, we show an image oblique to the fracture surface, showing the asperities on a typical 
experimental sample prior to fracture healing. This demonstrates that we are using non-smoothed 
fractures with asperities of approximately 2 μm height. 

 

Figure DR2. Visualizing fracture surface geometries. A) Binary conversion of a backscattered 
electron image of a ground surface used as a synthetic fracture plane in the experiments (seen from 
the side); the blue arrow shows asperity size as distance from a virtual flat surface (dashed red line); 
B) Size distribution of 3840 asperities along a ground surface (1.05 mm long); the asperities range 
from 0.48 to 5.92 μm (1.97 μm average) in size measured optically. 

 

  



3. The evolution of contact area, used to correct the stress data 

The press records the force with time during an experiment. This needs to be converted to a stress, by 
dividing the surface area of contact between the two samples. However, the contact area evolves as a 
function of time. Therefore, using a specially designed sapphire window in the side of the furnace, we 
monitor the contact area and use two linear regressions as a general rule for correction (Figure DR3).  

 

 

Figure DR3. Contact area evolution along the fracture plane as a function of axial strain monitored 
during contact of the fracture interfaces. We use two linear regressions as a general correction to these 
data, in order to compute stress as a function of time (or strain) in our data. 

Once corrected, the relationship between axial stress and strain can be visualized (see Figure DR4 
below).  

 

Figure DR4. Mechanical data obtained during direct pull test to measure the tensile strengths of the 
NIST and SDGS glasses at a viscosity of 1010 Pa.s.  

 



4. The temperature dependence of viscosity of the materials used 

As an essential pre-requisite for the analysis presented in the main text, the temperature-dependence 
of the sample viscosity had to be determined. This is presented in Figure DR5. We used a 
combination of measurements from the manufacturer (from Schott GmbH for SDGS, or from NIST), 
and measurements on cylindrical samples following the method of Hess et al., (2008).  

 

 

Figure DR5. Viscosity-temperature relationships for SDGS and NIST. The solid symbols show 
values provided by NIST (triangles) and Schott Duran® (circles). The open circles represent viscosity 
measurements carried out at the University of Liverpool using the parallel plate method (following 
Hess et al., 2008). 

 

  



5. Raw data 

Here we provide the raw data for each sample and experimental condition.  

 

Table DR2. SDGS strength recovery at 590ºC 
Time of contact 

(s) 
Strength recovery 

(0) 
500 0.014 
750 0.036 
1000 0.067 
1500 0.105 
2000 0.138 
4000 0.184 
8000 0.244 

 
Table DR3. SDGS strength recovery at 630ºC 

Time of contact 
(s) 

Strength recovery 
(0) 

500 0.079 
750 0.126 
1000 0.160 
1500 0.189 
2000 0.226 

 

Table DR4. SDGS strength recovery at 645ºC 
 

 

 

 

 

 

 

 

  

Time of contact 
(s) 

Strength recovery 
(0) 

60 0 
60 0.006 
120 0.027 
120 0.022 
240 0.082 
240 0.101 
480 0.162 
480 0.159 
600 0.193 
600 0.207 
1500 0.241 
3000 0.417 



Table DR5. NIST strength recovery at 560ºC 

 

 

 

 

 

 

 

  

Time of contact 
(s) 

Strength recovery 
(0) 

60 0.012 
60 0.023 
120 0.012 
240 0.104 
600 0.177 
2200 0.373 



6. Calculation of the conditions at Volcán Chaitén 

Castro & Dingwell (2009) estimate the viscosity during ascent to be 10 10  Pa.s. Given that 
/ , and that  is approximately 10  Pa, this results in  of 10 10  s. We found that the 

fracture healing onset time is approximately 10  and so the onset time is, as stated in the main text, 
10 10  s. To find the full time for complete healing, we take the expression for the second stage 
of diffusive healing (given in Figure 2), and rearrange to find 1/ / , where 	is given in 
Figure 2 (main text) to be 1.7 10 , and  is the time when / 1. This results in the values 

3.5 s and 3.5 10  s, as the minimum and maximum healing time, which in the main text we 
approximate as 10  and 10  s, or seconds-to-minutes.  

Following Castro et al. (2012), we then estimate the degassed lava to have approximate minimum 
dissolved water content of 0.15 wt.%. Using the viscosity model of Hess & Dingwell (1996) and an 
estimated eruptive temperature of 825 , we find that this results in viscosities in the range between 
3.09 10  Pa.s, and 3.16 10 	Pa.s. As stated in the main text, we assume these are indicative of the 
in-dome conditions near the surface, for which those water contents are valid. Using the method 
described above, this results in  values of 1.07 10  s and 1.09 10  s, or hours. 

In the main text we use this as justification of our statement that degassed dome lavas at silicic 
volcanoes are likely to be far less efficient at fracture healing, than in-conduit fractures with elevated 
water contents, and therefore lower viscosities.  
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