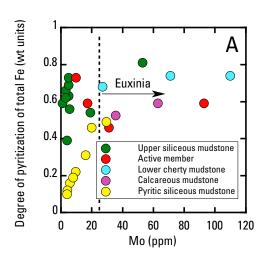
- Sulfur isotopes of host strata for Howards Pass (Yukon-
- 2 Northwest Territories) Zn-Pb deposits implicate anaerobic
- 3 oxidation of methane not basin stagnation
- 4 Craig A. Johnson¹, John F. Slack², Julie A. Dumoulin³, Karen D. Kelley¹, and Hendrik
- 5 Falck⁴
- 6 ¹U.S. Geological Survey, P.O. Box 25046, Denver, Colorado 80225, USA
- ²U.S. Geological Survey (Emeritus), National Center, MS 954, Reston, Virginia 20192, USA
- ³U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska 99508, USA
- 9 ⁴Northwest Territories Geological Survey, P.O. Box 1320, Yellowknife, NT X1A 2L9, Canada
- 10 **METHODS**
- Mudstones were sampled from drill holes XYC–116 in the core of the XY Central zone and
- 12 XYC–167 in the southeast margin of the zone (see Slack et al., 2017). Additional samples were
- obtained from drill hole cores in the XY Central (XYC-115), Don (D-197), and Don East
- 14 (DNE–106) zones. Core pieces weighing a few tens of grams to a few hundred grams were
- powdered in a ceramic mortar and pestle for chemical, S isotope, and C isotope analysis. Five
- 16 concretions were sampled by microdrilling of pyrite or calcite, and were analyzed only for S and
- 17 C isotopes. Iron, Zn, Pb, Al, and organic carbon (C_{org}) concentrations were determined by
- Activation Laboratories, Ltd., Acton, Ontario. Metal concentrations were determined by
- inductively-coupled plasma mass spectrometry after fusing the powders with lithium
- 20 metaborate/tetraborate flux and dissolving the resulting glasses in acid. Organic C was
- 21 determined by induction-furnace infrared analyzer after acid removal of carbonate carbon. Pyrite
- 22 S was extracted from aliquots of powder weighing 0.2 g by the chromium chloride method

23 (Canfield et al., 1986). The S yield, which was obtained by weighing the end product Ag₂S, was 24 used to calculate the concentration of pyrite S. The Ag₂S was then analyzed by elemental 25 analyzer-isotope ratio mass spectrometry (EA-IRMS) to obtain the sulfur isotope composition of 26 total pyrite (Johnson et al., 2018). The EA-IRMS was calibrated by analyzing the IAEA-S-3 and 27 NBS 123 standards, the accepted compositions for which were taken from Brand et al. (2014). 28 Carbonate C isotopes were analyzed by phosphoric acid digestion using either septum-capped 29 vials in an autosampler or stopcock-sealed reaction vessels (McCrea, 1950). Metallic Ag was suspended in the vessels to eliminate any H₂S from pyrite decomposition. The procedures were 30 31 calibrated by analyzing the NBS 18 and NBS 19 calcite standards (accepted compositions from 32 Brand et al., 2014) or in-house calcite standards that had been calibrated against NBS 18 and NBS 19. Isotopic results are expressed as δ -values where δ^{34} S (in per mil, ‰) = 33 $((^{34}S/^{32}S_{sample})^{34}S/^{32}S_{VCDT}) - 1) \times 1,000$, and $\delta^{13}C$ (in per mil, ‰) = $((^{13}C/^{12}C_{sample})^{13}C/^{12}C_{VPDR}) - 1$ 34 1) x 1,000. Duplicate analyses generally agreed to within \pm 0.2 % for δ^{34} S and within \pm 0.1 % 35 for δ^{13} C. 36 37 38 REFERENCES CITED Brand, W.A., Coplen, T.B., Vogl, J., Rosner, M., and Prohaska, T., 2014, Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report): Pure and Applied Chemistry, v. 86, p. 425–467, https://doi:10.1515/pac-2013-1023.


39 40 41 42 Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., and Berner, R.A., 1986, The use of 43 chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales:

Chemical Geology, v. 54, p. 149–155, doi:10.1016/0009-2541(86)90078-1.

44

45 Johnson, C.A., Stricker, C.A., Gulbransen, C.A., and Emmons, M.P., 2018, Determination of δ^{13} C. δ^{15} N, or δ^{34} S by isotope-ratio-monitoring mass spectrometry using an elemental 46 analyzer: U.S. Geological Survey Techniques and Methods, 5-D4, 47 48 https://doi:10.3133/tm5D4. 49 Lyons, T.W., and Severmann, S., 2006, A critical look at iron paleoredox proxies: new insights 50 from modern euxinic marine basins: Geochimica et Cosmochimica Acta, v. 70, p. 5698– 51 5722, https://doi:10.1016/jgca.2006.08.021. 52 McCrea, J.M., 1950, On the isotope chemistry of carbonates and a paleotemperature scale: 53 Journal of Chemical Physics, v. 18, p. 849–857. 54 Scott, C., and Lyons, T.W., 2012, Contrasting molybdenum cycling and isotopic properties in 55 euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies: 56 Chemical Geology, v. 324–325, p. 19–27, https://doi:10.1016/j.chemgeo.2012.05.012. 57 Slack, J.F., Falck, H., Kelley, K.D., and Xue, G.G., 2017, Geochemistry of host rocks in the 58 Howards Pass district, Yukon-Northwest Territories, Canada: implications for sedimentary 59 environments of Zn-Pb and phosphate mineralization: Mineralium Deposita, v. 52, p. 565– 60 593, https://doi:10.1007/s00126-016-0680-x. 61 62 FIGURE CAPTION 63 Figure DR1. Plots showing relationships among redox proxies for the Duo Lake Formation: A, 64 concentration of Mo versus degree of pyritization of total Fe (DOP_T = pyrite-Fe/total-Fe); B, concentration of Mo versus Fe/Al; and C; Fe/Al versus DOP_T. Mo > 25 ppm is normally 65 66 considered diagnostic of at least intermittent euxinia; higher Fe/Al and DOP_T are normally

- 67 considered diagnostic of more reducing conditions culminating in euxinia (Scott and Lyons,
- 68 2012; Lyons and Severmann; 2006). Data presented in Table DR1.

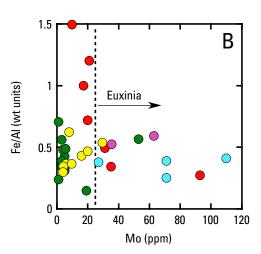


Table DR1. Isotopic and chemical data for samples of Duo Lake Formation.

		data for samples of Duo Lake For								_ ,		
Sample*	Member †	Lithology	Pyrite S (%)	Organic C (%)	δ34S-pyrite (‰)	δ13C-carbonate (‰)	Fe (%)	AI (%)	Mo (ppm)	Zn (ppm)	Pb (ppm)	DOP-total§
XYC-116-202.3	usm	mudstone	1.94	5.86	5 11.8		2.67	7.37	5	19	36	0.63
XYC-116-204.2	usm	phosphatic mudstone	0.56				1.24	3.66	4	9	21	0.39
XYC-116-206.9	usm	phosphatic mudstone	0.80				1.18	4.96	<2	10	10	0.59
XYC-116-212.5	usm	phosphatic mudstone	1.40				1.84	3.28	3	12	44	0.66
XYC-116-220.5	usm	phosphatic mudstone	1.16				1.46	4.49	5	64	89	0.69
XYC-116-225.0	usm	phosphatic mudstone	1.34				1.61	3.79	5	780	59	0.72
XYC-116-225.5	usm	phosphatic mudstone	1.84				1.24	2.59	4	18100	52	
XYC-116-234.5	usm	mudstone	0.72	6.74	22.2		1.00	2.93	3	82	18	0.63
XYC-116-266.2	usm	mudstone	0.78	6.97	21.1		0.67	1.72	3	6720	72	
XYC-116-286.3	usm	siliceous mudstone	0.21	1.12	27.7		0.26	0.37	<2	2170	76	
XYC-116-288.0	usm	siliceous mudstone	0.29				0.33	1.07	5	1270	96	
XYC-116-290.0	usm	mudstone	1.36				1.46	2.58	53	20	135	0.81
XYC-116-300.5	usm	limestone			25.2	-4.4						
XYC-116-304.8	usm	siliceous mudstone	0.15	6.01			0.24	1.63	19	136	67	0.54
XYC-116-316.2**	usm	siliceous mudstone	0.34				0.54	1.11	5.50	919	68.1	0.55
XYC-116-323.8**	am	mudstone	0.53				0.78	0.78	17.2	296	186	0.59
XYC-116-325.4	am	siliceous mudstone	1.18				1.10	1.63	21	21300	3600	
XYC-116-326.2**	am	highly carbonaceous mudstone	0.50				0.73	2.69	92.8	296	250	0.59
XYC-116-326.8	am	mudstone	0.61				0.40	1.17	35	8240	1690	
XYC-116-334.2**	am	siliceous mudstone	1.32				1.57	1.05	9.81	668	330	0.73
XYC-116-350.1	am	mudstone	0.78				0.87	1.21	20	75	2320	0.78
XYC-116-357.6**	am	mudstone	0.36				0.66	1.34	31.2	25.5	174	0.47
XYC-116-364.7	lcm	limestone			16.4							
XYC-116-365.0	lcm	limestone			17.2							
XYC-116-365.7	Icm	limestone			20.0	-11.7						
XYC-116-370.3	lcm	siliceous mudstone	0.27	8.22			0.28	1.11	71	2670	160	
XYC-116-376.5	lcm	highly carbonaceous mudstone	1.73				2.02	4.92	110	115	253	0.75
XYC-116-380.3	lcm	mudstone	1.30				1.66	4.38	27	12	46	0.68
XYC-116-393.2	Icm	mudstone	1.21	7.81	. 4.3		1.42	3.64	71	285	65	0.74
XYC-167-281.0**	ccm	mudstone	1.97	3.40	-5.7	-4.1	3.20	5.43	63.0	20.2	27.3	0.54
XYC-167-285.5**	ccm	mudstone	1.23	2.54	-6.3	-4.2	2.68	5.11	35.6	351	19.3	0.40
XYC-167-300.0**	psm	mudstone	1.78			-4.1	3.19	5.95	29.6	20.3	35.7	0.49
XYC-167-310.5**	psm	dolomitic mudstone	1.02				2.87	6.69	16.0	13.8	23.4	0.31
XYC-167-318.1**	psm	mudstone	1.57	1.34	-5.5	-4.1	2.97	6.36	19.9	11.8	34.4	0.46
XYC-167-328.9**	psm	dolomitic mudstone	0.32	0.64	-5.1	-3.5	1.76	4.81	5.82	15.1	7.47	0.16
XYC-167-337.2**	psm	dolomitic mudstone	0.49	0.75	-8.6	-3.7	1.92	5.27	9.60	89.4	6.9	0.22
XYC-167-345.7**	psm	dolomitic mudstone	0.24	0.54	-7.8	-3.5	1.78	5.17	4.22	39.8	9.56	0.12
XYC-167-358.1**	psm	dolomitic mudstone	0.54	0.59	-16.0	-3.6	2.47	3.96	7.85	24.4	14.6	0.19
XYC-167-363.6**	psm	mudstone	0.17	0.98	-15.4	-3.7	1.56	5.22	3.82	287	7.47	0.09
XYC-115-61.0	usm	limestone				-2.5						
XYC-115-72.9	usm	limestone			-1.0	-3.8						
D197-410 † †	usm	concretion			34.5	-12.2						
D197-432.2A † †	usm	concretion				-9.8						
D197-432.2B † †	usm	concretion			27.9	-10.1						
D197-612.85 † †	ccm	concretion			13.0	ı						
DNE106-280.9 † †	usm	concretion			26.5	-8.7						

^{*} Sample numbers consist of zone (XYC = XY Central, D = Don, DNE = Don East), drill hole number, and depth, in meters.

[†] usm = upper siliceous mudstone, am = active member, lcm = lower cherty mudstone, ccm = calcareous mudstone, psm = pyritic siliceous mudstone.

[§] DOP-total = pyrite Fe/total Fe, where pyrite Fe = 0.861 * pyrite S. No value given where Zn or Pb exceed 1,000 ppm due to possibile bias from sphalerite or galena contributions to pyrite S.

^{**}Analyses of same powders analyzed by Slack et al. (2017). Values for Fe, Mo, Zn, Pb, and organic C are from those authors. For other samples, new pieces of core were powdered for isotopic and chemical analysis.

^{† †} Powders obtained using a dental drill.