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METHODS

Mudstones were sampled from drill holes XY C-116 in the core of the XY Central zone and
XYC-167 in the southeast margin of the zone (see Slack et al., 2017). Additional samples were
obtained from drill hole cores in the XY Central (XYC-115), Don (D-197), and Don East
(DNE-106) zones. Core pieces weighing a few tens of grams to a few hundred grams were
powdered in a ceramic mortar and pestle for chemical, S isotope, and C isotope analysis. Five
concretions were sampled by microdrilling of pyrite or calcite, and were analyzed only for S and
C isotopes. Iron, Zn, Pb, Al, and organic carbon (Corg) concentrations were determined by
Activation Laboratories, Ltd., Acton, Ontario. Metal concentrations were determined by
inductively-coupled plasma mass spectrometry after fusing the powders with lithium
metaborate/tetraborate flux and dissolving the resulting glasses in acid. Organic C was
determined by induction-furnace infrared analyzer after acid removal of carbonate carbon. Pyrite

S was extracted from aliquots of powder weighing 0.2 g by the chromium chloride method
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(Canfield et al., 1986). The S yield, which was obtained by weighing the end product Ag,S, was
used to calculate the concentration of pyrite S. The Ag,S was then analyzed by elemental
analyzer-isotope ratio mass spectrometry (EA-IRMS) to obtain the sulfur isotope composition of
total pyrite (Johnson et al., 2018). The EA-IRMS was calibrated by analyzing the IAEA-S-3 and
NBS 123 standards, the accepted compositions for which were taken from Brand et al. (2014).
Carbonate C isotopes were analyzed by phosphoric acid digestion using either septum-capped
vials in an autosampler or stopcock-sealed reaction vessels (McCrea, 1950). Metallic Ag was
suspended in the vessels to eliminate any H,S from pyrite decomposition. The procedures were
calibrated by analyzing the NBS 18 and NBS 19 calcite standards (accepted compositions from
Brand et al., 2014) or in-house calcite standards that had been calibrated against NBS 18 and
NBS 19. Isotopic results are expressed as 8-values where 8*S (in per mil, %o) =
((**SI**Ssampiel**SI**Sycor) — 1) x 1,000, and 8'*C (in per mil, %o) = ((**C/**Csample /**C/**Cvppg) —
1) x 1,000. Duplicate analyses generally agreed to within + 0.2 %o for 8**S and within + 0.1 %o

for 5'3C.
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FIGURE CAPTION

Figure DRL1. Plots showing relationships among redox proxies for the Duo Lake Formation: A,
concentration of Mo versus degree of pyritization of total Fe (DOP+ = pyrite-Fe/total-Fe); B,
concentration of Mo versus Fe/Al; and C; Fe/Al versus DOP+. Mo > 25 ppm is normally

considered diagnostic of at least intermittent euxinia; higher Fe/Al and DOP+ are normally



67  considered diagnostic of more reducing conditions culminating in euxinia (Scott and Lyons,

68  2012; Lyons and Severmann; 2006). Data presented in Table DR1.
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Table DR1. Isotopic and chemical data for samples of Duo Lake Formation.

Sample* Member T Lithology Pyrite S (%) Organic C (%) 334S-pyrite (%o) 613C-carbonate (%o) Fe (%) Al (%) Mo (ppm) Zn (ppm) Pb (ppm) DOP-total§
XYC-116-202.3 usm mudstone 1.94 5.86 11.8 2.67 7.37 5 19 36 0.63
XYC-116-204.2 usm phosphatic mudstone 0.56 6.44 30.6 1.24 3.66 4 9 21 0.39
XYC-116-206.9 usm phosphatic mudstone 0.80 6.74 29.5 1.18 4.96 <2 10 10 0.59
XYC-116-212.5 usm phosphatic mudstone 1.40 7.32 33.1 -6.5 1.84 3.28 3 12 44 0.66
XYC-116-220.5 usm phosphatic mudstone 1.16 8.23 29.6 1.46 4.49 5 64 89 0.69
XYC-116-225.0 usm phosphatic mudstone 1.34 10.05 38.4 1.61 3.79 5 780 59 0.72
XYC-116-225.5 usm phosphatic mudstone 1.84 7.55 323 1.24 2.59 4 18100 52
XYC-116-234.5 usm mudstone 0.72 6.74 22.2 1.00 2.93 3 82 18 0.63
XYC-116-266.2 usm mudstone 0.78 6.97 211 0.67 1.72 3 6720 72
XYC-116-286.3 usm siliceous mudstone 0.21 1.12 27.7 0.26 0.37 <2 2170 76
XYC-116-288.0 usm siliceous mudstone 0.29 7.39 22.2 0.33 1.07 5 1270 96
XYC-116-290.0 usm mudstone 1.36 5.74 18.3 -4.2 1.46 2.58 53 20 135 0.81
XYC-116-300.5 usm limestone 25.2 -4.4

XYC-116-304.8 usm siliceous mudstone 0.15 6.01 13.9 0.24 1.63 19 136 67 0.54
XYC-116-316.2** usm siliceous mudstone 0.34 6.14 221 0.54 1.11 5.50 919 68.1 0.55
XYC-116-323.8** am mudstone 0.53 7.88 -0.6 -4.8 0.78 0.78 17.2 296 186 0.59
XYC-116-325.4 am siliceous mudstone 1.18 6.68 13.1 1.10 1.63 21 21300 3600
XYC-116-326.2** am highly carbonaceous mudstone 0.50 16.48 -3.9 0.73 2.69 92.8 296 250 0.59
XYC-116-326.8 am mudstone 0.61 7.98 7.0 0.40 1.17 35 8240 1690
XYC-116-334.2** am siliceous mudstone 1.32 2.37 15.3 -3.5 1.57 1.05 9.81 668 330 0.73
XYC-116-350.1 am mudstone 0.78 6.16 12.1 -3.7 0.87 1.21 20 75 2320 0.78
XYC-116-357.6** am mudstone 0.36 6.73 -5.2 0.66 1.34 31.2 25.5 174 0.47
XYC-116-364.7 lem limestone 16.4 -3.9

XYC-116-365.0 lem limestone 17.2 -6.3

XYC-116-365.7 lem limestone 20.0 -11.7

XYC-116-370.3 lem siliceous mudstone 0.27 8.22 14.6 0.28 1.11 71 2670 160
XYC-116-376.5 lem highly carbonaceous mudstone 1.73 13.20 5.6 -3.4 2.02 4.92 110 115 253 0.75
XYC-116-380.3 lem mudstone 1.30 8.31 4.3 1.66 4.38 27 12 46 0.68
XYC-116-393.2 lem mudstone 1.21 7.81 4.3 1.42 3.64 71 285 65 0.74
XYC-167-281.0** ccm mudstone 1.97 3.40 -5.7 -4.1 3.20 5.43 63.0 20.2 27.3 0.54
XYC-167-285.5** ccm mudstone 1.23 2.54 -6.3 -4.2 2.68 5.11 35.6 351 19.3 0.40
XYC-167-300.0** psm mudstone 1.78 1.45 -5.6 -4.1 3.19 5.95 29.6 20.3 35.7 0.49
XYC-167-310.5** psm dolomitic mudstone 1.02 1.32 -8.4 -3.9 2.87 6.69 16.0 13.8 234 0.31
XYC-167-318.1** psm mudstone 1.57 1.34 -5.5 -4.1 2.97 6.36 19.9 11.8 34.4 0.46
XYC-167-328.9** psm dolomitic mudstone 0.32 0.64 -5.1 -3.5 1.76 4.81 5.82 15.1 7.47 0.16
XYC-167-337.2** psm dolomitic mudstone 0.49 0.75 -8.6 -3.7 1.92 5.27 9.60 89.4 6.9 0.22
XYC-167-345.7** psm dolomitic mudstone 0.24 0.54 -7.8 -3.5 1.78 5.17 4.22 39.8 9.56 0.12
XYC-167-358.1** psm dolomitic mudstone 0.54 0.59 -16.0 -3.6 2.47 3.96 7.85 24.4 14.6 0.19
XYC-167-363.6** psm mudstone 0.17 0.98 -15.4 -3.7 1.56 5.22 3.82 287 7.47 0.09
XYC-115-61.0 usm limestone -2.5

XYC-115-72.9 usm limestone -1.0 -3.8

D197-410t t usm concretion 345 -12.2

D197-432.2A 1 T usm concretion -9.8

D197-432.2Bt t usm concretion 27.9 -10.1

D197-612.85 1 t ccm concretion 13.0

DNE106-280.91 t usm concretion 26.5 -8.7

* Sample numbers consist of zone (XYC = XY Central, D = Don, DNE = Don East), drill hole number, and depth, in meters.

T usm = upper siliceous mudstone, am = active member, lcm = lower cherty mudstone, ccm = calcareous mudstone, psm = pyritic siliceous mudstone.

§ DOP-total = pyrite Fe/total Fe, where pyrite Fe = 0.861 * pyrite S. No value given where Zn or Pb exceed 1,000 ppm due to possibile bias from sphalerite or galena contributions to pyrite S.

**Analyses of same powders analyzed by Slack et al. (2017). Values for Fe, Mo, Zn, Pb, and organic C are from those authors. For other samples, new pieces of core were powdered for isotopic and chemical analysis.
1 T Powders obtained using a dental drill.



