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 2 

TECTONIC RECONSTRUCTION METHODOLOGY 3 

The foundation of our model for sequential breaching of pull-apart basins in the Gulf of 4 

California is a series of GIS-based palinspastic reconstruction maps of the Gulf of California-5 

Salton Trough (GCAST) oblique rift. This GCAST reconstruction model is based on a synthesis 6 

of numerous datasets for crustal deformation over the past 11 Myr along a ~2,000 km-long, 400–7 

500 km-wide swath of the Pacific–North America plate boundary, from San Bernardino, 8 

California (United States) to Puerto Vallarta, Jalisco (México). The study region is divided into 9 

discrete tectonic blocks (n=310) based on geologic, fault, geophysical, bathymetric, and 10 

topographic data. Spreading center and fault slip rates were acquired from available geologic 11 

data, cross-Gulf tie points, GPS studies, and seafloor magnetic data. These data serve as inputs 12 

for our GIS-based tectonic reconstruction, which sequentially restores crustal deformation 13 

between tectonic blocks in 1 Myr increments. 14 

 15 

Regional Model Constraints 16 

The GCAST reconstruction incorporates fundamental constraints on the magnitude and 17 

direction of Pacific–North America relative dextral-oblique motion provided by an updated 18 

global plate-circuit model (Atwater and Stock, 1998, 2013). Modern geodetic studies indicate 19 

that ~93% of modern-day Pacific-North America (PAC-NAM) plate motion is localized between 20 



the Baja California microplate (BCM) and NAM (Plattner et al., 2007) and suggest that the Baja 21 

California microplate (BCM) has never been completely coupled to the Pacific plate (Dixon et 22 

al., 2000). BCM-NAM geodetic rates also agree with the rates derived from documented offsets 23 

of late Miocene geologic tie points across the Gulf of California (e.g., Oskin et al, 2001; Oskin 24 

and Stock, 2003) and are incorporated in GCAST reconstruction steps back to 6 Ma. Thus, our 25 

preferred GCAST reconstruction uses 93% BCM-PAC coupling from the present back to 6 Ma. 26 

We assume BCM-PAC coupling of 60% between 6 and 7 Ma, and 25% between 7 and 11 Ma, to 27 

avoid unacceptable overlap of continental crustal blocks between Baja California and the Sierra 28 

Madre Occidental (on stable NAM). Using these coupling ratios and PAC-NAM stage Euler 29 

poles, we determine the azimuth and velocity of individual points on the BCM relative to NAM 30 

in 1 million year increments back to 11 Ma. This procedure accounts for minor clockwise 31 

rotation of BCM that occurred during oblique rifting, and shows how total BCM-NAM relative 32 

motion increases from north to south due to greater distance from the Euler pole.  33 

 34 

Local Model Constraints 35 

At a more local scale, the GCAST model attempts to incorporate all published 36 

information about the geometry, timing, and magnitude of late Miocene to present crustal 37 

deformation, including contemporary deformation rates from GPS studies (e.g., Meade and 38 

Hager, 2005; Plattner et al., 2007), the location, timing, style, and magnitude of late Cenozoic 39 

faulting from geologic and marine geophysical studies (e.g., Howard and Miller, 1992; Richard, 40 

1993; Umhoefer et al., 2002; Aragon-Arreola and Martin-Barajas, 2007; Guest et al., 2007; 41 

Lease et al., 2009; Kluesner, 2011; Bennett et al., 2016), information about crustal structure from 42 

magnetic and gravity studies (e.g., Sandwell and Smith, 2009), estimates of the age and width of 43 



new oceanic crust in the Gulf of California (e.g., Lizarralde et al., 2007; Martín-Barajas et al., 44 

2013), and unique geologic formations that serve as strain markers across the Pacific–North 45 

America plate boundary (e.g., Crowell, 1962; Gastil et al., 1973; Powell, 1993; Matti and 46 

Morton, 1993; Oskin et al., 2001; Oskin and Stock, 2003; Darin and Dorsey, 2013). Our 7 Ma 47 

reconstruction was compared to the seismic reflection study of the early Guaymas salt basin by 48 

Miller and Lizarralde (2013).  49 

Fine-scale restoration of tectonic blocks along significant (>1 km offset) faults, across 50 

extensional (e.g. pull-apart and half-graben) basins, and by vertical-axis rotation is accomplished 51 

using a custom, open-source “Tectonic Reconstruct” ArcGIS add-in tool 52 

(https://astrogeology.usgs.gov/facilities/mrctr/gis‐tools). The “Tectonic Reconstruct” tool takes a set 53 

of polygons depicting present day locations of tectonic blocks and sequentially restores 54 

displacement of their centroids along a vector specific to each time increment.  The tool also 55 

allowed us to partition strain where appropriate into two components of strike-slip and normal 56 

motion. In the northern portion of the GCAST reconstructions in the Salton trough and northern 57 

Gulf of California regions, published onshore studies provide constraints for the incremental 58 

offset of many tectonic blocks.  In the central to southern Gulf of California, most of the tectonic 59 

blocks are partially exposed as islands or more commonly fully submerged beneath the 60 

Gulf.  Only a small number of these blocks have seismic data that constrain offsets between 61 

them.  Therefore, in that portion of the GCAST reconstructions, we proportioned the total BCM-62 

NAM relative motion with increasing offsets moving from the rift escarpment to the spreading 63 

centers as follows:  we assigned lesser offset to coastal and near shore blocks, intermediate offset 64 

to submerged and island blocks of thinned continental crust, and large offset to ultra-thinned 65 

continental crustal blocks near the spreading centers.  66 



 67 

EARLIEST MARINE DEPOSITS IN THE GULF OF CALIFORNIA 68 

Numbered references in Figures 2 and 3 refer to the following published studies which 69 

provide age constraints for the earliest marine strata in the Gulf of California: 1 – McCloy et al., 70 

1988; 2 – Martínez-Gutiérrez and Sethi, 1997; 3 – Miller and Lizarralde, 2013; 4 – Holt et al., 71 

2000; 5 – Bennett et al., 2015; 6 – Delgado-Argote et al., 2000; 7 – Martín-Barajas et al., 1997; 8 72 

– Boehm, 1984; 9 – Martín-Barajas et al., 2001; 10 – Dorsey et al., 2007; 11 – Dorsey et al., 73 

2018; 12 – McDougall et al., 1999. 74 
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