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• Figure DR1. Structural data from the Olympic Peninsula.

• Table DR1. Comparison between paleomagnetic and GNSS-derived rotation rates in the

Cascadia forearc

• Supplemental Methods: GNSS Rotation Analysis
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Figure DR1. A: Map of foliation measurements (n=4125) on the Olympic Peninsula 

(Washington Geological Survey, 2017), divided into 23 structural domains. The outer and inner 

edges of most domains correspond to major faults, while the along-strike boundaries correspond 

to obvious changes in strike evident by visual inspection of the data. B: Equal-angle lower-

hemisphere stereoplots of foliation data for each structural domain in part A (n=23). Black great 

circles show the best-fit plane for each domain, while contours show the distribution of poles to 

all foliation planes in each domain, illustrating the coherence of each dataset; red indicates high 

concentration of poles, white indicates low concentration. 



 

Table DR1. Comparison between paleomagnetic and GNSS-derived rotation rates in the Cascadia forearc. Paleomagnetic rotation rates are calculated based on 
the assumption that oroclinal bending began at 18 Ma at the onset of uplift of the Olympic Mountains. Co-located GNSS rotation rates are taken from grid cells 
(Fig. 3) overlapping paleomagnetic sample locations. Average rotation rates based on the entire GNSS-rotation dataset are calculated for north and south limbs 
of the orocline, and for the entire forearc. 

 Paleomagnetic Data GNSS Data 

 
Sample Site 
(°N, °E) Reference 

Paleomag. 
Declination 

(°) 

Paleomag. 
Rotation Rate 

(°/Myr) 

Average Limb 
Rotation Rate 

(°/Myr) 

Overall Absolute 
Average 

Rotation Rate 
(°/Myr) 

Co-located 
GNSS Rotation 
Rate (°/Myr) 

Average Limb 
Rotation Rates 

(°/Myr) 

Overall Absolute 
Average 

Rotation Rate 
(°/Myr) 

North 
Limb 

Sooke Formation 
(48.4, -123.9) 

Prothero et al. (2008) -35 ± 12 -1.9 ± 0.7 

-1.3 ± 1.5 

1.25 ± 1.0 

-0.6 ± 0.2 

-0.94 ± 0.32 

0.96 ± 0.85 

East Sooke Gabbro 
(48.3, -123.7) 

Symons (1973) -20 ± 7 -1.1 ± 0.4 -0.4 ± 0.1 

Port Townsend Basalts 
(48.0, -122.7) 

Beck and Engebretson (1982) -14 ± 62 -0.8 ± 3.4 0.2 ± 0.1 

South 
Limb 

Bremerton Basalts 
(47.5, -122.7) 

Beck and Engebretson (1982) 12 ± 25 0.7 ± 1.4 

1.2 ± 0.5 

0.7 ± 0.1 

0.98 ± 0.14 
Black Hills Volcanics 
(46.9, -123.2) 

Globerman et al. (1982) 29 ± 15 1.6 ± 0.8 2.2 ± 0.2 

Willapa Hills Volcanics 
(46.3, -123.2) 

Wells and Coe (1985) 24 ± 10 1.3 ± 0.6 1.1 ± 0.1 



 

Supplemental Methods: GNSS Rotation Analysis 

We analyzed 25-years’ worth of GNSS velocity data from 923 sites from the UNAVCO Plate 

Boundary Observatory database (https://www.unavco.org/data/gps-gnss/gps-gnss.html) and from 

McCaffrey et al. (2013) (Figure 2). Continuous GNSS time series (n=282) range from years to 

decades (mean 10.3 years), while campaign site time series (n=641) have an average length of 

6.5 years. Uncertainty is typically higher for campaign sites than for continuous sites, and those 

with exceptionally high uncertainty (>5 mm/yr) were removed from the dataset. We used an 

adaptive Gaussian smoothing function to interpolate crustal velocity at regular grid points spaced 

by 0.2 degrees of latitude and longitude after Mazzotti et al. (2011). Velocity was calculated at 

each grid point, as an average of all velocity vectors in the study area, weighted according to 

standard error and distance to the grid point. An azimuthal weighting factor was also applied to 

account for the variation in number of GNSS stations over a given azimuthal window (22.5°); 

lower weight was assigned to stations within a high density sector. The half-width (smoothing 

distance) of the Gaussian function was defined either by a minimum distance or a distance to the 

N’th nearest neighbor, whichever was lower, thereby allowing for variable smoothing depending 

on the density of sites surrounding each grid point. After testing several combinations of 

smoothing parameters, we selected a minimum distance and N’th nearest neighbor of 50 km and 

N=5 respectively, which produced minimal noise while retaining local data structure. To obtain 

annual rotation rates from velocity, the algorithm calculates the curl of the gridded velocity field 

with respect to position, the result of which is shown in Fig. 3. Regional patterns in rotational 

direction (i.e. clockwise versus counterclockwise) were relatively insensitive to changes in 

smoothing parameters, with key transition zones staying in the same place regardless of the 

https://www.unavco.org/data/gps-gnss/gps-gnss.html


Gaussian half-width. Absolute magnitudes of rotation were dampened by broader smoothing 

functions. Standard error for the resulting rotation field was determined using a Monte Carlo 

simulation, wherein one thousand random velocities were generated within the uncertainty range 

of the raw data, and one thousand bootstrap velocities were sampled from the raw data. 
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