Data Repository

Uplift and Exhumation of the Russell Fiord and Boundary blocks along the northern Fairweather Transform Fault, Alaska

Anna Schartman¹, E. Enkelmann², J.I. Garver³, and Cameron M. Davidson⁴,

- ¹ University of Cincinnati, Department of Geology, 500 Geology Physics Building, Cincinnati, OH 45221-0013, USA
- ² University of Calgary, Department of Geoscience, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
- ³ Union College, Department of Geology, 807 Union Street, Schenectady, NY 12308-2311, USA
- ⁴ Carleton College, Department of Geology, One North College Street, Northfield, MN 55057, USA

Figure S1. Apatite (U-Th-Sm)/He data plotted against the spherical radius (Rs) of the apatite grain (top) and plotted against the effective uranium concentration (eU) of the apatite grains (bottom). Samples from the Russell Fiord block (left) are plotted separately from samples collected on the Boundary block and Fairweather Fault zone (right).

Figure S2. Zircon (U-Th)/He data plotted against the spherical radius (Rs) of the zircon grain (left) and plotted against the effective uranium concentration (eU) of the zircon grain (right).

Sample	Grain IDs	Grain age Error	Acceptable fit solutions	GOOD Fit solutions	Constraint 1	Constraint 2
ID.	Grum 125	LIIO	int solutions	i it solutions	Constraint 1	Constituint 2
RF16-11	Zr 1/2/3 Ap1/2/3/4	all 25%	3479	1463	22–50 Ma 70–220 °C	0.3–3 Ma 50–120 °C
		30% Ap 3 all				
RF16-13	Zr 1/2/3 Ap 1/2/3/5	others 25%	4285	256	22–70 Ma 80–220 °C	0.3–3 Ma 50–120 °C
RF16-21	Zr 1/2/3/ Ap 2/3/1/5	all 25%	2500	1220	18–46 Ma 80–220°C	0.3–3 Ma 50–120 °C
	1					
RF16-22	Zr 1/2/3/ Ap 1/2/4/5	all 25%	2170	357	22–60 Ma 80–200 °C	0.3–2.5 Ma 50–120 °C
RF16-25	Zr 1/2/3 Ap 5/4/1/3	all 25%	4060	1316	27–65 Ma 80–220 °C	0 3 - 3 Ma 50–120 °C
10 10 20	21 1/2/01 ip 0/ 1/ 1/0			1010	27 00 114 00 220 0	0.0 0 0.14000 120 0
YA53	Zr 1/2/3 Ap 1/2/4/5	all 15%	460	66	14–54 Ma 80–220 °C	0.5–2 Ma 50–120 °C
YA47	An 1/3/4/5 Zr 1/2	all 35%	3942	43	4–35 Ma 80–220 °C	0 5–2 5 Ma 50–120 °C
	11p 1101 110 El 112	un 5070	57.2	10	1 55 114 00 220 0	0.0 2.0 1.14 00 120 0
YA52	Zr 1/2 Ap 1/2/3	all 20%	5384	806	1–6 Ma 80–220 °C	0.2–2 Ma 50–120 °C
YB16-01	Zr 1/2/3 Ap 1/4/5/6	all 25%	937	23	2–20 Ma 80–200 °C	0.1−3 Ma 50−120 °C
	ī					
YB16-06	Z r2/3/4 Ap 2/4/5/1	all 20%	1784	18	3–28 Ma 80–220 °C	0.1–3 Ma 50–120 °C
RF16-04	Zr 1/2/3 Ap 5/2/3/1	25% Ap 20% Zr	976	5	6–32 Ma 80–220 °C	1 - 6 Ma 50–120 °C
		35% Zr 1/2/3,				
RF16-27	Zr 1/2/3 Ap 1/2/3/5	others 25%	6907	46	3–26 Ma 80–220 °C	0.5–4 Ma 50–120 °C
		30% Zr1/2/3,				
RF16-30	Zr 1-3 Ap 2/5/3/1	others 25%	4424	79	0.5–5 Ma 50–120 °C	8.5–27 Ma 80–220 °C
VA54	7r 1/2/2 Ap 1/2/2/4	all Zr 25% all Ap	4070	204	2 22 Ma 80 220 °C	0.5. 2 Ma 50, 120 °C
1 A34	ZI 1/2/3 Ap 1/2/3/4	30%	4979	294	5-22 Wia 80-220 C	0.3-3 Ma 30-120 C
YAKB58	7 1/2/2 Am 2/4/5	all Zr 20% all Ap	112	0	1.2.4 Ma 90. 220.9C	0.2.06 Ma 50.120 °C
/КГ10-09	Z 1/2/3 Ap 2/4/3	30%	115	0	1.2–4 Ma 80–220 C	0.2-0.0 Ma 30-120 C
RF16-07	Ap 5/6/7	all 35%	580	0		2–0.1 Ma 50–100 °C
DE16 00	A 21415	11.20.0/	525	0		01 0 M 50 100 00
KF16-09	Ap 2/4/ 5	all 30 %	535	0		0.1–2 Ma 50–100 °C

Table S1: Parameters used for HeFTy modeling

Note: For each sample the model precision was set to "Best", 50,000 simulations were conducted, the diffusion model of Flowers et al. (2009) and Guenthner et al. (2013) were used for apatite and zircon, respectively.

Schartman, A., Enkelmann, E., Garver, J.I., and Davidson, C.M., 2019, Uplift and exhumation of the Russell Fiord and Boundary blocks along the northern Fairweather transform fault, Alaska: Lithosphere, https://doi.org/10.1130/L1011.1. GSA Data Repository Item 2019033

Figure S3. Time-temperature model results for individual samples. Each model has one end constraint set at $0-10^{\circ}$ C at 0 Ma. Other individual constraints are depicted by the blue rectangles and listed in Table S1. Shaded light blue region indicates the envelope of acceptable solutions and dark blue the envelope of good fit solutions. The solid black lines are the best fit model for each model run consisting of 50,000 paths tried. Models generated with HeFTy (Ketcham, 2009).

References:

Flowers, R.M., Ketcham, R.A., Shuster, D.L., and Farley K.A., 2009, Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model: Geochimica et Cosmochimica Acta, v. 73, no. 8, p. 2347–2365, doi:10.1016/j.gca.2009.01.015.

- Guenthner, W.R., Reiner, P.W., Ketcham, R.A., Nasdala, L., and Giester, G., 2013, Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology: American Journal of Science, v. 313, p. 145–198, doi: 10.2475/03.2013.01.
- Ketcham, R.A., 2005, Forward and inverse modeling of low-temperature thermochronometry data: Reviews in Mineralogy and Geochemistry, v. 58, p. 275–314, doi: 10.2138/rmg.2005.58.11.