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What do earthquakes reveal about ambient shear stresses in the upper crust? 2 

(by Guy Simpson) 3 

The Supplementary material provided here includes the following items: 4 

 Description of Mechanical model5 

 Description of Monte Carlo model6 

 Table DR17 

 Figs. DR1-DR78 

Description of Mechanical model 9 

The mechanical model is based on quasi-static force equilibrium and mass 10 

balance of a viscoelastic fluid subjected to plane strain deformation and gravity 11 

(Simpson, 2015). The model considers a two-dimensional vertical depth section 12 

(180 km wide x 60 km deep) containing a single inclined planar fault discontinuity 13 

embedded within an elastic material (with a shear modulus of 30x109 Pa and 14 

Poisson’s ratio of 0.25) that is underlain by a high viscosity (1019 Pa s) Maxwell 15 

viscoelastic material (Fig. DR1). The model faults are assumed to be optimally 16 

oriented for frictional sliding. Thus, for a typical background friction coefficient of 17 

0.577, the reverse faults have dips of 30°, whereas the normal faults have dips of 18 

60°. The initial differential stresses in the upper layer are computed assuming that 19 



faults are critically stressed for frictional sliding. The thickness of the faulted upper 20 

elastic layer is varied between 5 and 30 km. The lower viscoelastic layer is initially 21 

assumed to have zero differential stresses. Models are loaded by imposing constant 22 

horizontal velocities (of 50 mm/yr) at the lateral boundaries. The upper boundary is 23 

a free surface while all other boundaries are free slip. Solutions to the system of 24 

partial differential equations were computed using the continuous Galerkin Finite 25 

Element Method using 7-node triangles for velocities and 3 nodes for pressures. 26 

 The fault in each model exhibits stick-slip behavior that is governed by rate- 27 

and state-friction. Fault friction is calculated from the lab-derived law (Noda et al., 28 

2009) 29 

𝜇 = 𝑎 ln (
𝑣

𝑣𝑜
) + 𝜃   (3) 30 

where 𝑣 is the slip velocity, and 𝜃 is a state variable that is computed by solving 31 

𝜕𝜃

𝜕𝑡
= −

𝑣

𝐷𝑐
(𝜇 − 𝜇𝑠𝑠)  (4) 32 

with the steady state friction value  33 

𝜇𝑠𝑠 = 𝜇𝑜 + (𝑎 − 𝑏)ln (
𝑣

𝑣𝑜
)  (5) 34 



Here 𝜇𝑜 is a reference friction coefficient for steady sliding at velocity 𝑣𝑜, a and b 35 

are dimensionless parameters characterizing the direct and state evolution effects, 36 

respectively, and Dc is the state evolution distance. In this slip-law formulation I 37 

set the shear stress on the fault (computed by solving the quasi-static viscoelastic 38 

problem) to the fault strength, modified to account for radiation damping, i.e.,  39 

𝜏 = 𝜇 �̃�𝑛 +
𝐺

2𝑐𝑠
𝑣   (6) 40 

where 𝜏 and �̃�𝑛 are the shear and effective normal stresses resolved on the fault, 𝐺 41 

is the shear modulus, 𝑐𝑠 is the shear wave speed and 𝜇 is the variable friction 42 

coefficient given by equation (3). This nonlinear equation (i.e., 6) is solved for the 43 

sliding velocity that is then imposed on the fault using the split-node technique 44 

(Melosh and Raefsky, 1981).  45 

Although most calculations presented are based on a ‘standard’ rate- and 46 

state-friction law (i.e., equations 3-5) I also carried out simulations incorporating 47 

additional dramatic weakening at seismic slip rates, which has been demonstrated 48 

in laboratory friction experiments (e.g., Di Toro et al., 2011; Nielsen et al., 2016). 49 

Enhanced weakening was introduced (after Noda et al., 2009) by replacing 50 

equation (5) with  51 

μLV = μo + (a − b)ln (
v

vo
) (7) 52 



and  53 

μss = {
μLV if v ≤ vw

μw + (μLV − μw)(vw/v) if v > vw
}  (8) 54 

Here, μLV is the conventional low velocity steady-state friction coefficient, a and b 55 

are the standard rate and state parameters, respectively,  μo is the friction 56 

coefficient at the reference sliding velocity vo, vw is the sliding velocity at the 57 

onset of enhanced weakening and μw is the fully weakened friction coefficient 58 

(that may be close to 0.2).  59 

 Unless stated otherwise, calculations presented here were performed with the 60 

following parameter values: 𝜇𝑜=0.6, 𝑣𝑜 =10-6 m/s, a = 0.015, cs=3 km/s, Dc = 0.07 61 

m, 𝜃initial = 0.5. The state parameter b is taken to be 0.02 until 2 km above the base 62 

of the fault when it is assumed to decrease linearly with depth to 0 (Fig. DR1C). 63 

This implies that the lower portion of each fault exhibits velocity strengthening 64 

behavior (a-b>0) whereas the upper part is velocity weakening (since a-b<0). 65 

These parameter values are similar to those used in other earthquake modeling 66 

studies. A friction coefficient of 0.6 is chosen to be consistent with Byerlee’s law 67 

(Byerlee, 1978).  68 

In most simulations presented, elastic waves are neglected but inertial effects 69 

are considered via the radiation damping approximation (Rice, 1993), making the 70 



model quasi-dynamic. Additional simulations were performed incorporating full 71 

inertia (e.g., see results in Figs. DR2-4). Fluid pressures are not explicitly 72 

considered but are incorporated by modifying the initial effective normal stresses. 73 

Dynamic effects related coseismic temperature variation are not explicitly treated 74 

(e.g., see Noda and Lapusta, 2010) but were investigated indirectly by 75 

incorporating enhanced dynamic friction weakening. Off-fault damage is not 76 

considered in the simulations, which is considered reasonable since it appears to 77 

have a minor influence on earthquake properties such as the total coseismic slip 78 

(Thomas et al., 2017). 79 

 The model faults exhibit a natural transition from slow slip during the 80 

interseismic period to rapid slip during ‘earthquakes’. This threshold-type behavior 81 

requires adaptive time stepping. The time step is roughly proportional to 𝐷𝑐/𝑣 82 

(where 𝐷𝑐 is the slip weakening distance and 𝑣 is the computed slip velocity), so it 83 

varies by approximately 10 orders of magnitude between the interseismic and 84 

coseismic periods. Calculations performed with excessively large time steps 85 

exhibit oscillatory slip velocities (Fig. DR7A) that disappear when the time step is 86 

sufficiently reduced (cf. Figs. DR7B and DR7C).  87 

 The calculations also require a highly resolved spatial grid in order to 88 

achieve accurate and stable solutions. The element size for resolved solutions is 89 

controlled by the parameter grouping 2𝐺𝐷𝑐/𝜋�̃�𝑛(𝑏 −a) (see Rice 1993). Although 90 



this limit implies exceedingly small elements, I follow a common approach (Rice 91 

1993) by assigning artificially large values to 𝐷𝑐  (usually 0.07 m) to relax the 92 

element size limit. I also take advantage of an unstructured triangular mesh (Fig. 93 

DR1A) that enables relatively small elements (on the order of 100 m long) to be 94 

used along the fault whereas the elements elsewhere can be much larger (i.e., by at 95 

least one order of magnitude).  96 

Description of Monte Carlo model 97 

 The static stress drop of earthquakes in the quasi-dynamic Finite Element 98 

models is well described by the empirical relation 99 

 ∆𝜏 = (1 −
𝜇𝑑

𝜇𝑠
) 𝜏̅      (9) 100 

where ∆𝜏 is the average static stress drop associated with an earthquake, 𝜏̅ is the 101 

average shear stress on the fault, 𝜇𝑑 is the kinematic friction coefficient during 102 

rupture and 𝜇𝑠is the static friction coefficient typical of the interseismic period 103 

(Fig. DR4). The stress drop is linked to the mean coseismic slip via the well known 104 

relation from static crack theory (Scholz, 2002): 105 

�̅� =  
∆𝜏 𝑊 

𝐺 𝐶
   (10) 106 

where G is the shear modulus, W is the down-dip rupture width and 𝐶 = 4(𝜆 +107 

𝐺)/𝜋(𝜆 + 𝐺) where 𝜆 is the Lamé constant. To evaluate whether one can expect to 108 



observe notable differences in stress drops and slip magnitudes for earthquakes 109 

occurring at different depths and in different tectonic stress regimes when the 110 

frictional properties also vary, I adopted a Monte Carlo approach , repeatedly 111 

solving (9) and (10) for a large number of events (at least 100,000) while randomly 112 

varying the tectonic stress regime (i.e., compressive versus extensive), hypocenter 113 

depth (which controls the average shear stress), and the static and dynamic friction 114 

coefficients within reasonable limits. Faults are assumed to be governed by 115 

Andersonian faulting theory. Accordingly, the average vertical stress on the fault is 116 

taken as the lithostatic stress at the rupture mid-depth H (i.e., 𝜌𝑔𝐻), while the 117 

horizontal stress is that required to initiate frictional sliding, i.e.,  𝜏̅ =  𝜇𝑠�̃�𝑛 where 118 

�̃�𝑛 is the effective normal stress: 119 

�̃�𝑛 =
(𝜎1+𝜎3)

2
− 𝑝𝑓 + 

(𝜎1−𝜎3)

2
cos 2𝜗 120 

and 𝜏̅ is the average shear stress on the fault: 121 

𝜏̅ =  
(𝜎1−𝜎3)

2
sin 2𝜗 122 

Here 𝜎1, 𝜎3, 𝑝𝑓 and are the maximum and minimum principal stresses and fluid 123 

pressure at H, 𝜇𝑠 is the static friction coefficient and tan 𝜗 = ∓1/𝜇𝑠. For reverse 124 

faulting, the vertical and horizontal stresses are assumed to be the minimum and 125 

maximum principal stresses, respectively, whereas the converse is true for normal 126 

faulting.  127 



 Parameters values used for the calculations were chosen to be physically 128 

realistic but were fine-tuned by fitting the computed stress drop distribution to 129 

natural stress drop data from Allmann and Schearer (2009). Parameters maintained 130 

constant were the rock density (𝜌 =2800 kg m-3), fluid density (𝜌𝑓 =1000 kg m-3) 131 

and shear modulus (G=30 GPa). The rupture mid-depth (H) was chosen from a 132 

normal distribution with a mean of 15 km and a standard deviation of 5 km. The 133 

static friction coefficient 𝜇𝑠was chosen from a normal distribution with a mean of 134 

0.7 and a standard deviation of 0.1. Faults were randomly chosen to be either 135 

reverse or normal from a uniform distribution. Good fits with data were obtained, 136 

which suggests that the parameters are reasonable, though equally good fits can be 137 

obtained with other parameter combinations. 138 

 I considered two different end-member fault stress scenarios. In the first 139 

(Fig. 3A of main text), fluid pressures were assumed to be hydrostatic, implying 140 

that faults operate at relatively high shear stresses. In the second case (Fig. 3B), I 141 

assumed that the minimum effective principal stress cannot exceed a constant 142 

value �̃�𝑐. The values for �̃�𝑐 were chosen from a Weibull distribution, with scale 143 

and shape parameters of 20 MPa and 1.7 MPa, respectively. This implies large 144 

fluid overpressures at depth, which leads to low and constant shear stresses below 145 

an upper ‘normally’ pressured regime (Fig. DR7). For both scenarios presented in 146 

Figure 3 (main text), the friction drop Δ𝜇 (=𝜇𝑠 − 𝜇𝑑) was chosen from a log-147 



normal distribution with means of 0.015 (case 1) and 0.014 (case 2) and standard 148 

deviations of 0.0144 (case 1) and 0.012 (case 2).  149 



 150 

Table DR1: Rupture properties of large crustal earthquakes (Mw=moment magnitude, L = 151 

rupture length, W = down-dip rupture width, D = mean coseismic slip amplitude). Only 152 

earthquakes with W≤40 km are studied. Except for the last three entries, the data are from the 153 

finite-source rupture model database (SRCMOD; Mai, 2016). The last three earthquake entries 154 

are from the following references:  Borah Peak (Stein and Barrientos, 1985), Kozani Grevena 155 

(Clark et al., 1997), Yutian County (Furuya and Yasuda, 2011). The data are plotted in Fig. 4 156 

(main text). 157 

Location Date Depth 

(km) 

Mw Rake 

(°) 

L (km) W(km) D (m) 

Brawley Swarm 26-Aug-12 6.4 5.45 0 12.75 10.5 0.0782 

Sumatra 10-Jan-12 18.37 7.2 173.39 90 21 1.2888 

Darfield, South Island, NZ 03-Sep-10 10.84 7.02 153.63 80 26 0.6029 

El Mayor-Cucapah, Mexico 04-Apr-10 10 7.35 -174 120 16 1.8905 

Haiti 12-Jan-10 12.93 7.1 31.59 50 24 1.3988 

Gulf of California 03-Aug-09 9.16 6.9 171.72 108 20.8 0.311 

L Aquila, Italy 06-Apr-09 8.64 6.3 -99 30 24 0.1767 

Zhongba, Tibet 25-Aug-08 7.63 6.7 306 31 30.49 0.2383 

Honshu, Japan 13-Jun-08 9.49 6.8 102.68 42 22 0.8423 

Iwate - Miyagi Nairiku 13-Jun-08 6.5 7 99 42.66 17.38 1.8231 



Yutian, Tibet 20-Mar-08 4.1 7.1 282.33 53.5 21.99 1.503 

Gerze, Tibet 16-Jan-08 4 5.9 273 15 10.02 0.1999 

Gerze, Tibet 09-Jan-08 7.5 6.4 293 20 19.58 0.3729 

Niigata-ken Chuetsu-Oki 17-Aug-07 8.9 6.6 99 36.75 29.75 0.2882 

Noto Hanto, Japan 25-Mar-07 9.62 6.73 138.9 30 16 1.0864 

Kuril Islands 13-Jan-07 10 8.1 -97.96 224 40 3.5631 

Northern California 15-Jun-05 9 7.2 362.3 102 35 0.6718 

Zhongba, Tibet 07-Apr-05 5.98 6.2 292 28 18.67 0.1868 

Fukuoka (Japan) 20-Mar-05 14 6.6 -14 26 18 0.6797 

Niigata-Ken Chuetsu, Japan 23-Oct-04 10.6 6.62 91.3 28 18 0.6663 

Zhongba, Tibet 11-Jul-04 10 6.2 282 20 26.11 0.1357 

Miyagi-hokubu (Japan) 25-Jul-03 6.5 6.08 180 12 9.6 0.4736 

Carlsberg Ridge 15-Jul-03 11.33 7.6 166.96 320 36 0.5498 

Boumerdes (Algeria) 21-May-2003 16 7.25 90 64 32 1.2428 

Denali (Alaska) 03-Nov-02 7.5 7.91 228.55 346 30 2.1475 

Geiyo (Japan) 24-Mar-01 46.46 6.79 109 30 21 0.8313 

Bhuj (India) 26-Jan-01 18 7.66 81 75 35 3.1538 

Tottori (Japan) 06-Oct-00 14.5 6.73 180 32 20 0.6157 

Kleifarvatn (Iceland) 17-Jun-00 4 5.87 188.04 10 8 0.2811 



Duzce (Turkey) 12-Nov-99 18 7.18 182 60 30 1.1204 

Hector Mine (Calif.) 16-Oct-99 7.5 7.14 175 54 18 1.8145 

Izmit (Turkey) 17-Aug-99 16 7.4 180 93.6 21.6 2.2454 

Hida Swarm EV16 (Japan) 18-Sep-98 1.85 4.41 181 3 3.48 0.0134 

Iwate (Japan) 03-Sep-98 3 6.3 131 10 10 0.3948 

Pumqu-Xainza, Tibet 25-Aug-98 8.25 6.16 300.66 38 23 0.0679 

Antarctica Strike-Slip Segment 25-Mar-98 12 7.98 1 305 35 2.9824 

Colfiorito Sequence # 3 (Italy) 14-Oct-97 5.58 5.86 270 9 6 0.4512 

Colfiorito Sequence # 1 (Italy) 26-Sep-97 4.04 5.72 270 7.5 7.5 0.2744 

Colfiorito Sequence # 2 (Italy) 26-Sep-97 5.1 5.97 270 12.5 7.5 0.396 

Yamaguchi (Japan) 25-Jun-97 8.2 5.82 180 16 14 0.0812 

Kagoshimaen-hoku-seibu (Japan) 26-Mar-97 7.6 6.1 0 15 10 0.3391 

Hyuga-nada2 (Japan) 02-Dec-96 20.4 6.68 80 29.2 29.2 0.4218 

Hyuga-nada1 (Japan) 19-Oct-96 11.6 6.81 80 32.12 32.12 0.5415 

Pumqu-Xainza, Tibet 03-Jul-96 8.25 6.08 301.42 25 18 0.1022 

Kobe (Japan) 17-Jan-95 14.3 6.9 180 60 20 0.6532 

Northridge (Calif.) 17-Jan-94 17.5 6.66 105 23 27 0.5213 

Pumqu-Xainza, Tibet 20-Mar-93 8.25 6.29 294.33 30 22 0.1393 

Landers (Calif.) 28-Jun-92 7 7.2 180 77 15 1.8878 



Joshua Tree (Calif.) 23-Apr-92 12.5 6.15 0 22 20 0.1245 

Ungava (Canada) 25-Dec-89 2.5 6.02 90 13 6 0.4636 

Loma Prieta (Calif.) 18-Oct-89 17.6 6.98 145 40 14 1.8038 

Superstition Hills (Calif.) 24-Nov-87 10 6.51 180 20 11.5 0.8291 

Elmore Ranch (Calif.) 24-Nov-87 10 6.52 0 25 10 0.8976 

Whittier Narrows (Calif.) 01-Oct-87 14.6 5.89 90 10 10 0.2625 

Nahanni2 (Canada) 23-Dec-85 8 6.66 90 48 21.24 0.4844 

Nahanni1 (Canada) 05-Oct-85 8 6.66 90 40 17.4 0.5359 

Nagano-ken seibu (Japan) 14-Sep-84 3 6.29 0 12 9 1.0083 

Morgan Hill (Calif.) 24-Apr-84 8.5 6.28 180 30 10 0.2644 

Borah Peak (Idaho) 28-Oct-83 16 6.82 280 52 26.64 0.357 

Izu-hanto-toho-oki (Japan) 29-Jun-80 8 6.61 0 20 12 1.06 

Imperial Valley (Calif.) 15-Oct-79 8 6.35 180 42 10 0.4118 

Coyote Lake (Calif.) 06-Aug-79 8 5.92 176 10 10 0.2608 

Izu-hanto-oki (Japan) 09-May-74 8 6.56 180 25 9 1.06 

San Fernando (Calif.) 09-Feb-71 13 6.82 83 18 20 1.6006 

Gifu-ken-chubu (Japan) 09-Sep-69 2 6.43 180 20 11.2 0.68 

Kitamino (Japan) 19-Aug-61 10 6.47 90 16 12 0.9083 

Fukui (Japan) 28-Jun-48 10.14 6.65 351 60 18 0.3 



Borah Peak 28-Oct-83 16 6.9 -90  18 2 

KozaniGrevena 13-May-95 ca. 15 6.5 -90  20 0.3 

Yutian County, Xinjiang 20-Mar-08 ca. 15 7.1 -90  24 1 
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 161 

Figure DR1 A-C: Typical mode setup for earthquake simulation on a reverse fault. A: Planar 162 

reverse fault embedded in an elastic layer that overlies a viscoelastic layer, subjected to remote 163 

loading and gravity. Triangles are finite elements on which the solution is computed. B:  Initial 164 

effective stress state versus depth in the upper part of the model. C: Variation of the rate- and 165 

state-friction parameters a and b on the fault. 166 

  167 



 168 

Figure DR2 A-B: Mean slip versus time (A) and mean shear stress versus time (B) on reverse 169 

and normal faults in numerical experiments incorporating full inertia, with and without enhanced 170 

dynamic weakening (μw =0.2, vw = 0.1 m/s, see equation 8 above). The average slip rate on the 171 

normal fault is greater than on the reverse fault because the former has a larger dip. 172 

  173 



 174 

Figure DR3: Computed mean slip versus time on a normal fault with and without enhanced 175 

dynamic weakening and full inertia (FD = fully dynamic, QD = quasi-dynamic). Simulations 176 

with enhanced weakening were calculated with μw =0.2, vw = 0.1 m/s (see equation 8 above). 177 

Otherwise, classic rate-and state-dependent friction was assumed, using the parameters listed 178 

above. 179 

  180 



 181 

 182 

Figure DR4 A-B: Comparison of the slip rate versus distance along the fault for simulations 183 

using the quasi-dynamic approximation (A) and full inertia (B). In both cases, the ruptures are on 184 

reverse faults with identical material properties. The rupture in the quasi-dynamic simulation 185 

propagates as a crack, while that in the simulation with full inertia propagates as a slip pulse. 186 

Even so, the simulations exhibiting pulse-like behavior still show larger slips on reverse faults 187 

than normal faults, when ambient stress levels are high (see Fig DR2). 188 



 189 

 190 

Figure DR5: Scaling between static stress drop versus average shear stress. Symbols show 191 

results of the finite element quasi-dynamic simulations while the solid lines show stress drop 192 

predictions based on equation (9). 193 

  194 



 195 

 196 

Figure DR6 A-B: Illustration of initial effective principal stress state in models considering fluid 197 

overpressures. The upper part of the crust is assumed to have hydrostatic fluid pressures whereas 198 

the underlying rocks have overpressures governed by the condition  �̃�3 = �̃�𝑐   where �̃�𝑐   is a 199 

constant (in this case 20 MPa). Stresses are defined by Andersonian faulting theory with a 200 

friction coefficient of 0.6 and a rock density of 2800 kg/m3. A: Variation of the effective 201 

principal stresses with depth for reverse and normal faulting stress regimes. B: Variation in the 202 

pore pressure ratio (defined here as the ratio between the fluid pressure and the total minimum 203 

principal stress) with depth for reverse and normal fault regimes. 204 

  205 



 206 

Figure DR7 A-C: Illustration of time scale resolution in quasi-dynamic numerical experiments. 207 

Plots show the mean slip velocity on the fault versus time for quasi-dynamic simulations 208 

performed with different temporal resolutions. The excessively large time step in (A) leads to 209 

numerical oscillations. Reducing the time step by a factor of two reduces the oscillations (B), 210 

which disappear entirely when the time step is decreased another two times (C). 211 

  212 



References 213 

Allmann, B.P. and Shearer, P.M., 2009, Global variations of stress drop for moderate to large 214 

earthquakes: Journal of Geophysical Research, v. 114, doi:10.1029/2008jb005821. 215 

Byerlee, J.D. Friction of rocks, Pure and Applied Geophysics, v. 116, 615-626. 216 

Clarke, P. J., Paradissis, D., Briole, P., England, P.C., Parsons, B.E., Billiris, H., Veis, G., Ruegg, 217 

J.-C., 1997, Geodetic investigation of the 13 May 1995 Kozani-Grevena (Greece) 218 

Earthquake: Geophysical Research Letters, v. 24, p. 707-710, doi:10.1029/97GL00430. 219 

Di Toro, G., Han R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., 220 

Shimamoto, T., 2011, Fault lubrication during earthquakes: Nature, v. 471, p. 494-498, 221 

doi:10.1038/nature09838. 222 

Furuya, M. and Yasuda, T., 2011, The 2008 Yutian normal faulting earthquake (Mw 7.1), NW 223 

Tibet: Non-planar fault modeling and implications for the Karakax Fault: 224 

Tectonophysics, v. 511, p. 125-133, doi:10.1016/j.tecto.2011.09.003. 225 

Mai, M., 2016,  Finite-Source Rupture Model Database, <http://equake-rc.info/SRCMOD/>. 226 

Melosh, H.,J. and Raefsky, A, 1981, A simple and efficient method for introducing faults into 227 

finite element computations: Bulletin of the Seismological Society of America, v. 71, p. 228 

1391-1400. 229 

Nielsen, S., Spagnuolo, E., Smith, S.A.F., Violay, M., Di Toro, G., and A. Bistacchi, 2016, 230 

Scaling in natural and laboratory earthquakes: Geophysical Research Letters, v. 43, 1504-231 

1510, doi: 10.1002/2015GL067490. 232 

Noda, H., Dunham, E.M. and Rice, J.R., 2009, Earthquake ruptures with thermal weakening and 233 

the operation: Journal of Geophysical Research, v. 114, B07302, 234 

doi:10.1029/2008JB006143. 235 



Noda, H., and Lapusta, N., 2010, Three-dimensional earthquake sequence simulations with 236 

evolving temperature and pore pressure due to shear heating: effect of heterogeneous 237 

hydraulic diffusivity: Journal of Geophysical Research, v. 115, 238 

doi:10.1029/2010JB007780. 239 

Rice, J. R., 1993, Spatio-temporal complexity of slip on a fault: Journal of Geophysical 240 

Research, v. 98, p. 9885–9907, doi:10.1029/93JB00191. 241 

Scholz, C.H., 2002, The mechanics of earthquakes and faulting. Cambridge University Press, 242 

Cambridge, 471 p. 243 

Simpson, G.D. H., 2015, Accumulation of permanent deformation during earthquake cycles on 244 

reverse faults: Journal of Geophysical Research, v. 120, p. 1958-1974, 245 

doi:10.1002/2014JB011442. 246 

Stein, R.S. and Barrientos, S.E., 1985, Planar High-Angle faulting in the Basin and Range: 247 

Geodetic analysis of the 1983 Borah peak, Idaho, Earthquake: Journal of Geophysical 248 

Research, v. 90, p. 11355-11366. 249 

Thomas, M.Y., Bhat, H.S. and Klinger, Y, 2017, Effect of brittle off-fault damage on earthquake 250 

rupture dynamics. In: Fault zone dynamic processes: evolution of fault zone dynamic 251 

processes: Evolution of fault properties during seismic rupture. Edited by Thomas, M., 252 

Mitchell, T and Bhat H. Geophysical Monograph, 227, p. 255-280. 253 

 254 

  255 



 256 

 257 




