1 2 3	Cordova, J.L., Mulcahy, S.R., Schermer, E.R., and Webb, L.E., 2018, Subduction initiation and early evolution of the Easton metamorphic suite, northwest Cascades, Washington: Lithosphere, https://doi.org/10.1130/L1009.1.
4	
5	GSA DATA REPOSITORY ITEM 2018416
6	ADDITIONAL DATA REPOSITORY ITEMS
7	Table DR1
8	Table DR2
9	
10	TABLE OF CONTENTS
11	Description of EPMA Methods1
12	Pressure-Temperature Plots
13	⁴⁰ Ar/ ³⁹ Ar Geochronology Methods Description
14	Photomicrographs of Geochronology Samples5
15	References Cited9
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

0 DECRIPTION OF EPMA METHODS

The chemistry of amphibole, white mica, chlorite, and garnet was investigated to classify mineral species, determine compositional trends, and estimate metamorphic temperatures during crystallization. Mineral compositions were measured by electron probe microanalysis (EPMA) using a Cameca SX-50 at the University of British Columbia, Canada (Table DR1). A 15 kV accelerating voltage and a 20 nA beam current was used for all samples. A beam diameter of 10 microns was used for white mica and chlorite and 5 microns for amphibole and garnet. Natural and synthetic standards were used for calibration. Mineral formulas and ferric iron contents were calculated using the program AX (Powell and Holland, 1994). Amphiboles were classified following the scheme of Hawthorne (2012) and using the Excel spreadsheet of Locock (2014). Mineral compositions are plotted in Figure 6.

PRESSURE-TEMPERATURE PLOTS

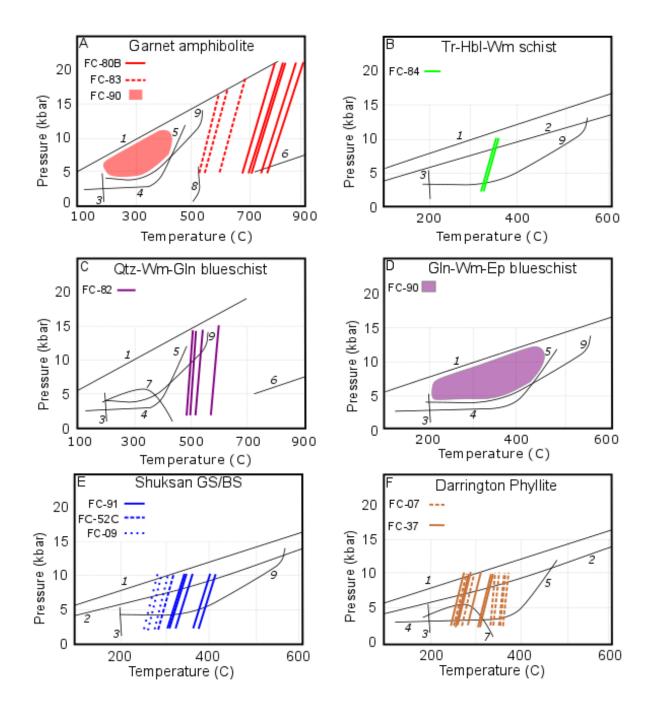


Figure DR1: PT diagrams for the Easton Metamorphic Suite are shown above by rock unit.
Colored lines are the locations of Fe/Mg exchange reactions determined by Thermocalc for

55 garnet-hornblende pairs in A, mica-chlorite pairs in B, E, and F, and garnet-phengite pairs in C.

56 For D the mineral assemblage was used to bracket pressure and temperature. The locations of

- 57 metamorphic reactions are shown with black lines: 1) Ab=Jd+Q (Thermocalc), 2) Cal=Arag
- 58 (Thermocalc), 3) Anl+Q=Ab+H2O (Liou, 1971), 4) Wa=Lws+Q (Liou, 1971), 5) Lws=An+Q+F

59 (Crawford and Fyfe, 1965), 6) Grt in (Spear, 2014), 7) Prh= Lws+Grs+Qtz (Perkins, et al.,

60 1979), 8) Act+Chl+E+Ab+Q=Hbl+Pl+Q+F (Apted and Liou, 1983), and 9) Ab+Mm=Gln

- 61 (Maresch, 1977).
- 62
- 63

⁴⁰Ar/³⁹Ar GEOCHRONOLOGY METHODS DESCRIPTION

⁴⁰Ar/³⁹Ar analyses were performed at the University of Vermont Noble Gas 64 Geochronology Laboratory. Inclusion-free mineral grains were handpicked from crushed rock 65 samples under a bioptic microscope after having been washed, sonicated, and dried to remove 66 any adhering particulate matter. Grains from each sample were loaded into aluminum foil 67 68 packets, arranged in a suprasil vial, and placed in an aluminum canister for irradiation. Samples were irradiated with multigrain aliquots of Fish Canyon Tuff sanidine to act as a flux monitor 69 (28.201 Ma; Kuiper et al., 2008) to monitor the neutron dose, and Ca and K salts were also 70 71 irradiated to determine corrections for interfering nuclear reactions. Samples were irradiated for 14 hours at the Cadmium-Lined In-Core Irradiation Tube (CLICIT) reactor of Oregon State 72 University, Corvallis, Oregon, USA. 73

Laser step heating for ⁴⁰Ar/³⁹Ar dating was conducted with a Santa Cruz Laser Microfurnace 75 W diode laser system. With the exception of flux monitors and muscovite, samples were loaded directly into wells in a copper sample holder. Sanidine and muscovite grains were loaded into degassed Nb foil packets before being loaded in the wells in the sample holder. The gas released during heating was purified with SAES getters and argon isotopes were analyzed on a Nu Instruments Noblesse magnetic sector noble gas mass spectrometer in peak80 hopping mode during step-heating analyses. Data from samples and flux monitors were corrected for blanks, mass discrimination, atmospheric argon, neutron-induced interfering isotopes, and the 81 decay of ³⁷Ar and ³⁹Ar. Mass discrimination was calculated by analyzing known aliquots of 82 atmospheric argon for which the measured ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ was compared with an assumed 83 atmospheric value of 298.56 (Lee et al., 2006). Correction factors used to account for interfering 84 nuclear reactions for the irradiated samples are: $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\text{K}} = 5.4 \text{ x } 10^{-4} \pm 1.4 \text{ x } 10^{-4}$ (Jicha and 85 Brown, 2014), $({}^{36}\text{Ar}/{}^{37}\text{Ar})_{Ca} = 2.65 \text{ x } 10^{-4} \pm 0.22 \text{ x } 10^{-4}$ (Renne et al., 2013), and $({}^{39}\text{Ar}/{}^{37}\text{Ar})_{Ca} = 0.22 \text{ x } 10^{-4}$ 86 $6.95 \times 10^{-4} \pm 0.09 \times 10^{-4}$ (Renne et al., 2013). A linear interpolation was used to calculate J 87 factors for samples based on sample position between flux monitor packets in the irradiation 88 tube. All ages were calculated using the isotope decay constants recommended by Steiger and 89 Jäger (1977). The age calculations for inverse isochron and apparent age data were achieved 90 using both an in-house data reduction program and Isoplot 3.0 (Ludwig, 2003). 91

Weighted mean ages are reported, and plateau ages are reported if sufficient criteria were met (as noted in main text). Errors on plateaus and weighted mean ages are quoted at the 2σ level and include precision associated with measurement of the irradiation parameter, J, for flux monitors.

96

98 PHOTOMICROGRAPHS OF GEOCHRONOLOGY SAMPLES

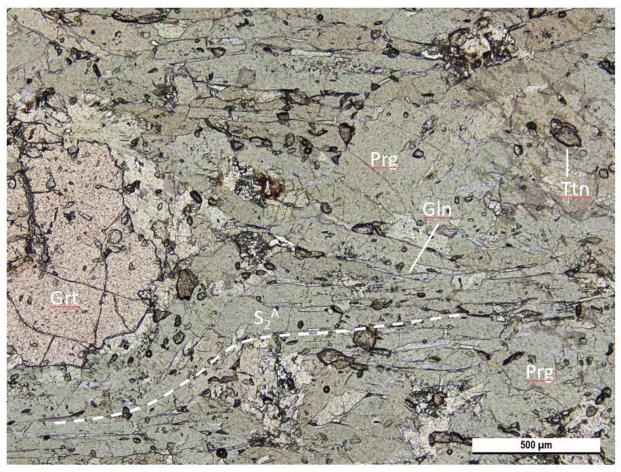


Figure DR2: Sample FC-83, showing a primary garnet-pargasite assemblage in the S_2^A fabric, with retrograde intergranular glaucophane.

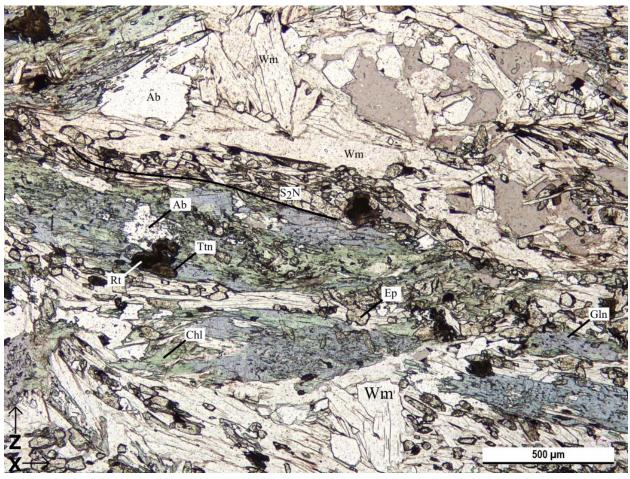
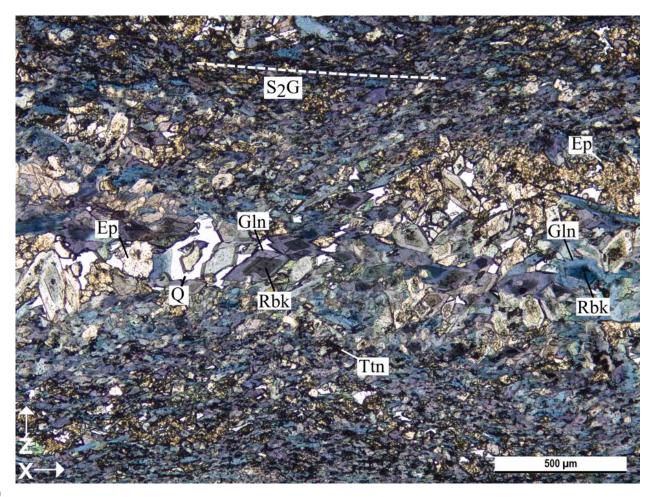



Figure DR3: Photomicrograph of geochronology sample FC-90, with coarse mineral phases in the S_2^{N} fabric labelled with text.

- 101 Figure DR4: Geochronology sample FC-36, showing sodic amphiboles with riebeckite cores and
- 102 glaucophane rims, alongside other coarse mineral phases labelled with text.

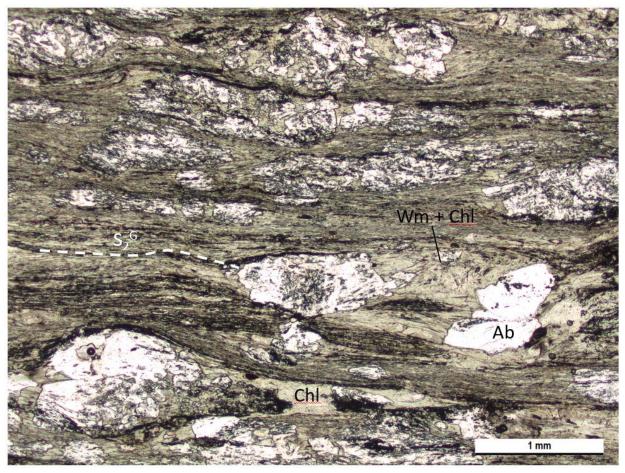


Figure DR5: Geochronology sample FC-52C showing phengite and chlorite in the $S_2^{\ G}$ fabric, with albite.

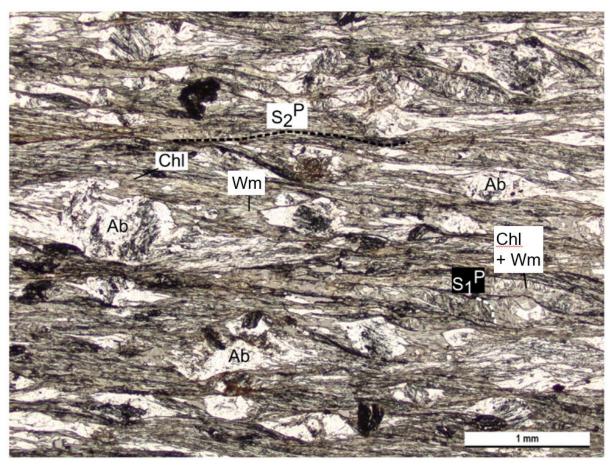


Figure DR6: Geochronology sample FC-37 showing white mica and chlorite in the S_2^{P} fabric cross-cutting S_1^{P} , with finer-grained white mica and chlorite.

109	
110	
111	
112	
113	
114	
115	
116	
117	REFERENCES CITED
118	Andersson, J.O., Helander, T., Hoglung, L., Shi, P.F., and Sundman, B., 2002, Thermocalc and
119	DICTRA, Computational Tools for Computational Science. Calphad, 26, p. 273-312.
120	Apted, J., M., Liou, J., G., 1983, Phase relations among greenschist, epidote-amphibolite, and
121	amphibolite in a basaltic system. American Journal of Science, volume 283-A, P. 328-
122	354.
123	Crawford, W.A., and Fyfe, W.S., 1965, Lawsonite equilibria: American Journal of Science, v.
124	263, p. 262–270, doi: 10.2475/ajs.263.3.262.
125	Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and
126	Welch, M.D., 2012, Nomenclature of the amphibole supergroup: American Mineralogist,
127	v. 97, p. 2031–2048, doi: 10.2138/am.2012.4276.
128	Jicha, B.R. and Brown, F.H., 2014. An age for the Korath Range, Ethiopia and the viability of
129	⁴⁰ Ar/ ³⁹ Ar dating of kaersutite in Late Pleistocene volcanics. Quaternary Geochronology,
130	21, pp.53-57.

131	Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, A. J., 2008.
132	Synchronizing rock clocks of Earth history. science, 320(5875), 500-504.
133	Lee, JY., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, HS., Lee, J.B. & Kim, J.S. 2006.
134	A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et
135	Cosmochimica Acta, 70, 4507–4512, doi: http://dx.doi.org/10.1016/j.gca.2006.06.1563.
136	Liou, J.G., 1971, P-T Stabilities of Laumontite, Wairakite, Lawsonite, and Related Minerals in
137	the System CaAl2Si2O8-SiO2-H2O: Journal of Petrology, v. 12, p. 379-411, doi:
138	10.1093/petrology/12.2.379.
139	Locock, A.J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles following
140	the IMA 2012 recommendations: Computers & Geosciences, v. 62, p. 1-11, doi:
141	10.1016/j.cageo.2013.09.011.
142	Ludwig, K.R., 2003. Isoplot/EX, rev. 3.00, a Geochronological Toolkit for Microsoft Excel:
143	Berkeley Geochronology Center Special Publication, v. 4, 71 pp.
144	Maresch, W., 1977, Experimental studies on glaucophane: An analysis of present knowledge:
145	Tectonophysics, v. 43, p. 109–125, doi: 10.1016/0040-1951(77)90008-7.
146	Perkins, D., Westrum, E.F., and Essene, E.J., 1980, The thermodynamic properties and phase
147	relations of some minerals in the system CaO-AI2O3-SiO2-H2O: Geochimica et
148	Cosmochimica Acta, v. 44, p. 61–84.
149	Powell, R., and Holland, T., 1994, Optimal geothermometry and geobarometry: American
150	Mineralogist, v. 79, p. 120–133.
151	Renne, P.R., Deino, A.L., Hilgen, F.J., Kuiper, K.F., Mark, D.F., Mitchell, W.S., Morgan, L.E.,
152	Mundil, R. and Smit, J., 2013. Time scales of critical events around the Cretaceous-
153	Paleogene boundary. Science, 339(6120), pp.684-687.

154	Spear, F.S., 1995, Metamorphic Phase Equilibria and Pressure-Temperature-time paths:
155	Mineralogical Society of America, Washington D.C., p. 439
156	Steiger, R.H. & Jäger, E. 1977. Subcommission on geochronology: Convention on the use of
157	decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36,
158	359-362, doi: http://dx.doi.org/10.1016/0012-821X(77)90060-7.
159	
160	
161	¹ GSA Data Repository item 201Xxxx, geochronology and petrology methods and supplemental
162	data, is available online at www.geosociety.org/pubs/ft20XX.htm, or on request from
163	editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301,
164	USA.