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Extended text 
1. Extended Experimental Methods 

We simulate crack propagation by injecting fluid into an elastic agar gel, which 

is chosen as a rock analogue (Fig.DR1). Agar is a transparent gel, similar to gelatin, 

used in many experimental simulation studies of dike propagation in the crust (e.g., 

Takada, 1990; Sumita and Ota, 2011; Kavanagh et al., 2013). The agar solution is 

solidified in a container with a 0.14 m x 0.14 m cross-sectional area, and is covered 

with a mold, shaped as a two-dimensional ridge with a variable height, with slopes of 

72º (Fig.DR2). By removing the mold, we obtain an agar gel with a mountain-shaped 

free surface. 

We use 0.4-0.8 wt.% agar solutions (Ina Food Industry, UM-11S), and add 33 

wt.% table sugar on the total to increase the shear modulus and transparency of the 

agar gel. This results in a shear modulus of 200-1300 Pa, yield stress of 500-7000 Pa, 

and a density of 𝜌𝜌 =1134-1144 kg m-3 (Fig.DR3, Table DR1). The rheology is 

measured by imposing oscillatory deformation, allowing us to calculate the solid-like 

component 𝐺𝐺′and the liquid-like component 𝐺𝐺′′. We use 𝐺𝐺′ as the shear modulus 𝐺𝐺. 

The ratio of 𝑄𝑄−1 = 𝐺𝐺′′/𝐺𝐺′ is attenuation and approximately 𝑄𝑄−1~10−1for our gel. 

We also estimate 𝑄𝑄−1by measuring the acceleration at the top of the gel edifice 

(Fig.DR4).  When the imposed oscillation stops, the amplitude of the measured 

acceleration decreases with time. By fitting this attenuation curve, we obtain 

𝑄𝑄−1~ 0.16 which is similar to that obtained by the rheology measurement. Our gel 

has a higher 𝑄𝑄−1 than typical country rock 𝑄𝑄−1~10−3 (e.g., Liu et al., 2014). The 

yield stress 500-7000 Pa is measured by rotating a vane spindle in the agar gel, as 

shown in Fig.DR3, a technique used in Sumita and Ota (2011). Fig.DR3C suggests 

that this agar gel yields at a strain of approximately 1.  

We inject buoyant fluids from the bottom by using needles with a length of 25-

70 mm and an inner diameter of 0.5-1.7 mm. As a buoyant fluid, we use air with a 

density of 𝜌𝜌i = 1 kg m-3 and a viscosity of 2 × 10−5 Pa s, water or sugar solution (0-

25 wt.%) with a density of 𝜌𝜌i =1000-1120 kg m-3 and a viscosity of ~10-3 Pa s, or a 

mixture of sugar solution and air bubbles. When we use a mixture of air bubbles and 

water, we add 3.7 wt.% of cellulose to increase the liquid viscosity of the fluid (0.9 Pa 

s) to prevent segregation of the bubbles from the liquid. However, some bubbles 

separate from the liquid during injection. We calculate the volume fraction of bubbles 



 
 

3 
 

(4-5 vol.%) using the areal fraction of bubbles in the photograph of the crack, 

assuming a uniform thickness. The buoyant liquid is dyed red with food coloring. 

The orientation of the crack is controlled by the truncation of the needle tip (e.g., 

Takada, 1990). The growth of the crack is observed from three directions, the front, 

side, and top by using cameras recording at 30-240 frames per second and with a 

resolution of 512x384 or 1920x1080. The front camera is mounted on the shaking 

table and others are fixed to the ground. We qualitatively monitor the stress 

perturbations through photoelasticity by locating polarizer sheets in front and behind 

the gel edifice and using white backlight. 

We impose horizontal oscillations on the gel edifice, with a shaking table 

(GeoSIG GSK-166, GFZ Potsdam Bubble lab), with a displacement of 

approximately 𝐴𝐴 sin(𝜔𝜔𝑡𝑡), where 𝐴𝐴 is the amplitude, 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 is the angular 

frequency, 𝜋𝜋 is the imposed frequency, and 𝑡𝑡 is time. We calibrated the imposed 

displacement through visual observations. The acceleration, measured by a sensor on 

the shaking table, shows sinusoidal signals with noisy high frequency modes. We test 

displacement amplitudes 𝐴𝐴 of 1, 3, and 10 mm. For each displacement value, we 

increase frequency 𝜋𝜋 step-by-step in the sequence denoted in Table DR1. Our 

experiments are conducted close to the upper limit of the loading for the shaking 

table, 𝐴𝐴𝜔𝜔2 < 𝑔𝑔, where 𝑔𝑔 = 9.8 m s-2 is gravitational acceleration. As a result, we 

cannot explore cases where both the amplitude and frequency of shaking are 

simultaneously large.  

We measure the pressure fluctuation of the gel 10 mm above the bottom of the 

container (Fig.DR1) by using a pressure transmitter (Keller PR-33X). We manually 

synchronize the visual images and sensor measurements at the beginning of the 

experiment. 

The procedure of the experiment is as follows. We solidify the gel in a 

refrigerator for one night and leave it at room temperature for at least 4 hours. After 

the gel has adjusted to the room temperature, we fix the tank onto the shaking table 

and remove the mold. We then inject the buoyant fluid from the bottom. The fluid 

either ascends or stalls in the gel; the gel edifice is shaken in both cases. Depending 

on the experiment, the ascent resumes, the ascent velocity increases, or the direction 

of the fluid migration changes upon shaking. We evaluate those cases as “triggered”; 

i.e., the shaking is effective in assisting the crack propagation. If the buoyant fluid has 
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not yet reached the summit or walls of the gel after the shaking, we sometimes inject 

additional buoyant fluids, and then shake it again. We repeat this until the gel breaks.  

 

2. Flow rate of fluid within the preexisting crack 
Ascent of a fluid-filled crack involves fracturing at the tip and simultaneous fluid 

flow into the crack tip. The fluid flow widens the crack tip to cause a further 

fracturing. If the required stress for a fracturing is low enough, the viscous resistance 

of the fluid flow regulates crack ascent (e.g., Lister and Kerr, 1991). In gelatin 

experiments, especially those involving air as the injected fluid, crack ascent is 

regulated by fracturing (Kavanagh et al., 2013). The question whether magma 

propagation in nature is regulated by the viscosity of magma or the fracture toughness 

of rock has been long debated in literature (Rubin, 1995). The issue, which revolves 

around estimates of rock fracture toughness carried out in-situ vs. in the laboratory, 

has been thoroughly discussed in the light of recent progress and formalized in non-

dimensional expressions comparing energy expenditure by viscous flow to fracturing 

(Rivalta et al., 2015). Using typical parameters from nature, it emerges that for natural 

dikes these are end-member behaviors: the propagation of comparatively short 

fractures fed at high rate with high-viscosity magma (e.g. andesite or rhyolite) are 

regulated by the fluid viscosity, while long (km-sized) fractures fed at low rate with 

low-viscosity magma (basalt), or lower viscosity fluids, are regulated by fracturing 

(Rivalta et al., 2015). Thus, we expect our experiments to be well-scaled to simulate 

the propagation of cracks filled with hydrothermal fluids or basaltic magma, while the 

approximation may be less effective in simulating viscous-dominated crack 

propagation.  

In order to further support this argumentation, we here estimate the fluid flow 

velocity inside the crack to show that fluid flow is fast enough not to regulate crack 

ascent. The ascent velocity of a fluid with a viscosity of 𝜇𝜇 in a crack with a width of 𝛿𝛿 

and a pressure gradient of Δ𝜌𝜌𝑔𝑔, where Δ𝜌𝜌 = 𝜌𝜌 − 𝜌𝜌i is the density difference between 

the outside and inside the crack, is written as (e.g., Lister and Kerr, 1991; Turcotte 

and Schubert, 2014) 

𝑢𝑢 =
𝛥𝛥𝜌𝜌𝑔𝑔𝛿𝛿2

12𝜇𝜇
.  
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Air as an internal fluid, with 𝜇𝜇 = 2 × 10−5 Pa s and Δ𝜌𝜌 = 103 kg m-3, can 

ascend inside a crack with 𝛿𝛿 = 10−3 m, at a velocity of 40 m s-1. In contrast, water as 

an internal fluid with 𝜇𝜇 = 10−3 Pa s and Δ𝜌𝜌 = 102 kg m-3, can ascend inside a crack 

with a same thickness of 𝛿𝛿 = 10−3 m, at a velocity of 0.08 m s-1. Here, 𝛿𝛿 = 10−3 m is 

the typical thickness of the crack shown in Fig.1 estimated from its volume and area. 

Thus, the estimated ascent velocity of the fluids in the previously existing fracture 

with a sufficient thickness is much faster than that observed in Fig.1. In addition, the 

difference of the viscosity and density of internal fluid varies ascent velocity as much 

as 500 times.   

We thus conclude that the ascent velocity of the fluid-filled crack at the edifice 

base is regulated by fracturing rather than fluid flow. Similarly, this must be the case 

in the natural volcanic edifice, where the volcanic edifice modifies the vicinal stress 

field. We note that the difference of the estimated flow velocity between air and water 

may be able to affect the eruptive location. The less viscous air flows into the narrow 

crack tip faster than water, so the air-filled crack can erupt from the top of the edifice. 

3. Estimation of the stress field 
Crack propagation depends on the surrounding stress field, including that 

generated by the surface topography and the magma chamber as a pressurizing source 

(e.g., Pinel and Jaupart, 2000; Muller et al., 2001,Watanabe et al., 2002; Karlstrom et 

al., 2009; Maccaferri et al., 2011; Roman et al., 2014; Rivalta et al., 2015; Pinel et al., 

2017). The inertia force induced by the shaking (𝑀𝑀𝐴𝐴𝜔𝜔2) acting on the gel edifice 

causes stress in the edifice, where 𝑀𝑀 = 𝜌𝜌(𝑊𝑊 + 𝑊𝑊t)𝑊𝑊𝑊𝑊/2 is the mass of the gel 

edifice, 𝑊𝑊is the width at the base, 𝑊𝑊t is the width of the top, and 𝑊𝑊is the height of the 

gel edifice  (Namiki et al., 2016). The stress generated in the gel edifice is defined by 

the areal inertia force. If horizontal shear deformation acts on the base of the edifice, 

the inertia force per unit area becomes 

𝜎𝜎b =
𝑀𝑀𝐴𝐴𝜔𝜔2

𝑊𝑊2 =
𝜌𝜌 �1 + 𝑊𝑊t

𝑊𝑊�𝑊𝑊𝐴𝐴𝜔𝜔2

2
,    (eq. DR1) 

where 𝑊𝑊2 is the area of the edifice’s base. In this formulation, we neglect the bending 

of the edifice. In natural conditions, the bending of the volcanic edifice is negligible, 

unlike in our experiments, so this assumption is relevant for natural conditions.   

In Fig. DR8 and Fig. DR9, we calculate the time evolution of the stress field in 

the gel edifice. The maximum stress is approximately 300 Pa at the center of the gel, 
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without a crack. This value is achieved when the initially generated compressional 

waves collide at the middle of the gel edifice. After that, the amplitude of the 

oscillating stress reduces. On the other hand, the stress (𝜎𝜎b) in this experiment 

estimated by Eq.(DR1) is 150 Pa. When there exists a crack in the middle of the gel 

edifice, the maximum stress at the crack tip is close to 3000 Pa (Fig.DR9), while that 

at the crack surface becomes less than 100 Pa (Fig.DR8), suggesting focusing of 

stress. Willey (2017) uses the images of Fig.2, and estimates the stress field in the gel 

edifice by using photoelasticity. The calculated absolute stress is of similar orders of 

magnitude to 𝜎𝜎b in Eq.(DR1), but is slightly larger. This discrepancy may have arisen 

by repeated acceleration through the oscillation, which amplifies the elastic wave. In 

Fig. DR8, the stress is generated only by the initially imposed velocity. We thus 

consider Eq.(DR1) to be a good minimum estimate of the stress generated in the 

oscillating edifice.  

The average stress, 𝜎𝜎b, generated by a volcanic edifice, with  𝑊𝑊 = 2 km and a 

density of 2000 kg m-3, resonating with an oscillation with an amplitude of  𝐴𝐴= 0.5 m 

(Koketsu et al., 2011) and a frequency of 0.1 Hz, is ~0.4 MPa. This value is similar or 

larger than the stress changes estimated to trigger volcanic unrest (Manga and 

Brodsky, 2006; Fujita et al., 2013), and is of the same order of magnitude estimated 

for the stress change caused by surface waves in Yukutake et al., (2013). 

 

4. Evaluation of resonance frequencies  
We estimate the resonance frequency of our gel and volcanic edifice using 

three methods.  

1) Ratio of the shear wave velocity 𝑣𝑣s and the width of the edifice base 𝑊𝑊, 

𝜋𝜋~0.7
𝑣𝑣s
𝑊𝑊

  .       (eq. DR2) 

The amplification of oscillation, induced by an earthquake at the top of a hill, 

has been observed when the oscillation frequency is in the range of 0.6 − 0.8 times 

𝑣𝑣s/𝑊𝑊 (Geli et al., 1988). An analytical method shows that the prefactor is 

approximately constant, 0.7, when the edifice has the height/width ratio, 𝑊𝑊/𝑊𝑊 < 0.5 

(Paolucci, 2002).We consider this estimate is appropriate to natural volcanic ranges.  

2) In some of our experiments, the gel edifice has a trapezoidal shape 

exceeding 𝑊𝑊/𝑊𝑊 > 0.5. Towhata (2008) takes account of this shape and solves the 
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equation of motion for horizontal shaking by assuming a harmonic oscillation. The 

amplification produced by the topography is derived as  
𝑆𝑆(𝜔𝜔)

=

2𝑣𝑣s
𝜋𝜋𝜔𝜔𝑧𝑧0

��𝐽𝐽0 �
𝜔𝜔(𝑧𝑧0 + 𝑊𝑊)

𝑣𝑣s
�𝑌𝑌1 �

𝜔𝜔𝑧𝑧0
𝑣𝑣s

� − 𝐽𝐽1 �
𝜔𝜔𝑧𝑧0
𝑣𝑣s

�𝑌𝑌0 �
𝜔𝜔(𝑧𝑧0 + 𝑊𝑊)

𝑣𝑣s
��
2

+ �𝐽𝐽1 �
𝜔𝜔(𝑧𝑧0 + 𝑊𝑊)

𝑣𝑣s
�𝑌𝑌1 �

𝜔𝜔𝑧𝑧0
𝑣𝑣s

� − 𝐽𝐽1 �
𝜔𝜔𝑧𝑧0
𝑣𝑣𝑠𝑠

�𝑌𝑌1 �
𝜔𝜔(𝑧𝑧0 + 𝑊𝑊)

𝑣𝑣s
��
2

, 

(eq.DR3)  

where J and Y are the Bessel functions of the first and second kinds, and z0 is the 

height between the top of the trapezoidal edifice and the hypothetical vertex of a 

triangular edifice shape (Fig.DR1). We calculate the amplifications following this 

equation and plot them in Fig.DR12. The frequencies where amplifications become 

local maxima are resonance frequencies, and the lowest frequency among them is the 

fundamental mode.  

3) We numerically calculate the eigen frequencies of the 2D trapezoidal shape by 

solving the wave equation under harmonic oscillation using COMSOL Multiphysics 

(Fig.DR8). This method reveals various deformation patterns some of which are 

similar to those observed in the experiments whereas others are not. We thus selected 

the deformation patterns similar to those observed in experiments (Fig.DR8), and 

listed them in Table DR1. 

Numerically calculated resonance frequencies are close to those estimated by 

Eq.(DR2) and Eq.(DR3), validating the reliability of these equations. We use 

Eq.(DR2) for natural volcanic ranges and Eq. (DR3) for our gel edifice, because of 

low and high aspect ratios (𝑊𝑊/𝑊𝑊), respectively. 

 

5. Flow velocity inside the crack  
The flow of a fluid with velocity 𝑢𝑢 in a crack, with a length of 𝐿𝐿 and a 

thickness of 𝛿𝛿, under a time dependent stress 𝜎𝜎b, oscillating with a frequency of 𝜋𝜋, 

should not be in a steady state. The force 𝜌𝜌i𝑢𝑢𝜋𝜋 acting on the fluid with a density of 𝜌𝜌i 

under the acceleration 𝑢𝑢𝜋𝜋 will be balanced by the summation of the stress gradient 𝜎𝜎b
𝐿𝐿

, 

viscous resistance −𝜇𝜇𝜇𝜇
𝛿𝛿2

, and buoyancy force Δ𝜌𝜌𝑔𝑔 resulting in 

𝑢𝑢 ∝  
𝜎𝜎b
𝐿𝐿 + Δ𝜌𝜌𝑔𝑔

 𝜌𝜌i𝜋𝜋 + 𝜇𝜇
𝛿𝛿2

 .   (eq. DR4) 
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In Eq.(DR4), frequency 𝜋𝜋 appears in the denominator, indicating that high 

frequency oscillations prevent fluid flow. When  𝜌𝜌i𝜋𝜋 ≫
𝜇𝜇
𝛿𝛿2

, the fluid flow is regulated 

by the high frequency. For our experiment in Fig.3, 𝜌𝜌i = 103 kg m-3, 𝜇𝜇 = 10−3 Pa s, 

𝛿𝛿~10−3 m, suggesting that the frequency preventing the fluid flow is 𝜋𝜋 ≫ 1Hz. This 

estimate is consistent with our observations; fluid migration is not remarkable during 

high frequency oscillations 𝜋𝜋 > 10 Hz.  

In natural conditions, assuming a magma density of 𝜌𝜌i = 3 × 103 kg m-3, a 

magma viscosity of 𝜇𝜇 = 103 Pa s, and a dyke/sill thickness of 𝛿𝛿~1 m, a 𝜋𝜋 ≫ 0.3Hz 

prevents the fluid flow. We note that the velocity estimated by Eq.(DR4) is much 

faster than that in our experiments. The crack is thinner at the tip thereby obstructing 

the fluid flow, Eq.(DR4) does not take this into account, leading to this discrepancy. 

6. Resonance of a natural volcanic range 
In our experiments, the gel edifice has a higher aspect ratio (𝑊𝑊/𝑊𝑊) compared 

to that of natural volcanic edifices. In addition, the gel edifice is surrounded by an 

acrylic tank, which may amplify the elastic wave caused by the resonance. In order to 

quantify potential resonance effects in nature, we simulate a more realistic condition 

numerically in Fig.DR14, in which the volcanic range has similar dimensions of those 

in Tohoku, and there is no scattering source. Actual seismic waves cause shaking not 

only in the horizontal directions but also in the vertical direction. Indeed, Rayleigh 

waves usually generate large displacement in the vertical direction. Therefore, we also 

simulate shaking in the vertical direction. 

In Fig.DR14, the amplification of the displacement and the stress focusing by 

the existence of surface topography occurs in both the horizontal and vertical 

oscillations. We note that the vertical oscillation generates compression and extension 

in the vertical direction. This is the same for our experiment, but rotated 90°. If a sill 

(horizontal magma lens) or hydrothermal system exists beneath the volcanic range, 

such vertical oscillation would squeeze out the magma or hydrothermal fluid laterally, 

likely resulting in subsidence. Horizontal magma lenses such as sills are frequently 

present beneath volcanic edifices because of stress focusing (e.g., Watanabe et al., 

2002; Roman et al., 2014; Rivalta et al., 2015; Pinel et al., 2017).  

Natural seismic waves are not monochromatic and contain various 

wavelengths. In Fig.DR14, the horizontal shaking causes stress deviation with various 

wavelength. If oblique faults exist beneath the volcanic edifice, they can amplify the 
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stress (e.g., Brune, 1996; Gabuchian et al., 2017). We thus consider that similar 

phenomena to our experiments can occur beneath a natural volcanic range.  
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Figure DR1. 
Schematic diagram of the experimental apparatus. A mountain-shaped, solidified agar 
gel in an acrylic tank, with a width and breadth of 0.14 m above a shaking table, is 
horizontally shaken with displacement of 𝐴𝐴 sin(𝜔𝜔𝑡𝑡) , where  𝐴𝐴 is the displacement 
amplitude of the oscillation, 𝑡𝑡 is time, 𝜔𝜔 = 2𝜋𝜋𝜋𝜋, and 𝜋𝜋is frequency. 
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Figure DR2. 
Pictures and illustrations of the solidified agar gel in (A) front and (B) side views. By 
locating the acrylic block in the agar solution during the solidification, we obtain the 
two dimensional trapezoidal agar gel. The gel edifice is separated from the tank wall 
by 10 mm by inserting an acrylic plate (side view). The height of the gel edifice can 
vary by changing the size of the spacers affixed to the lid. The gel edifice, obtained 
after removing the lid, is shown in Fig.DR10. 
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Figure DR3. 
Rheological properties of agar gel. (A) Storage 𝐺𝐺′(solid curve) and loss 𝐺𝐺′′ (dotted 
curve) moduli, measured by oscillatory deformation, with a strain amplitude of 10-3, 
using Anton paar MCR102 rheometer. The color of the curves indicates different agar 
concentrations. In all measurements, 𝐺𝐺′ ≫ 𝐺𝐺′′, i.e., the agar is elastic. We thus use 𝐺𝐺′ 
as the shear modulus 𝐺𝐺. (B) The dependence of 𝐺𝐺′ on the agar concentration at a 
frequency of 1.6 Hz. The error bars show the variability for the range of frequencies 
shown in (A). (C) Stress evolution under one-way rotation of a vain spindle with a 
diameter of 5.9 mm, and a length of 12 mm, measured by Brookfield DV2HB 
viscometer. The sharp stress decrease at a strain of 0.8-1.3 indicates the agar gel yield 
threshold (Sumita and Ota, 2011). The dashed, solid and dotted curves are for the 
strain rates of 0.01, 0.1 and 0.3 s-1, respectively, where we use the displacement angle 
and angular velocity divided by π as the strain and strain rate, respectively. The color 
of the curves is the same as that in (A). (D) The dependence of yield stress on agar 
concentrations. The color of the symbols and curves indicate the different strain rates. 
(C, D) indicate that the yield threshold of this agar gel is around the strain of 1. 
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Figure DR4. 
Acceleration, measured by a sensor located at the top of the gel edifice, which has a 
height of 145 mm, a top width of 45 mm and a shear modulus of 1300 Pa, oscillating 
with a frequency of 𝜋𝜋 = 5 Hz and a displacement amplitude of 3 mm. When the 
imposed oscillation stops, the acceleration amplitude reduces. The red curve indicates 
the fitting by the exponential decay, 𝜉𝜉(𝑡𝑡) = 𝜉𝜉0 exp �−𝜋𝜋𝜋𝜋𝜋𝜋

𝑄𝑄
�, where 𝜉𝜉(𝑡𝑡) is the time 

dependent amplitude of the acceleration with an initial value of 𝜉𝜉0, with 𝑄𝑄−1 =
0.16. (Aki and Richards, 2004). The time scale for damping is <1 s.  
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 Figure DR5. 
Calculated 2D stress field of the gel edifice used in our experiment (Fig.2) deformed 
by gravity without shaking. Left and right figures are without and with a crack, 
respectively. The crack is modeled as an ellipse with long and short radii of 15 mm 
and 0.5 mm, respectively. The lower half of the boundaries are fixed, as denoted by 
the green frames. The color indicates von Mises stress (Pa) and the arrows indicate 
the third principal stress direction. The black frame indicates the undeformed shape of 
the gel. Around the base of the edifice, the deviatoric stress is large so that a crack 
easily propagates horizontally at this depth. In the right figure, the stress at the upper 
crack tip becomes 1700 Pa. The solution is obtained by using a stationary solver in 
COMSOL. 
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Figure DR6. 
The method used in Fig.1B to remove the optical effect of the water interface. After 
removing the lid, a small amount of water, squeezed out of the gel, pools around the 
base of the gel edifice. Because of the discontinuity in the refraction index, the outline 
of the bubble around the water level duplicates, as shown by the inset picture in Fig. 
DR6. In order to remove this duplication, we extracted the time evolution of the 
height of the air-filled crack from the images. On the left- and right-hand sides, we 
show a picture of the ascending air-filled crack. In the middle, we see the time 
evolution of the upper and bottom edges of the air bubble in the crack, in the position 
of each frame occupied by the red line. From this picture, we conclude that a region of 
7 mm around the water level duplicates, as shown by the blue arrows and the blue bar, 
so we remove this region. Vertical lines indicate times and heights where scales are 
placed temporarily in front of the cameras. 
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Figure DR7. 
Same as for Fig.1B but for Fig.1D. The width of the water-filled crack is wider than 
the air-filled crack (Fig.1C). This is because, if there are no deviatoric stress, the 
maximum width of a crack is determined by the balance between the elastic and 
buoyancy forces,[𝐺𝐺𝑉𝑉b/{(1 − 𝜐𝜐)Δ𝜌𝜌𝑔𝑔}]1/4, where 𝑉𝑉bis the volume of the buoyant fluid, 
and 𝜐𝜐 is the Poisson ratio (Taisne et al., 2011). This equation indicates that a crack 
with a smaller density difference and larger volume has larger width. This tendency 
must be the same even under a deviatoric stress. The water-filled crack shown in 
Fig.1D can be three times wider than that shown in Fig.1C. This estimate is consistent 
with our observation (Fig.1C, 1D). In addition, at the depth of the edifice base, the 
edifice modifying stress field makes the crack spread horizontally (Fig.DR5). As a 
result, the water-filled crack reaches the sidewall prior to erupting from the top of the 
edifice. In this figure, the discontinuity in the refraction around the water level is 
removed by the same method used in Fig. DR6.  
  



 
 

17 
 

  

Figure DR8. 
Results of a 2D numerical simulation with the same dimensions and gel properties of 
the experiment shown in Fig.2. (A) The deformation (shape) and stress patterns 
(color) of several modes at different eigen frequencies. The color difference shows the 
relative magnitude of the von Mises stress. The panels in the upper and lower rows 
indicate the results without and with a crack, respectively. The crack is modeled as an 
ellipse with long and short radii of 15 mm and 0.5 mm, respectively. The solution is 
obtained by using an eigen frequency study in COMSOL, which calculates the 
harmonic solution of the wave equation with a linear assumption. The black frame 
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and ellipse indicates the undeformed shape of the gel and the crack. The lower half of 
the boundaries are fixed. The left side three panels list results in several solutions 
resembling our experiments (2.2~5.2 Hz). The calculated eigen frequencies are the 
same orders of magnitude as the resonance frequencies obtained through other 
methods (Table DR1). The higher order solutions (~10 Hz) do not clearly appear in 
experiments (Movie DR1). (B) The time evolution of the deformation and stress field 
by imposing an initial velocity of 0.094 m s-1. This initial velocity is calculated as 
2𝜋𝜋𝐴𝐴𝜋𝜋, where 𝐴𝐴 = 3 mm, and 𝜋𝜋 = 5 Hz, the same conditions as used in Fig.2. The red 
arrows indicate the direction of the first principal stress. The solution is obtained by 
using a time-dependent study in COMSOL, which calculates the equation of motion. 
The time showing each panel corresponds to the local minima and maxima of the time 
dependent stresses at the crack tip shown in Fig.DR9. Because of technical reasons, 
gravitational forces are not considered in this figure. 
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Figure DR9. 
The time evolution of the von Mises stress during the oscillation of the gel edifice 
shown in Fig.DR8B. For the case with a crack, we plot the stress at the upper crack 
tip. For the case without a crack, we plot the stress at the center of the edifice base. 
When a crack exists, the maximum stress becomes close to 3000 Pa which is larger 
than the stress induced by the gravitational force, 1700 Pa (Fig.DR5), and comparable 
to the yield stress of our most frequently used gel with the agar concentration of 0.5 
wt.% (Fig.DR3). 
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Figure DR10. 
Simultaneous ascent and descent of the red-dyed bubbly fluid upon shaking. The 
injection had a volume of 6 mL, a viscosity of 0.9 Pa s, a liquid density of 
1000 kg m -3, and a bubble fraction of 5 vol.%, in a gel with a shear modulus of 
320 Pa, a density of 1140 kg m-3, and the resonance frequency of 3.5 Hz. We impose 
shaking at a frequency of 8 Hz and an amplitude of 3 mm for 10 seconds. Bubbles 
accumulate at the top of the crack (white arrow), while the denser liquid descends 
(blue arrow). The stress field is visualized by photoelasticity. (Top row) Side view. 
(Bottom row) Front view. Seconds indicate the elapsed time after the initiation of the 
shaking. 
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Figure DR11. 
Responses of cracks filled with buoyant fluids to shaking. (A) Direction of crack 
propagation upon shaking, mapped as a function of the buoyancy force and depth of 
the crack tip at the onset of shaking, normalized by the gel edifice height. The 
symbols are the same as in Fig.4A, excepting the cross showing that the buoyant fluid 
reaches the summit or edges of the gel edifice. The symbol color indicates the 
buoyancy force. The buoyancy force is calculated by ∆𝜌𝜌𝑔𝑔𝑉𝑉b. The maximum reachable 
height increases with the buoyancy force, as denoted by the black arrow, indicating 
that a fluid with a larger buoyancy force can ascend to a shallower depth. When the 
buoyancy force is not sufficiently large, or the buoyant fluid is located deeper than the 
base of the gel edifice, the fluid-filled cracks sometimes migrate laterally or 
downward upon shaking, as denoted by the inverted and rightward triangles. (B) 
Dependence on the acceleration, 𝐴𝐴𝜔𝜔2. As the acceleration increases, the buoyant fluid 
tends to respond more frequently. (C) Dependence on the average strain generated by 
the gel edifice resonance at the base of the edifice. The average strain is calculated 
by 𝑀𝑀𝐴𝐴𝜔𝜔2/𝑊𝑊2/𝐺𝐺, where 𝑀𝑀 is the mass of the gel edifice. When the strain reaches 
unity, the fluid-filled cracks propagate, which is consistent with the measured yield 
threshold shown in Fig.DR3. In some experiments, the fluid-filled cracks can 
propagate even when the strain is less than unity, suggesting the occurrence of strain 
localization by the existence of a crack, and amplification by resonance.  
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Figure DR12. 
Calculated amplification by Eq.(DR3) for our gel edifices between the input of the 
shear horizontal motion at the bottom with respect to the surface. The color of the 
curves indicates different edifice aspect ratios, as denoted in the color bar; the reddish 
and bluish colors indicate the relatively tall and flat edifice shapes, respectively. Local 
maxima indicate resonance frequencies; the cross is the fundamental mode and the 
plus is the second mode. The dashed, solid, and dotted curves indicate the different 
shear moduli of the agar gel, approximately 210, 320, and >9000 Pa, respectively.  
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Figure DR13. 
The contour maps of the volcanic ranges, where subsidence was observed after the 
Tohoku (A) and the Maule (B) earthquakes (Amante and Eakins, 2009). The contour 
interval is 300 m. Triangles indicate the locations of subsidence, and the stars and 
blue regions indicate the epicenters and rupture areas of large earthquakes, 
respectively. Insets indicate the elevation profiles where subsidence is observed. The 
locations of the profiles are shown in the contour maps, using the same colored lines 
as in the insets. The black square indicates the seismic station from which data is 
shown in Fig.DR15. 
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Figure DR14. 
Results of 2D numerical simulations of horizontal/vertical oscillation of a 15 km thick 
layer with a shear modulus of 3×1010 Pa, a Poisson ratio of 0.28 and a shear wave 
velocity of 3 km s-1. The panels in the upper two rows include a surface topography 
simulating a volcanic range, and the lower two rows have a flat surface. The volcanic 
range has a width of 30 km and height of 1 km, similar dimensions to the volcanic 
range in Tohoku, where subsidence was observed (Fig.DR13). The layer thickness of 
15 km is similar to that of the upper crust (e.g., Xia et al., 2007). The resonance 
frequency of both the volcanic range and the horizontal layer are on the order of 0.1 
Hz. As an initial condition, we impose a velocity of 0.066 m s-1, calculated from a 
displacement amplitude of 0.1 m and a frequency of 0.1 Hz, in both the horizontal and 
vertical directions, and observe its time evolution. The bottom boundary is fixed and 
others are free. The right and left boundaries obey periodic boundary conditions. The 
layer oscillates in the horizontal and vertical directions according to the initial 
velocity. In the simulations with a volcanic range, the deformation and stress patterns 
change. The white numbers indicate the elapsed time after the calculation begins. The 
solution is obtained by using a time dependent study in COMSOL.  
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Figure DR15. 
Seismograms of the Tohoku earthquake in the East-West, North-South, Up-Down 
directions observed at Iwate Mountain, marked as a black square in Fig.DR13, 
through V-net (NIED), and their power spectra between 60-260s. The frequency 
response <1Hz is corrected according to the instrument response. The spectra are 
smoothed in the range of ±0.05𝜋𝜋 around the corresponding frequency 𝜋𝜋. Essentially, 
the spectra follow the widely known trend 𝜋𝜋−1. However, the vertical oscillation 
shows a peak around 0.07 Hz, as denoted by the red circle, which is consistent with 
the estimated resonance frequency of the volcanic range. The oscillation in the East-
West direction may also suggest a peak around the resonance frequency.  
  



H H b w t G' Agar density v s 0.7v s/W Mode1 Mode2 Numerical Fluid density Fluid volume Type*
mm mm mm Pa kg m-3 m s-1 Hz Hz Hz Hz kg m-3 mL
125 20 45 1300 1140 1.06 5.3 3.7 7.7 2.2,4.4,7.8 1113 0, 1, 3, 5 1
150 20 27 950 1134 0.91 4.6 2.8 5.7 1.6, 3.2, 5.6 1083 0, 1, 3, 5 2
90 60 30 320 1134 0.53 2.6 2.7 5.5 1.7, 2.6, 5.1 1000 0, 1, 3 3
0 215 120 350 1134 0.56 2.8 - - - 1000 0, 1, 3, 5, 10, 20 4 **rectangular

105 50 34 320 1140 0.53 2.6 2.3 4.7 1.4, 2.4, 4.8 1000 1,3 5
48 150 110 340 1140 0.54 2.7 4.2 9.7 2.3, 3.1, 4.7 1000 0, 1, 3, 5, 10, 15, 20, 25 5 Fig.3
40 150 108 210 1140 0.43 2.1 4.0 9.5 2.1, 2.6, 4.0 1000 0, 1, 3, 5, 10, 15 5
55 130 80 970 1144 0.92 4.6 6.6 >10 3.8, 5.1, 8.6 1000 0, 1, 3, 5, 10 6
62 100 67 320 1140 0.53 2.7 3.5 7.7 2.1, 2.8, 5.1 950 3, 6 5 Fig.DR10
60 130 80 320 1144 0.53 2.6 3.5 7.9 2.1, 2.8 4.9 960 2, 3 4
55 130 80 320 1140 0.53 2.6 3.8 8.6 2.2,2.9,5.0 1 0.5, 1, 1.5 5 Fig.2
55 130 80 320 1140 0.53 2.7 3.8 8.6 2.2,2.9,5.0 1 0.5, 1, 1.5 - Fig.1
40 140 90 310 1141 0.52 2.6 5.0 >10 2.6, 3.2, 5.2 1000 15 - Fig.1

Type Frequency
Hz

1 0.5, 1, 2, 4, 10, 20
0.5, 1, 2, 4, 5

2 0.5, 1, 2, 4, 10, 20
0.5, 1, 2, 4, 5, 8
0.5, 1, 2, 3

3 0.5, 1, 2, 4, 10, 20
0.5, 1, 2, 4, 5, 8
0.5, 1, 2

4 0.5, 1, 2, 4, 10
0.5, 1, 2, 4, 5, 8
0.5, 1, 2, 3, 4 

5 0.5, 1, 2, 4, 10
0.5, 1, 2, 4, 5, 8
0.5, 1, 2

6 0.5, 1, 2, 4, 10
0.5, 1, 2, 4, 5
0.5, 1, 2

a: Dimensions of the gel edifice are shown in Fig.DR1. The storage modulus G' , as the shear modulus, is calculated by the fitting line in Fig.DR3B.
Mode 1 and 2 are the fundamental and second mode of the resonance frequencies of the gel edifice, calculated by Eq.(DR3), respectively. The
label “Numerical” indicates the eigen frequencies, calculated by the method in Fig.DR8. We did not calculate the resonance frequencies for the gel
in a rectangular shape. *: Type indicates the combination of the oscillation amplitude and frequencies, listed separately. We here list the typical
oscillation sequences. When the gel broke, the oscillation sequence was modified.

10
1
3
10
1
3
10
1
3
10

1
3
10
1
3

Table DR1 Experimental conditions a.

Amplitude
mm

1
3



Table DR2 Parameters and non-dimensional numbers b.
Parameters Symbols Unit Experiments Natural volcanoes
Height H m 0.04-0.2 103-5x103

Width W m 0.14 104-3x105

H/W - 0.15-1.5 0.03-0.1

Shear modulus G Pa 200-1300 ~3x1010

Host rock density ρ kg m-3 ~103 ~3x103

S wave velocity v s m s-1 0.4-1 ~3x103

v s/W Hz 3-8 0.1

Dike length l m 10-2-2x10-1 <103

Fluid density ρ i kg m-3 1-103 1-3x103

Buoyancy Pressure (ρ - ρ i )gl Pa 300 ~5x105

in a dike (0.03m, ∆ρ=103 kg m-3) (500 m, ∆ρ=100 kg m-3)

Inertia induced stress σb  [(MAω
2 )/W 2 ] Pa 100-300 3x105-106

acting on the base (A=3mm,f=5Hz) (A=0.5m, f=0.1Hz)

Strain γ  [(MAω 2 )/ (GW 2 )] - ~1 ~10-5

Fracture pressure P F Pa ~103 ~106-108

Attenuation Q -1 ~10-1 ~10-3

Non-dimensional numbers
σ b/P F - - 0.1-0.3 0.003-1
(ρ - ρ i)gL/P F - - 0.3 0.005-0.5
σ b/(ρ - ρ i)gL - - 0.3-1 0.6-2

b: Comparison between the experiments and natural volcanoes. Parameters used in experiments are listed
in Table DR1. The dimensions for natural volcanoes are estimated from volcanic ranges in the southern
Andes, Chile and Tohoku, Japan, in which subsidence is observed. The shear modulus G  and host rock
density are ordinary values (e.g., Turcotte and Schubert, 2014). The vertical length of the magma storage
can be as long as several km, equivalent to the edifice height (Browne and Szramek, 2015). The density of
the fluid in the crack must be between that of volcanic gases ρ i=1 kg m-3 and basaltic magma ρ i<3000 kg
m-3. Water density (ρ i=1000 kg m-3) is within this range. Regarding the mass of volcanic edifice M , we
assume that the volcanic range is 2D, so that the inertia-induced stress, acting on the edifice base, is
ρHAω 2/2. Dividing the inertia-induced stress by the shear modulus produces a strain γ=ρHAω 2/(2G ). We
use the fracture stress of a gel with 0.5 wt.% agar as the set value for all the experiments (Fig.DR3). The
fracture toughness of natural rocks in atmospheric conditions is K c~106-108 Pa m1/2 (e.g., Lister, 1990;
Balme et al. 2004, Rivalta et al., 2015). If the dike width is several meters, the fracture pressure becomes
~106-108 Pa. Q -1 in the experiments are estimated by the ratio of G''/G'  (Fig.DR3), and the measured
damping (Fig.DR4). Q -1 for natural rocks is calculated from Q  for S waves (Liu et al., 2014). In both
experiments and natural volcanoes, the inertia-induced stress σ b and the buoyant stress (ρ -ρ i)gl  are
approximately the same as the fracture pressure,P F.
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Movie DR1 
A movie of Fig.2, 0-3s. An accelerated ascent of the air-filled crack caused by 
external oscillation with a frequency of 5 Hz and amplitude of 3 mm, in a gel edifice 
with a density of 1140 kg m-3 and shear modulus of 320 Pa. The crack includes dry air 
with a volume of 1.5 mL, a density of 1 kg m-3, and a viscosity of 2 × 10−5 Pa s. The 
external oscillation is in the right-left direction in the front view. The side and top 
cameras are located on the ground, so record the displacement of the tank relative to 
the ground. The front camera is mounted on the shaking table so records the 
deformation of the gel edifice relative to the tank, and sometimes the backlash. The 
side camera is located on the left side of the front view. This video is approximately 8 
times slower than real time. The front and side cameras are 240 fps and synchronized. 
The top camera is 60 fps and does not synchronize with the other two cameras. 

Movie DR2 
A movie of Fig.3, 0-10s. An accelerated ascent of red-dyed water by an external 
oscillation with a frequency of 5 Hz and amplitude of 3 mm, in a gel edifice with a 
density of 1140 kg m-3 and shear modulus of 340 Pa. The injected water has a volume 
of 25 mL, a density of 1000 kg m-3, and a viscosity of 10-3 Pa s. This video is 
approximately 8 times slower than real time. The camera settings are the same as for 
Movie DR1. 

Movie DR3 
A movie corresponding to Fig.3, 14-17s. When the shaking at 8 Hz begins, the 
buoyant fluid reaches the left side of the tank wall in the side view, and then reaches 
summit. This video is approximately 8 times slower than real time. The other settings 
are the same as Movie DR2. 

Movie DR4 
A movie of Fig.DR10. Simultaneous ascending and descending of the red-dyed 
bubbly fluid with a volume of 6 mL, viscosity of 0.9 Pa s, liquid density of 1000 kg 
m-3, and bubble fraction of 5 vol.%, in a gel with shear modulus of 320 Pa, and 
density of 1140 kg m-3. The imposed oscillation is at a frequency of 8 Hz and an 
amplitude of 3 mm for 10 seconds. Bubbles accumulate at the top of the crack, while 
the liquid descends, as shown by the blue arrow. This video is approximately 8 times 
slower than real time.  
 

Movie DR5 
Movies of Fig.DR14 with a surface topography for 60 s.  
  



 
 

29 
 

REFERENCES CITED 

Aki, K., and Richards, 2004, Quantitative Seismology, 2nd Edition, Kokin-shoin, 

Tokyo, Japan, p. 909. 

Amante, C., and Eakins, B.W., 2009, ETOPO1 1 Arc-Minute Global Relief Model: 

Procedures, Data Sources and Analysis. NOAA Technical Memorandum 

NESDIS NGDC-24. National Geophysical Data Center, NOAA. 

doi:10.7289/V5C8276M. 

Balme, M.R., Rocchi, V., Jones, C., Sammonds, P.G., Meredith, P.G., Boon, S., 2004, 

Fracture toughness measurements on igneous rocks using a high-pressure, high-

temperature rock fracture mechanics cell: Journal of Volcanology and 

Geothermal Research, v.132, p.159–172. 

Browne, B., and Szramek, L., 2015, Rates of magma ascent and storage: In The 

encyclopedia of volcanoes: Edited by Sigurdsson, Academic Press, London, 

U.K., p.203-214. 

Brune, J. N., 1996, Particle motions in a physical model of shallow angle thrust 

faulting: Proceedings of the Indian Academy Of Science (Earth Planet. Sci.), v. 

105, p.L197–L206. 

Gabuchian, V., Rosakis, A. J., Bhat, H. S., Madariaga, R., and Kanamori, H., 2017, 

Experimental evidence that thrust earthquake ruptures might open faults: Nature, 

v. 545(7654), p.336-339. 

Geli, Li., Bard, P.-Y., and Jullien, B., 1988, The effect of topography on earthquake 

ground motion: A review and new results: Bulletin of the Seismological Society 

of America, v. 78, p.42-63. 

Kavanagh, J. L., and Menand, T., and Daniels, K., 2013, Gelatine as a crustal 

analogue: determining elastic properties for modelling magmatic intrusions: 

Tectonophysics, v. 582, p.101–111. 

Karlstrom, L., Dufek, J., and Manga. M., 2009, Organization of volcanic plumbing 

through magmatic lensing by magma chambers and volcanic loads: Journal of 

Geophysical Research, v.114, B10204, doi:10.1029/2009JB006339. 

Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., 

Miyake, H., Sakai, S., Yamanaka, Y., and Okada, T., 2011, A unified source 

model for the 2011 Tohoku earthquake: Earth and Planetary Science Letters, 

v.310, p. 480-487. 



 
 

30 
 

Lister, J. R., 1990, Buoyancy-driven fluid fracture: similarity solutions for the 

horizontal and vertical propagation of fluid-filled cracks: Journal of Fluid 

Mechanics v.217, p.213–239. 

Lister, J. R., and R. C. Kerr, 1991, Fluid-mechanical models of crack propagation and 

their application to magma transport in dykes: Journal of Geophysical Research, 

v.96(B6), p.10049–10077, doi: 10.1029/91JB00600. 

Liu, X., Zhao, D., and Li, S., 2014, Seismic attenuation tomography of the Northeast 

Japan arc: Insight into the 2011 Tohoku earthquake (Mw 9.0) and subduction 

dynamics: Journal of Geophysical Research- Solid Earth, v. 119, p. 1094–1118, 

doi:10.1002/2013JB010591. 

Maccaferri, F., Bonafede, M., and Rivalta, E., 2011, A quantitative study of the 

mechanisms governing dike propagation, dike arrest and sill formation: Journal 

of Volcanology and Geothermal Research, v. 208, p.39–50. 

Pinel, V., and Jaupart, C., 2000, The effect of edifice load on magma ascent beneath a 

volcano: Philosophical Transactions of Royal Society London, Series A, v. 358, 

p.1515–1532. 

Rivalta, E., Taisne, B., Bunger, A. P., and Katz, R. F., 2015, A review of mechanical 

models of dike propagation: Schools of thought, results and future directions: 

Tectonophysics, v.638, p.1-42. 

Rubin, A.,1995, Propagation of Magma-Filled Cracks: Annual Review of Earth and 

Planetary Sciences, v. 23, p. 287-336. 

Sumita, I., and Ota, Y., 2011, Experiments on buoyancy-driven crack around the 

brittle–ductile transition: Earth and Planetary Science Letters, v.304, p.337-346. 

Takada, A., 1990, Experimental study on propagation of liquid-filled crack in gelatin: 

shape and velocity in hydrostatic stress condition: Journal of Geophysical 

Research, v. 95, p.8471–8481. 

Turcotte, D. L., and Schubert, G., 2014, Geodynamics: Cambridge University Press, 

Cambridge, U.K., p. 623. 

Willey, T., 2017, Stress Calculations and Dynamic Photoelasticity: Bachelor thesis, 

University of Montana and University Potsdam, Montana, USA and Potsdam, 

Germany, p.27. 



 
 

31 
 

Xia, S., Zhao, D., Qiu, X., Nakajima, J., Matsuzawa, T., and Hasegawa, A., 2007, 

Mapping the crustal structure under active volcanoes in central Tohoku, Japan 

using P and PmP data: Geophysical Research Letters, v. 34, L10309, 

doi:10.1029/2007GL030026. 


	Extended text
	1. Extended Experimental Methods
	2. Flow rate of fluid within the preexisting crack
	3. Estimation of the stress field
	4. Evaluation of resonance frequencies
	5. Flow velocity inside the crack
	6. Resonance of a natural volcanic range
	Figure DR1.
	Figure DR2.
	Figure DR3.
	Figure DR4.
	Figure DR5.
	Figure DR6.
	Figure DR7.
	Figure DR8.
	Figure DR9.
	Figure DR10.
	Figure DR11.
	Figure DR12.
	Figure DR13.
	Figure DR14.
	Figure DR15.
	Movie DR1
	Movie DR2
	Movie DR3
	Movie DR4
	Movie DR5
	REFERENCES CITED



