GSA Data Repository 2018250

Umhoefer et al., 2018, Breaching of strike-slip faults and successive flooding of pull-apart basins to form the Gulf of California seaway from ca. 8–6 Ma: Geology, https://doi.org/10.1130/G40242.1.

1 Supplemental File

2

3 TECTONIC RECONSTRUCTION METHODOLOGY

4 The foundation of our model for sequential breaching of pull-apart basins in the Gulf of California is a series of GIS-based palinspastic reconstruction maps of the Gulf of California-5 Salton Trough (GCAST) oblique rift. This GCAST reconstruction model is based on a synthesis 6 7 of numerous datasets for crustal deformation over the past 11 Myr along a ~2,000 km-long, 400-500 km-wide swath of the Pacific-North America plate boundary, from San Bernardino, 8 9 California (United States) to Puerto Vallarta, Jalisco (México). The study region is divided into 10 discrete tectonic blocks (n=310) based on geologic, fault, geophysical, bathymetric, and topographic data. Spreading center and fault slip rates were acquired from available geologic 11 data, cross-Gulf tie points, GPS studies, and seafloor magnetic data. These data serve as inputs 12 for our GIS-based tectonic reconstruction, which sequentially restores crustal deformation 13 between tectonic blocks in 1 Myr increments. 14 15

16 **Regional Model Constraints**

17 The GCAST reconstruction incorporates fundamental constraints on the magnitude and 18 direction of Pacific–North America relative dextral-oblique motion provided by an updated 19 global plate-circuit model (Atwater and Stock, 1998, 2013). Modern geodetic studies indicate 20 that ~93% of modern-day Pacific-North America (PAC-NAM) plate motion is localized between

the Baja California microplate (BCM) and NAM (Plattner et al., 2007) and suggest that the Baja 21 California microplate (BCM) has never been completely coupled to the Pacific plate (Dixon et 22 al., 2000). BCM-NAM geodetic rates also agree with the rates derived from documented offsets 23 of late Miocene geologic tie points across the Gulf of California (e.g., Oskin et al, 2001; Oskin 24 and Stock, 2003) and are incorporated in GCAST reconstruction steps back to 6 Ma. Thus, our 25 preferred GCAST reconstruction uses 93% BCM-PAC coupling from the present back to 6 Ma. 26 We assume BCM-PAC coupling of 60% between 6 and 7 Ma, and 25% between 7 and 11 Ma, to 27 avoid unacceptable overlap of continental crustal blocks between Baja California and the Sierra 28 29 Madre Occidental (on stable NAM). Using these coupling ratios and PAC-NAM stage Euler poles, we determine the azimuth and velocity of individual points on the BCM relative to NAM 30 in 1 million year increments back to 11 Ma. This procedure accounts for minor clockwise 31 rotation of BCM that occurred during oblique rifting, and shows how total BCM-NAM relative 32 motion increases from north to south due to greater distance from the Euler pole. 33

34

35 Local Model Constraints

At a more local scale, the GCAST model attempts to incorporate all published 36 information about the geometry, timing, and magnitude of late Miocene to present crustal 37 deformation, including contemporary deformation rates from GPS studies (e.g., Meade and 38 Hager, 2005; Plattner et al., 2007), the location, timing, style, and magnitude of late Cenozoic 39 40 faulting from geologic and marine geophysical studies (e.g., Howard and Miller, 1992; Richard, 1993; Umhoefer et al., 2002; Aragon-Arreola and Martin-Barajas, 2007; Guest et al., 2007; 41 Lease et al., 2009; Kluesner, 2011; Bennett et al., 2016), information about crustal structure from 42 43 magnetic and gravity studies (e.g., Sandwell and Smith, 2009), estimates of the age and width of

new oceanic crust in the Gulf of California (e.g., Lizarralde et al., 2007; Martín-Barajas et al.,
2013), and unique geologic formations that serve as strain markers across the Pacific–North
America plate boundary (e.g., Crowell, 1962; Gastil et al., 1973; Powell, 1993; Matti and
Morton, 1993; Oskin et al., 2001; Oskin and Stock, 2003; Darin and Dorsey, 2013). Our 7 Ma
reconstruction was compared to the seismic reflection study of the early Guaymas salt basin by
Miller and Lizarralde (2013).

Fine-scale restoration of tectonic blocks along significant (>1 km offset) faults, across
extensional (e.g. pull-apart and half-graben) basins, and by vertical-axis rotation is accomplished
using a custom, open-source "Tectonic Reconstruct" ArcGIS add-in tool

(https://astrogeology.usgs.gov/facilities/mrctr/gis-tools). The "Tectonic Reconstruct" tool takes a set 53 of polygons depicting present day locations of tectonic blocks and sequentially restores 54 displacement of their centroids along a vector specific to each time increment. The tool also 55 allowed us to partition strain where appropriate into two components of strike-slip and normal 56 motion. In the northern portion of the GCAST reconstructions in the Salton trough and northern 57 Gulf of California regions, published onshore studies provide constraints for the incremental 58 offset of many tectonic blocks. In the central to southern Gulf of California, most of the tectonic 59 60 blocks are partially exposed as islands or more commonly fully submerged beneath the Gulf. Only a small number of these blocks have seismic data that constrain offsets between 61 62 them. Therefore, in that portion of the GCAST reconstructions, we proportioned the total BCM-63 NAM relative motion with increasing offsets moving from the rift escarpment to the spreading centers as follows: we assigned lesser offset to coastal and near shore blocks, intermediate offset 64 65 to submerged and island blocks of thinned continental crust, and large offset to ultra-thinned 66 continental crustal blocks near the spreading centers.

68	EARLIEST MARINE DEPOSITS IN THE GULF OF CALIFORNIA
69	Numbered references in Figures 2 and 3 refer to the following published studies which
70	provide age constraints for the earliest marine strata in the Gulf of California: 1 – McCloy et al.,
71	1988; 2 – Martínez-Gutiérrez and Sethi, 1997; 3 – Miller and Lizarralde, 2013; 4 – Holt et al.,
72	2000; 5 – Bennett et al., 2015; 6 – Delgado-Argote et al., 2000; 7 – Martín-Barajas et al., 1997; 8
73	– Boehm, 1984; 9 – Martín-Barajas et al., 2001; 10 – Dorsey et al., 2007; 11 – Dorsey et al.,
74	2018; 12 – McDougall et al., 1999.
75	
76	REFERENCES CITED
77	Aragón-Arreola, M., and Martín-Barajas, A., 2007, Westward migration of extension in the
78	northern Gulf of California, Mexico: Geology, v. 35, no. 6, p. 571-574,
79	doi:10.1130/G23360A.1.
80	Atwater, T., and Stock, J., 1998, Pacific North America plate tectonics of the Neogene
81	southwestern United States: An update: International Geology Review, v. 40, no. 5, p.
82	375-402, doi:10.1080/00206819809465216.
83	Atwater, T. and Stock, J., 2013, Constraints on the history of the Late Cenozoic Pacific-North
84	American plate boundary from marine magnetic anomalies and global plate circuits:
85	Geological Society of America Abstracts with Programs. v. 45, no. 6, p. 21.
86	Bennett, S.E.K., Oskin, M.E., Iriondo, A., and Kunk, M.J., 2016, Slip history of the La Cruz
87	fault: development of a late Miocene transform in response to increased rift obliquity in
88	the northern Gulf of California: Tectonophysics, v. 693, p. 409–435,
89	doi:10.1016/j.tecto.2016.06.013.
90	Boehm, M.C., 1984, An overview of the lithostratigraphy, biostratigraphy, and

91	paleoenvironments of the late Neogene San Felipe Marine Sequence, Baja California,
92	Mexico, in Frizzell, V.A., ed., Geology of the Baja California Peninsula: Pacific Section,
93	Society of Economic Paleontologists and Mineralogists Book 39, p. 253-265.
94	Crowell, J.C., 1962, Displacement along the San Andreas Fault, California: Geological Society
95	of America Special Papers, v. 71, p. 1–58.
96	Darin, M.H., and Dorsey, R.J., 2013, Reconciling disparate estimates of total offset on the
97	southern San Andreas Fault: Geology, v. 41, no. 9, p. 975–978, doi:10.1130/G34276.1.
98	Delgado-Argote, L.A., López-Martínez, M., and Perrilliat, M.C., 2000, Geologic reconnaissance
99	and Miocene age of volcanism and associated fauna from sediments of Bahia de Los
100	Angeles, Baja California, central Gulf of California, in Stock, J., et al., eds., Cenozoic
101	tectonics and volcanism of Mexico: Geological Society of America Special Paper 334, p.
102	111–121, doi: 10.1130/0-8137-2334-5.111.
103	Dixon, T., Farina, F., DeMets, C., Suarez Vidal, F., Fletcher, J., Marquez Azua, B., Miller, M.,
104	Sanchez, O., and Umhoefer, P., 2000, New kinematic models for Pacific North America
105	Motion from 3 Ma to Present, II: Evidence for a "Baja California Shear Zone":
106	Geophysical Research Letters, v. 27, no. 23, p. 3961–3964, doi:10.1029/2000GL008529.
107	Gastil, R.G., Lemone, D.V., and Stewart, W.J., 1973, Permian fusulinids from near San Felipe,
108	Baja California: American Association of Petroleum Geologists Bulletin, v. 57, p. 746-
109	747.
110	Guest, B., Niemi, N., and Wernicke, B., 2007, Stateline fault system: A new component of the
111	Miocene-Quaternary Eastern California shear zone: Geological Society of America
112	Bulletin, v. 119, no. 11–12, p. 1337–1347, doi:10.1130/0016-
113	7606(2007)119[1337:SFSANC]2.0.CO;2.

114	Howard, K.A., and Miller, D.M., 1992, Late Cenozoic faulting at the boundary between the
115	Mojave and Sonoran blocks; Bristol Lake area, California, in Richard, S.M., ed.,
116	Deformation associated with the Neogene, eastern California shear zone, southeastern
117	California and southwestern Arizona; proceedings: Redlands, California, San Bernardino
118	County Museum Association, San Bernardino County Museum Association Special
119	Publication 92–1, p. 37–47.
120	Kluesner, J.W., 2011, Marine geophysical study of cyclic sedimentation and shallow sill
121	intrusion in the floor of the Central Gulf of California [Ph.D. Dissertation]: University of
122	California, San Diego, 213 pp.
123	Lease, R.O., McQuarrie, N., Oskin, M., and Leier, A., 2009, Quantifying dextral shear on the
124	Bristol-Granite Mountains fault zone: successful geologic prediction from kinematic
125	compatibility of the eastern California shear zone: The Journal of Geology, v. 117, p. 37-
126	53.
127	Lizarralde, D., Axen, G.J., Brown, H.E., Fletcher, J. M., Gonzalez-Fernandez, A., Harding, A. J.,
128	Holbrook, W. S., Kent, G. M., Paramo, P., Sutherland, F., and Umhoefer, P. J., 2007,
129	Variation in styles of rifting in the Gulf of California: Nature, v. 448, no. 7152, p. 466-
130	469, doi:10.1038/nature06035.
131	Martín-Barajas, A., González-Escobar, M., Fletcher, J.M., Pacheco, M., Oskin, M., and Dorsey,
132	R., 2013, Thick deltaic sedimentation and detachment faulting delay the onset of
133	continental rupture in the northern Gulf of California: Analysis of seismic reflection
134	profiles: Tectonics, v. 32, p. 1294–1311, doi:10.1002 /tect .20063.
135	Matti, J.C., and Morton, D.M., 1993, Paleogeographic evolution of the San Andreas fault in

136	southern California: A reconstruction based on a new cross-fault correlation, in Powell,
137	R.E., et al., eds., The San Andreas fault system: Displacement, palinspastic
138	reconstruction, and geologic evolution: Geological Society of America Memoir 178, p.
139	107–159.
140	Meade, B.J., and Hager, B.H., 2005, Block models of crustal motion in southern California
141	constrained by GPS measurements: Journal of Geophysical Research: Solid Earth, v. 110,
142	no. B03403, 19 p., doi:10.1029/2004JB003209.
143	Miller, N.C., and Lizarralde, D., 2013, Thick evaporites and early rifting in the Guaymas Basin,
144	Gulf of California: Geology, v. 41, p. 283–286, doi: 10.1130/G33747.1.
145	Oskin, M., Stock, J., and Martín-Barajas, A., 2001, Rapid localization of Pacific-North America
146	plate motion in the Gulf of California: Geology, v. 29, no. 5, p. 459-462.
147	Oskin, M., and Stock, J., 2003, Pacific-North America plate motion and opening of the Upper
148	Delfín basin, northern Gulf of California, Mexico: Geological Society of America
149	Bulletin, v. 115, no. 10, p. 1173-1190.
150	Plattner, C., Malservisi, R., Dixon, T.H., LaFemina, P., Sella, G.F., Fletcher, J.M., and Suarez-
151	Vidal, F., 2007, New constraints on relative motion between the Pacific plate and Baja
152	California microplate (México) from GPS measurements: Geophysical Journal
153	International, v. 170, p. 1373-1380, doi:10.1111/j.1365-246X.2007.03494.x.
154	Powell, R.E., 1993, Balanced palinspastic reconstruction of pre-late Cenozoic paleogeology,
155	southern California: Geologic and kinematic constraints on evolution of the San Andreas
156	Fault system, in Powell, R.E., et al., eds., The San Andreas Fault system: Displacement,
157	palinspastic reconstruction, and geologic evolution: Geological Society of America
158	Memoir 178, p. 1–106.

- Richard, S.M., 1993, Palinspastic reconstruction of southeastern California and southwestern
 Arizona for the middle Miocene: Tectonics, v. 12, no. 4, p. 830–854.
- 161 Sandwell, D.T., and Smith, W.H., 2009, Global marine gravity from retracked Geosat and ERS1
- altimetry: Ridge segmentation versus spreading rate: Journal of Geophysical Research:
- 163 Solid Earth, v. 114, no. B1.
- 164 Umhoefer, P.J., Mayer, L., Dorsey, R.J., 2002, Evolution of the margin of the Gulf of California,
 165 Baja California Peninsula, México: Geological Society of America Bulletin, v. 114, no. 7,
- 166 p. 849–868.