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A. Conduit model: system of equations 

MAMMA is an open-source 1D non-isothermal multiphase steady-state conduit model developed 

from the algorithm described by de' Michieli Vitturi et al. (2011), which has been largely employed 

for the study of explosive and effusive eruptions (e.g., La Spina et al., 2015; Aravena et al., 2017; 

Aravena et al., 2018). The model is capable of considering the main processes that magmas 

experience during ascent and is currently available online (http://demichie.github.io/MAMMA), 

where the documentation of the model is also present. The ascending magma is described as a 

mixture of two phases (𝑖 = 1, 2), whose natures depend on the relative position of the 

fragmentation level. Below the fragmentation level, phase 1 includes crystals, dissolved gas and 

melt (continuous phase); whereas phase 2 is composed by the exsolved gas bubbles (discontinuous 

phase). On the other hand, above magma fragmentation, phase 1 is composed by the dispersed 

magma fragments (discontinuous phase), while phase 2 corresponds to the continuous exsolved 

gas phase.  The system of equations for this two-phase compressible flow was produced using the 

theory of thermodynamically compatible systems (Romenski et al., 2010), and it is formulated as 

an hyperbolic system of partial differential equations coupled with non-differential source terms 

(La Spina et al., 2015). The system of equations includes the conservation laws for total mass (Eq. 

1), momentum (Eq. 2), energy (Eq. 3), mass of crystals (Eq. 4), mass of dissolved water (Eq. 5) 

and mass of exsolved water (Eq. 6), and additional equations for controlling the relative velocity 

between the phases (Eq. 7) and volume fraction of phase 1 (Eq. 8). It is worth noting that the terms 

related to the injected water appear in the conservation equations of total mass, mass of dissolved 

water and energy. 
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where 𝑧 is the vertical coordinate, 𝜌 is mixture density, 𝑢 is mixture velocity, 𝑅 is conduit radius,, 

𝐽𝑒𝑥 is the mass flux of external water (Eq. 9), 𝛼𝑖 is volumetric fraction of phase 𝑖, 𝜌𝑖 is density of 

phase 𝑖, 𝑢𝑖 is velocity of phase 𝑖, 𝑝𝑖 is pressure of phase 𝑖, 𝑔 is the acceleration of gravity, 𝜒𝑖 

controls the inclusion of the wall friction component (1 or 0, function of the continuous phase index), 𝜇 is 

mixture viscosity, 𝜆𝑤 is a drag factor (Degruyter et al., 2012), 𝑒𝑖 is the internal energy of phase 𝑖, 𝑥𝑖 

is the mass fraction of phase 𝑖, 𝑠𝑖 is the specific entropy of phase 𝑖, 𝑇 is mixture temperature, 𝑐𝑤 

is the specific heat capacity of external water, 𝑇𝑤 is external water temperature, 𝜌𝑐 is crystals density, 

𝛼𝑐 is the volumetric fraction of crystals in phase 1, 𝜏(𝑐) is the crystallization relaxation parameter, 𝛼𝑐
𝑒𝑞

 

is the equilibrium value of 𝛼𝑐, 𝑥𝑑 is the mass fraction of dissolved gas in the phase composed by melt 



and dissolved water, 𝜏(𝑑) is the characteristic time which controls gas exsolution, 𝑥𝑑
𝑒𝑞

 is the 

equilibrium value of 𝑥𝑑 and 𝛿𝑓 is an additional drag factor. 

It is worth to highlight the differences between the governing equations of this model and those adopted in 

Starostin et al. (2005). In both the models, the energy equation is solved considering the effect of the 

injection of external water on total energy. For this reason, the contribution should consider the total energy 

of the added water (i.e., 𝐽𝑒𝑥𝑐𝑤𝑇𝑤) and not only the thermal energy in excess with respect to the magmatic 

mixture temperature, as done in Starostin et al. (2005). Following Starostin et al. (2005), for example, an 

inlet of water vapor at the same temperature of the magmatic mixture would not increase the total energy 

of the mixture. Thus, it seems to us that the term proposed in their work (q in Eq. 25, p. 140) would be 

correct for an equation for the temperature, but not when adopted in an equation representing the 

conservation of total energy. In addition, in the model of Starostin et al. (2005), when water infiltrates the 

conduit it vaporizes instantaneously, while in our model, where disequilibrium is allowed and modeled, it 

is possible to have a delay between injection of water and vaporization. 

On the other hand, following Starostin et al. (2005), the injection of external water is modeled 

using the Darcy’s law: 

(9)  𝐽𝑒𝑥 = {

𝜌𝑤𝑘

𝜇𝑤
∙
𝑝𝑎 − 𝑝1
𝑅

if 𝑝𝑎 ≥ 𝑝1 

0 if 𝑝𝑎 < 𝑝1

 

where 𝜌𝑤 is the external water density, 𝑘 is aquifer permeability, 𝜇𝑤 is external water viscosity 

and 𝑝𝑎 is aquifer pressure. 

The steady-state solution is computed using a shooting technique, which is based on an iterative 

scheme for searching the initial magma ascent velocity (i.e., at the conduit bottom) that allows to 

produce atmospheric pressure or a choked flow at the exit of the conduit (de’ Michieli Vitturi et 

al., 2008). In addition, the model requires the inclusion of some constitutive equations for 

modelling the magma behaviour: (1) magma rheology, (2) crystallization, (3) gas exsolution, (4) 



outgassing processes and (5) equations of state (see Section B). The validity of the constitutive 

equations for simulations characterized by high mass fractions of external water has been also 

evaluated. Since these conditions are exclusively observed above the fragmentation level and 

considering the typical timespan at which magmas ascent under this condition, most of the adopted 

constitutive equations do not influence significantly the resulting eruptive dynamics (e.g., 

viscosity, solubility law, crystallization, outgassing). In particular, the adopted equations of state 

predict valid results of 𝜌1 for mass fractions of injected water up to 40 wt. %. This fact is mainly 

controlled by the cooling effect of the external water. It is also worth noting that our formulation 

does not consider and model the small-scale processes that magma-water interaction involves (e.g., 

FCI, magma quenching, characteristic timespan for homogenization) and the aquifer response 

(e.g., changes in temperature and pressure fields, water migration) (Delaney, 1982). Still, this 

model indicates for the first time important constraints about the conditions needed to produce 

phreatomagmatic eruptions and the amount of water involved in these processes. 

  



B. Conduit model: constitutive equations 

In this work, we have performed a set of numerical simulations reproducing representative 

conditions of trachytic, dacitic and rhyolitic explosive volcanism, using variable input values for 

the following parameters: (1) inlet overpressure (from -10 MPa to +10 MPa respect to the 

lithostatic pressure), water content at conduit bottom (4.0-6.0 wt. % for trachytic magmas; 4.5-6.5 

wt. % for dacitic and rhyolitic magmas), conduit radius (6-30 m for trachytic magmas, 10-35 m 

for dacitic magmas and 30-90 m for rhyolitic magmas), aquifer depth (500-2000 m) and aquifer 

thickness (150-300 m). The model also requires the inclusion of appropriate constitutive equations 

for modelling the magma behaviour, as described in this section. 

B.1 Magma rheology model 

Since it has been suggested a strong effect of crystals and exsolved gas bubbles on mixture 

rheology (Dingwell et al., 1993; Manga and Loewenberg, 2001), magma viscosity (𝜇) is calculated 

using: 

(10)  𝜇 = 𝜇𝑚𝑒𝑙𝑡 ∙ 𝜃𝑐(𝛼𝑐) ∙ 𝜃𝑔(𝛼𝑔) 

where 𝜇𝑚𝑒𝑙𝑡 is the crystals and bubbles-free viscosity, whereas 𝜃𝑐(𝛼𝑐) and 𝜃𝑔(𝛼𝑔) account for the 

effect of crystals and bubbles on magma viscosity. 

For determining 𝜇𝑚𝑒𝑙𝑡, we adopted different models for the different magma compositions 

considered in this work. For rhyolitic and dacitic magmas, we considered the models presented by 

Hess and Dingwell (1996) and Whittington et al. (2009), respectively. On the other hand, in order 

to describe a representative rheology for trachytic melts, we adopted the model described by 

Giordano et al. (2008), using geochemical data from Di Matteo et al. (2004). For calculating 

𝜃𝑐(𝛼𝑐), we adopted the following formulation (Costa, 2005): 



(11)  𝜃𝑐(𝛼𝑐) = [1 − 𝐹(𝛼𝑐, 𝑐1, 𝑐2, 𝑐3)]
𝑐4/𝑐1 

(12)  𝐹(𝛼𝑐, 𝑐1, 𝑐2, 𝑐3) = 𝑐1 ∙ erf [
√𝜋

2
∙ 𝛼𝑐 ∙ (1 +

𝑐2
(1 − 𝛼𝑐)𝑐3

)] 

where 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are fitting parameters. 

On the other hand, Eq. 13 describes the expression employed for calculating 𝜃𝑔(𝛼𝑔) (Costa et al., 

2007). 

(13)  𝜃𝑔(𝛼𝑔) =
1

1 + 25 ∙ 𝐶𝑎2
(

1

1 − 𝛼𝑔
+ 25 ∙ 𝐶𝑎2 ∙ (1 − 𝛼𝑔)

5/3
) 

where 𝐶𝑎 is capillarity number, calculated following Llewellin and Manga (2005). 

B.2 Solubility model 

We adopted the Henry’s law: 

(14)  𝑥𝑑
𝑒𝑞 = 𝜎 (

𝑝𝑔

1 [Pa]
)
𝑆𝜖

 

where 𝑝𝑔 is pressure of the gas component, 𝜎 is the solubility coefficient and 𝑆𝜖 is the solubility 

exponent. The adopted solubility coefficients are derived from Zhang (1999), Moore et al. (1998) 

and Di Matteo et al. (2004) for rhyolitic, dacitic and trachytic magmas, respectively. 

B.3 Crystallization model 

We adopted the following crystallization model (de' Michieli Vitturi et al., 2010): 

(15)  𝛼𝑐
𝑒𝑞 = min[𝛼𝑐,𝑚𝑎𝑥 , 𝛼𝑐,0 + 0.55 ∙ (0.58815 ∙ 𝑝

−0.5226)] 

where 𝛼𝑐,𝑚𝑎𝑥 is the maximum crystallinity and 𝛼𝑐,0 is the initial volume fraction of crystals. 

B.4 Outgassing model 



For calculating |𝑑𝑝/𝑑𝑧|, we use a definition by parts (Degruyter et al., 2012): 

(16)  |
𝑑𝑝

𝑑𝑧
| =

{
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+
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2
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1−𝑡

(
3𝐶𝐷𝜌𝑔(Δ𝑢)

2

8𝑟𝑎
)

𝑡

if 𝛼𝑐𝑟 < 𝛼𝑔 < 𝛼𝑡

3𝐶𝐷𝜌𝑔(Δ𝑢)
2

8𝑟𝑎
if 𝛼𝑔 ≥ 𝛼𝑡

 

where Δ𝑢 is the velocity difference between both phases, subscript 𝑔 refers to the exsolved gas 

phase, 𝐶𝐷 is a drag coefficient, 𝑟𝑎 is the average size of the fragmented magma particles, 𝑡 = (𝛼𝑔 −

𝛼𝑐𝑟)/(𝛼𝑡 − 𝛼𝑐𝑟), 𝛼𝑡 controls the range of the transitional domain, while 𝑘𝐷 and 𝑘𝐼 are the Darcian 

and inertial permeabilities, respectively (Eqs. 17 and 18). Please note that |𝑑𝑝/𝑑𝑧| = 𝛿𝑓 ∙ Δ𝑢. 

(17)  𝑘𝐷 =
(𝑓𝑟𝑏𝑟𝑏)

2

8
𝛼𝑔
𝑚 

(18)  𝑘𝐼 =
𝑓𝑟𝑏𝑟𝑏
𝑓

𝛼𝑔
(1+3𝑚)/2

 

(19)  𝑟𝑏 = (
𝛼𝑔

4𝜋
3 𝑁𝑏𝑑𝛼𝑙

)

1/3

  

where 𝑓𝑟𝑏 is the throat-bubble size ratio, 𝑟𝑏 is the average bubble size, 𝑁𝑏𝑑 is the bubble density 

number, while 𝑓 and 𝑚 are fitting parameters. 

B.5 Equations of state 

For defining the specific internal energy, pressure and specific entropy of melt, crystals and 

dissolved water, a linearized version of the Mie-Grüneisen equations of state was adopted (Le 

Métayer et al., 2005): 



(20)  𝑒𝑘(𝜌𝑘, 𝑇) = �̅�𝑘 + 𝑐𝑣,𝑘𝑇 +
𝜌0,𝑘𝐶0,𝑘

2 − 𝛾𝑘𝑝0,𝑘
𝛾𝑘𝜌𝑘

 

(21)  𝑠𝑘(𝜌𝑘, 𝑇) = 𝑠0,𝑘 + 𝑐𝑣,𝑘 ∙ ln (
𝑇

𝑇0,𝑘
(
𝜌0,𝑘
𝜌𝑘
)
𝛾𝑘−1

) 

where �̅�𝑘 represents the formation energy, 𝑐𝑣,𝑘 is the specific heat capacity at constant volume, 

𝜌0,𝑘 and 𝐶0,𝑘 are the density and sound speed at a reference state, 𝛾𝑘 is the adiabatic exponent, 𝑝0,𝑘 

and 𝑠0,𝑘 are the pressure specific entropy at a reference state and 𝑇0,𝑘 is temperature at the reference 

state. Subscript 𝑘 refers to the melt, dissolved water or crystals. 

For the exsolved water, we adopted the ideal gas model: 

(22)  𝑒𝑔(𝜌𝑔, 𝑇) = 𝑐𝑣,𝑔𝑇 + �̅�𝑔 

(23)  𝑠𝑔(𝜌𝑔, 𝑇) = 𝑐𝑣,𝑔 ∙ ln (
𝑇

𝑇0,𝑔
(
𝜌0,𝑔

𝜌𝑔
)

𝛾𝑔−1

) 

  



C. Supplementary Figures 

 

Figure DR1. Profiles along the conduit of some physical variables, for a specific simulation 

(trachytic magma, water content at conduit bottom: 4.0 wt. %, inlet overpressure: 0 MPa, conduit 

radius: 8 m, aquifer permeability: 10-12 m2, aquifer depth: 850 – 1000 m, geopressured aquifer). It 

represents a typical case of simulations with the aquifer located above the fragmentation level. A: 

Density. B: Temperature. C: Exsolved gas volume fraction. D: Velocity. E: Pressure. F: Mass 

discharge rate. 

  



 

Figure DR2. Profiles along the conduit of some physical variables, for a specific simulation 

(trachytic magma, water content at conduit bottom: 5.0 wt. %, inlet overpressure: 0 MPa, conduit 

radius: 15 m, aquifer permeability: 10-11 m2, aquifer depth: 1200 – 1500 m, geopressured aquifer). 

It is a representative case of simulations where aquifer position coincides with fragmentation level. 

A: Density. B: Temperature. C: Exsolved gas volume fraction. D: Velocity. E: Pressure. F: Mass 

discharge rate. 

  



 

Figure DR3. Profiles along the conduit of some physical variables, for a specific simulation 

(trachytic magma, water content at conduit bottom: 6.0 wt. %, inlet overpressure: -10 MPa, conduit 

radius: 15 m, aquifer permeability: 10-11 m2, aquifer depth: 1700 - 2000 m, geopressured aquifer). 

It represents a typical case of simulations with the aquifer located below the fragmentation level. 

A: Density. B: Temperature. C: Exsolved gas volume fraction. D: Velocity. E: Pressure. F: Mass 

discharge rate. 

  



 

 

Figure DR4. Profiles along the conduit of some physical variables, for a specific simulation 

(trachytic magma, water content at conduit bottom: 4.0 wt. %, inlet overpressure: -10 MPa, conduit 

radius: 6 m, aquifer permeability: 10-12 m2, aquifer depth: 1200 – 1500 m, normally pressured 

aquifer). It represents a typical case of simulations with the aquifer located above the fragmentation 

level. A: Density. B: Temperature. C: Exsolved gas volume fraction. D: Velocity. E: Pressure. F: 

Mass discharge rate. 

  



 

Figure DR5. Profiles along the conduit of some physical variables, for a specific simulation 

(trachytic magma, water content at conduit bottom: 4.0 wt. %, inlet overpressure: +10 MPa, 

conduit radius: 8 m, aquifer permeability: 10-11 m2, aquifer depth: 1700 – 2000 m, normally 

pressured aquifer). It is a representative case of simulations where aquifer position coincides with 

fragmentation level. A: Density. B: Temperature. C: Exsolved gas volume fraction. D: Velocity. 

E: Pressure. F: Mass discharge rate. 

  



 

Figure DR6. Profiles along the conduit of some physical variables, for a specific simulation 

(trachytic magma, water content at conduit bottom: 6.0 wt. %, inlet overpressure: -10 MPa, conduit 

radius: 10 m, aquifer permeability: 10-11 m2, aquifer depth: 1850 - 2000 m, normally pressured 

aquifer). It represents a typical case of simulations with the aquifer located below the 

fragmentation level. A: Density. B: Temperature. C: Exsolved gas volume fraction. D: Velocity. 

E: Pressure. F: Mass discharge rate. 

  



 

Figure DR7. Injected water mass fraction versus mass discharge rate, as a function of aquifer 

permeability (indicated in the right-hand side) and the relative position between the aquifer and 

magma fragmentation, considering normally pressured aquifers and dacitic magmas. 

 

  



 

Figure DR8. Injected water mass fraction versus mass discharge rate, as a function of aquifer 

permeability (indicated in the right-hand side) and the relative position between the aquifer and 

magma fragmentation, considering geopressured aquifers and dacitic magmas. 

  



 

Figure DR9. Injected water mass fraction versus mass discharge rate, as a function of aquifer 

permeability (indicated in the right-hand side) and the relative position between the aquifer and 

magma fragmentation, considering normally pressured aquifers and rhyolitic magmas. 

 

  



 

Figure DR10. Injected water mass fraction versus mass discharge rate, as a function of aquifer 

permeability (indicated in the right-hand side) and the relative position between the aquifer and 

magma fragmentation, considering geopressured aquifers and rhyolitic magmas. 

  



Figure DR11. Injected water mass fraction versus instability index, using Mohr – Coulomb (a) 

and Mogi – Coulomb (b) collapse criteria. We present here the results related to a set of simulations 

with variable values for inlet overpressure (from -10 MPa to +10 MPa), conduit radius (6 – 30 m) 

and water content (4.0 – 6.0 wt. %), considering normally-pressured and geopressured aquifers. 

For clarity, we only include simulations of trachytic magmas with aquifer permeability of 10-12 

m2. In order to quantify the instability degree of the conduit, we used the ‘instability index’ defined 

as max(Pcollapse(z) −  P(z)) (Aravena et al., 2017), where Pcollapse(z) is the minimum pressure 

needed to avoid conduit collapse according to Mohr - Coulomb and Mogi - Coulomb stability 

criteria (Al-Ajmi and Zimmerman, 2006), and P(z) is the pressure profile along the conduit, 

computed from numerical modelling. The values employed for country rock mechanical 

parameters are thought to be representative of natural conditions and are shown in Table DR1. 

  



D. Supplementary Tables 

Table DR1. Mechanical parameters employed in the analysis of conduit stability, representative 

of typical conditions of country rocks (Hoek and Brown, 1997). 

  

Parameter Value 

Rock cohesion 5 MPa 

Angle of friction 38º 

Vertical stress gradient 26 kPa/m 

Both horizontal stress gradients 18 kPa/m 
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