1	Fame, M.L., Spotila, J.A., Owen, L.A., Dortch, J.M., and Shuster, D.L., 2018,
2	Spatially heterogeneous post-Caledonian burial and exhumation across the Scottish
3	Highlands: Lithosphere, https://doi.org/10.1130/L678.1.
4	GSA Data Repository Item 2018139
5	
6	Supplementary Material
7	SUPPLEMENT 1. AHe AND AFT AGES FROM PRIOR WORK ACROSS THE
8	SCOTTISH HIGHLANDS
9	Figure DR1. The map area is from inset II in Figure 2 and all ages are in millions of years
10	(Ma). AFTA ages, in boxes without outlines, from previous studies are represented by
11	white squares (Thomson et al., 1999), black squares (Holford et al., 2009) and white
12	diamonds (Jolivet, 2007). Grey squares show the sample locations and AFTA ages, in
13	boxes without outlines, and AHe ages, in boxes with black outlines, from Sgorr Dhonuill
14	(SD) (Persano et al., 2007). White circles show sample locations from this study with
15	AHe ages in larger font then summarized prior work.
16	
17	SUPPLEMENT 2. AGE VERSUS eU FOR ALL AGE DETERMINATIONS
18	Figure DR2: Each graph displays age versus eU (effective Uranium) for all individual
19	age determinations for all aliquots of each apatite sample analyzed. Grey points show age
20	determinations that were used in calculation of the mean AHe age and white diamonds
20	represent age determinations deemed anomalous (see text for discussion) and were culled
21	prior to the calculation of mean AHe age (Table 1).
22	
23	

24 SUPPLEMENT 3. QTQT FORWARD MODEL INPUT PARAMETERS

25 Table DR1. Qtqt forward model (figure 4) input parameters

26

27 SUPPLEMENT 4. APATITE ⁴HE/³HE THEMOCHRONOMETRY

 $28 \quad {}^{4}\text{He}/{}^{3}\text{He}$ Methods

Apatite 4 He/ 3 He thermochronometry more tightly constrains the t-T path of an 29 individual apatite as it cooled through the PRZ than does its bulk AHe age alone (Shuster 30 and Farley, 2005, 2004). We analyzed four low-elevation samples using ${}^{4}\text{He}/{}^{3}\text{He}$ 31 32 thermochronometry, samples ScT1 from Invershiel, ScT2 from Cluanie, and samples 33 ScT10 and ScT11 from Glen Nevis to better define the most recent cooling histories. We conducted ⁴He/³He thermochronometry at the Noble Gas Thermochronometry Lab of the 34 35 Berkley Geochronology Center following analytical methods detailed in Tremblay et al. 36 (2015). After irradiation with 220 MeV protons, we selected single, euhedral crystals for 37 analysis (Shuster and Farley, 2005). We then sequentially degassed the sample using a feedback-controlled diode laser; the molar abundance of 3 He and 4 He/ 3 He ratio was then 38 measured at each heating step using sector-field mass spectrometry. The ${}^{4}\text{He}/{}^{3}\text{He}$ release 39 spectrum is displayed as a ratio evolution diagram where the ${}^{4}\text{He}/{}^{3}\text{He}$ ratio of each step 40 (R_{step}) is normalized to the bulk ⁴He/³He ratio (R_{bulk}) of the sample, and is plotted against 41 the cumulative released fraction of ³He (ΣF_{3He}) (Shuster and Farley, 2005, 2004; Shuster 42 43 et al., 2003) (Table DR2, Fig. DR3). Assuming a spatially uniform production of radiogenic ⁴He, the data should fall within an allowable envelope between end member 44 45 profiles produced by steady state production/diffusion and alpha ejection alone (Farley et 46 al., 2010). U-Th zonation, which may skew the initial spatial distribution of ⁴He

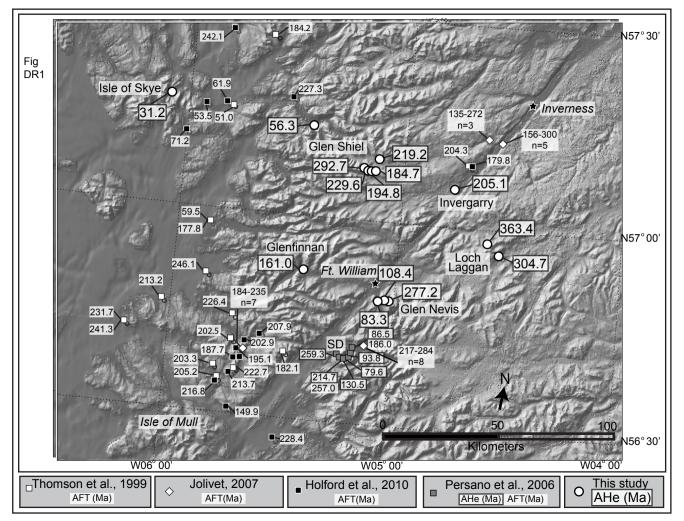
production, or other yet unknown systematics affecting the final form of the diffusion
distribution may cause ⁴He/³He data at particular steps to plot within the 'forbidden zone'
outside of the end-member envelopes (Shuster and Farley, 2005, 2004). We removed
such steps prior to interpreting the data and using the random search algorithm described
in Schildgen et al. (2010) using RDAAM parameters (Flowers et al., 2009).

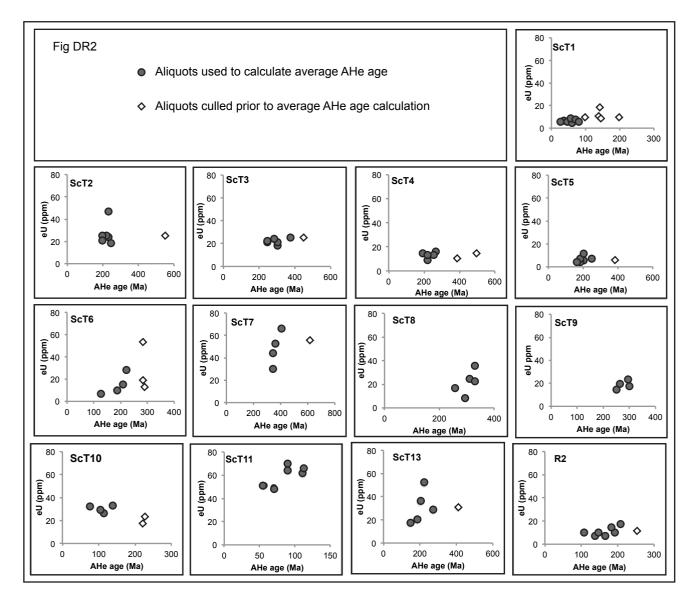
 $52 \quad {}^{4}\text{He}/{}^{3}\text{He}$ Results and Modeling

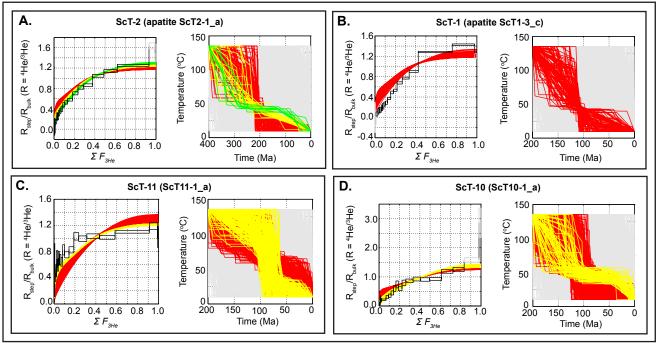
ScT2's ⁴He/³He ratio evolution diagram, representing its He diffusion profile 53 54 (Table DR2), overlain by model results corresponding to predicted cooling trajectories is shown in Figure DR3a. The grain analyzed for ${}^{4}\text{He}/{}^{3}\text{He}$ analysis, apatite grain ScT2-1 a, 55 56 was a euhedral grain with no visible inclusions, had a bulk AHe age of 211 ± 5 Ma, which is within error of ScT1's average AHe age (219.2 \pm 17.9, Table 1). ⁴He/³He ratios 57 58 increase systematically with ΣF_{3He} except for the last two steps, which encroached upon 59 the forbidden zone and were therefore eliminated from model scoring (Shuster and 60 Farley, 2005). We forward modeled cooling histories for ScT2's diffusion profile from 61 135°C to 10°C (surface temperature) for 400 Ma (~ 2x the grain age) in 1 Ma steps for 62 3,000 iterations allowing for 3-10 points (or bends) in the modeled t-T histories. ScT2 63 was the only analyzed apatite whose models produced any cooling trajectories with acceptable fits to the measured 4 He/ 3 He release spectrum. Acceptable fit cooling 64 65 trajectories for ScT2 show a three stage cooling history: 1) cooling to ~55-40°C by ~350-66 250 Ma, 2) a long period of slow to stagnant cooling, and 3) renewed rapid cooling from 67 50-30°C to the surface beginning between 125-20 Ma (Fig. DR3a). The results of this 68 model introduce the possibility for renewed exhumation in the Cretaceous through the 69 Cenozoic at the Cluanie field site.

70	ScT1's ⁴ He/ ³ He ratio evolution diagram, representing its He diffusion profile
71	(Table DR2), overlain by model results corresponding to predicted cooling trajectories is
72	shown in Figure DR3b. The grain analyzed for ${}^{4}\text{He}/{}^{3}\text{He}$ analysis, apatite grain ScT1-3_c,
73	was a euhedral grain with no visible inclusions, had a bulk AHe age of 111.0 ± 2.0 Ma.
74	This grain age was not within error of ScT1's average AHe age (56.3 \pm 17.9, Table 1).
75	This was our first clue that we may have difficulties interpreting the ${}^{4}\text{He}/{}^{3}\text{He}$ model
76	results. ⁴ He/ ³ He ratios increase systematically with ΣF_{3He} except for steps 1, 2, and 3
77	were below the detection limit step 20 which encroached upon the forbidden zone and
78	were eliminated prior to modeling (Shuster and Farley, 2005). We forward modeled
79	cooling histories for ScT1's diffusion profile from 135°C to 10°C (surface temperature)
80	for 200 Ma (~ 2x the grain age) in 1 Ma steps for 3,000 iterations allowing for 3-10
81	points (or bends) in the modeled t-T histories. Due to the large number of steps that
82	needed to be eliminated from model scoring, the analyzed apatite's bulk AHe age that is
83	not within error of ScT1's average AHe age, and because no cooling trajectories with an
84	acceptable fit to the measured ${}^{4}\text{He}/{}^{3}\text{He}$ release spectrum were found, likely a result of due
85	to unconstrained U-Th zonation in the apatite, we do not attempt to interpret this data any
86	further.
~ 7	

87 ScT11's ⁴He/³He ratio evolution diagram, representing its He diffusion profile 88 (Table DR2), overlain by model results corresponding to predicted cooling trajectories is 89 shown in Figure DR3c. ScT11's average AHe age of 83.3 ± 20.8 Ma was used in the 90 ⁴He/³He modeling (Table 1). ⁴He/³He ratios increase systematically with ΣF_{3He} and no 91 steps were eliminated from the scoring of model fits. We forward modeled cooling 92 histories for ScT11's diffusion profile from 135°C to 10°C (surface temperature) for 200 Ma (~ 2x the average age) in 1 Ma steps for 3,000 iterations allowing for 3-10 points (or
bends) in the modeled t-T histories. No cooling trajectories with an acceptable fit to the
measured ⁴He/³He release spectrum were found for sample ScT11, likely a result of due
to unconstrained U-Th zonation in the apatite, we do not attempt to interpret this data any
further.


ScT10's ⁴He/³He ratio evolution diagram, representing its He diffusion profile 98 99 (Table DR2), overlain by model results corresponding to predicted cooling trajectories is 100 shown in Figure DR3d. ScT10's average AHe age of 108.4 ± 22.3 Ma was used in the ⁴He/³He modeling (Table 1). ⁴He/³He ratios increase systematically with ΣF_{3He} until the 101 102 last two steps (steps 18 and 19) where R_{step}/R_{bulk} values jump from 1.252 in step 17 to 1.582 in step 18 and 2.589 in step 19 (Table DR2). This large jump in 4 He/ 3 He ratios may 103 indicate a ⁴He rich inclusion near the grain edge. Steps 18 and 19 were therefore 104 105 eliminated in the scoring of model fits. We forward modeled cooling histories for 106 ScT10's diffusion profile from 135°C to 10°C (surface temperature) for 200 Ma (\sim 2x the 107 average age) in 1 Ma steps for 3,000 iterations allowing for 3-10 points (or bends) in the modeled t-T histories. Due to the possibility of a ⁴He rich inclusion in the analyzed 108 apatite and because no cooling trajectories with an acceptable fit to the measured ${}^{4}\text{He}/{}^{3}\text{He}$ 109 110 release spectrum were found for sample ScT10, we do not attempt to interpret this data 111 any further. Figure DR3: ⁴He/³He analysis and model results are shown for samples A) ScT2 from 112 113 Cluanie, and B) ScT1 from Invershiel and samples C) ScT11 and D) ScT10 from Glen


114 Nevis. The left graph in each box is the ${}^{4}\text{He}/{}^{3}\text{He}$ release spectrum for each sample shown


115 as a ratio evolution diagram where the ${}^{4}\text{He}/{}^{3}\text{He}$ ratio (R) of each step (R_{step}) is normalized

to the total ${}^{4}\text{He}/{}^{3}\text{He}$ ratio (R_{bulk}) and is a function of the cumulative released fraction of 116 ³He (ΣF_{3He}). The right graph shows modeled time temperature cooling trajectories. The 117 118 grey paths correspond to cooling trajectories that do not predict the bulk AHe age of the sample, and therefore they are not compared to the measured ${}^{4}\text{He}/{}^{3}\text{He}$ release spectrum. 119 120 Cooling trajectories represented by green, yellow, and red paths predict the bulk AHe age 121 of the sample. Green paths represent cooling trajectories with an acceptable fit to the measured ${}^{4}\text{He}/{}^{3}\text{He}$ release spectrum. Yellow and red paths correspond to cooling 122 123 trajectories that are increasingly worse fits to the data and which can be excluded as 124 fitting the data at a 99% confidence level (see Schildgen et al., 2010 for a more detailed discussion of modeling). The ratio evolution diagram is overlain by predicted ${}^{4}\text{He}/{}^{3}\text{He}$ 125 126 release spectrums resulting from the modeled cooling trajectories. Only sample ScT2 127 produced any acceptable fit-paths. Table DR2. Apatite ${}^{4}\text{He}/{}^{3}\text{He}$ data 128

129

Fame, M.L., Spotila, J.A., Owen, L.A., Dortch, J.M., and Shuster, D.L., 2018, Spatially heterogeneous post-Caledonian burial and exhumation across the Scottish Highlands: Lithosphere, https://doi.org/10.1130/L678.1.

FN	1-1	FM-2		FM-3		FM-4	
t (Ma)	T (°C)						
0	10	0	10	0	10	0	10
15	65	55	35	70	35	90	25
55	35	60	95	90	25	110	25
60	95	66	15	110	25	130	75
66	15	70	35	130	75	140	75
70	35	90	25	140	75	200	15
90	25	110	25	200	15	225	115
110	25	130	75	225	115	245	115
130	75	140	75	245	115	350	35
140	75	200	15	350	35		
200	15	225	115				
225	115	245	115				
245	115	350	35				
350	35						
FN	1-1	FM-2		FM-3		FM-4	
t (Ma)	T (°C)						
0	10	0	10	0	10	0	10
130	75	200	15	225	115	350	35
140	75	225	115	245	115		
200	15	245	115	350	35		
225	115	350	35				
245	115						
350	35						

GSA Data Repository Item 2018139

Note: Input time temperature points for QtQT forward thermal models (displayed in Figure 4A) based on a simplification of Holford et al. (2010) Morvern thermal history.

Fame, M.L., Spotila, J.A., Owen, L.A., Dortch, J.M., and Shuster, D.L., 2018, Spatially heterogeneous post-Caledonian burial and exhumation across the Scottish Highlands: Lithosphere, https://doi.org/10.1130/L678.1.

GSA Data Repository Item 2018139

			APATITE ⁴ HE/ ³ HE D	DATA		
Sample information	Heating step	Temperature (°C)	Step duration (hours)	$(\Sigma F_{3He}) *$	R_{step}/R_{bulk} †	R _{step} ∕ R _{bulk} error (±) †
Sample Name	1	210	0.20	0.003	0.051	0.164
ScT2 (apatite ScT2-1_a)	2	225	0.50	0.006	0.044	0.165
	3	260	0.38	0.011	0.055	0.131
Radial equivalence:	4	300	0.51	0.026	0.147	0.043
86.0 μm	5	300	0.66	0.034	0.248	0.075
•	6	310	0.66	0.043	0.247	0.065
Apatite ScT2-1_a age	7	330	0.46	0.055	0.316	0.057
211.0 ± 5.0 Ma §	8	340	0.45	0.068	0.362	0.051
,	9	350	0.48	0.085	0.401	0.052
U (ppm)	10	350	0.66	0.104	0.476	0.044
7.6	11	370	0.53	0.132	0.527	0.036
7.0		400				
	12		0.48	0.182	0.578	0.027
Th (ppm)	13	410	0.50	0.234	0.704	0.031
0.1	14	420	0.56	0.290	0.818	0.033
	15	440	0.63	0.378	0.864	0.026
Model iterations	16	475	0.50	0.488	1.048	0.028
3000	17	500	0.50	0.620	1.139	0.029
	18	600	0.50	0.932	1.253	0.020
	19 #	700	0.50	0.991	1.634	0.060
	20 #	850	0.50	1.000	1.496	0.176
Sample Name	1 #	210	0.20	0.003	BDL **	0.298
ScT1 (apatite ScT1-3_c)	2 #	225	0.50	0.005	BDL **	0.268
2011 (apalite 0011-0_0)	3#	260	0.38	0.003	BDL **	0.137
Radial equivalence:	3 <i>#</i> 4	300	0.58	0.028		0.041
-					0.066	
33.0 µm	5	300	0.66	0.040	0.119	0.056
	6	310	0.66	0.051	0.145	0.056
Apatite ScT1-3_c age	7	330	0.46	0.063	0.151	0.049
111.0 ± 2.0 Ma §	8	340	0.45	0.075	0.189	0.055
	9	350	0.48	0.088	0.221	0.058
J (ppm)	10	350	0.66	0.103	0.260	0.040
11.1	11	370	0.53	0.123	0.288	0.032
	12	400	0.48	0.155	0.370	0.019
Th (ppm)	13	410	0.50	0.183	0.489	0.026
D.1	14	420	0.56	0.217	0.534	0.022
5.1	15	435	0.50	0.268	0.676	0.022
Model iterations	16	435	0.50	0.336	0.772	0.022
3000	17	500	0.50	0.425	0.904	0.019
	18	600	0.50	0.759	1.286	0.010
	19	700	0.50	0.977	1.428	0.015
	20 #	850	0.50	1.000	1.203	0.047
Sample Name	1	210	0.20	0.003	0.052	0.033
ScT11 (apatite ScT11_a)	2	225	0.50	0.006	0.197	0.091
	3	260	0.38	0.008	0.573	0.349
Radial equivalence:	4	300	0.51	0.018	0.405	0.061
69.8 µm	5	300	0.66	0.025	0.512	0.096
r	6	310	0.66	0.032	0.687	0.134
Average age	7	330	0.46	0.043	0580	0.082
33.3 ± 20.8 Ma	8	340	0.45	0.052	0.700	0.106
50.0 ± 20.0 Mid	9	350	0.43	0.066	0.677	0.081
l (nnm)	9 10					
J (ppm)		350	0.66	0.083	0.642	0.066
38.6	11	370	0.53	0.102	0.826	0.078
	12	400	0.48	0.143	0.750	0.046
Гh (ppm)	13	410	0.50	0.189	0.827	0.047
30.6	14	420	0.56	0.236	1.033	0.057
	15	440	0.63	0.313	0.997	0.042
			0 50	0 405	1 0 2 6	0.035
Model iterations	16	475	0.50	0.435	1.036	0.055
		475 500	0.50	0.435 0.584	1.036	0.030
	16					
	16 17	500	0.50	0.584	1.018	0.030
	16 17 18 19	500 600 700	0.50 0.50 0.50	0.584 0.911 0.989	1.018 1.103 1.189	0.030 0.022 0.049
3000	16 17 18 19 20	500 600 700 850	0.50 0.50 0.50 0.50	0.584 0.911 0.989 1.000	1.018 1.103 1.189 1.004	0.030 0.022 0.049 0.140
3000 Sample Name	16 17 18 19 <u>20</u> 1	500 600 700 850 210	0.50 0.50 0.50 0.50 0.20	0.584 0.911 0.989 1.000 0.008	1.018 1.103 1.189 1.004 0.077	0.030 0.022 0.049 0.140 0.058
3000 Sample Name	16 17 18 19 20 1 2	500 600 700 850 210 225	0.50 0.50 0.50 0.50 0.20 0.50	0.584 0.911 0.989 1.000 0.008 0.012	1.018 1.103 1.189 <u>1.004</u> 0.077 0.207	0.030 0.022 0.049 0.140 0.058 0.156
3000 Sample Name ScT10 (apatite ScT10_a)	16 17 18 19 20 1 2 3	500 600 700 850 210 225 260	0.50 0.50 0.50 0.50 0.20 0.50 0.38	0.584 0.911 0.989 1.000 0.008 0.012 0.023	1.018 1.103 1.189 1.004 0.077 0.207 0.202	0.030 0.022 0.049 0.140 0.058 0.156 0.067
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence:	16 17 18 19 20 1 2 3 4	500 600 700 850 210 225 260 300	0.50 0.50 0.50 0.50 0.20 0.50 0.38 0.51	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence:	16 17 18 20 1 2 3 4 5	500 600 700 850 210 225 260 300 300	0.50 0.50 0.50 0.50 0.20 0.50 0.38 0.51 0.66	0.584 0.911 0.989 1.000 0.012 0.023 0.068 0.091	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence:	16 17 18 19 20 1 2 3 4 5 6	500 600 700 850 210 225 260 300 300 310	0.50 0.50 0.50 0.20 0.50 0.38 0.51 0.66 0.66	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.056
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm	16 17 18 19 20 1 2 3 4 5 6 7	500 600 700 850 210 225 260 300 300 310 330	0.50 0.50 0.50 0.20 0.50 0.38 0.51 0.66 0.66 0.46	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.056 0.070
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age	16 17 18 19 20 1 2 3 4 5 6 7 8	500 600 700 850 210 225 260 300 300 310 330 330 340	0.50 0.50 0.50 0.20 0.50 0.38 0.51 0.66 0.66 0.46 0.45	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143 0.165	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449 0.603	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.056 0.070 0.103
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age	16 17 18 19 20 1 2 3 4 5 6 7	500 600 700 850 210 225 260 300 300 310 330	0.50 0.50 0.50 0.20 0.50 0.38 0.51 0.66 0.66 0.46	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.056 0.070
Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age	16 17 18 19 20 1 2 3 4 5 6 7 8	500 600 700 850 210 225 260 300 300 310 330 330 340	0.50 0.50 0.50 0.20 0.50 0.38 0.51 0.66 0.66 0.46 0.45	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143 0.165	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449 0.603	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.056 0.070 0.103
Model iterations 3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age 108.4 ± 22.3 Ma	16 17 18 20 1 2 3 4 5 6 7 8 9 10	500 600 700 850 210 225 260 300 300 310 330 330 340 350 350	0.50 0.50 0.50 0.20 0.50 0.38 0.51 0.66 0.46 0.45 0.48 0.66	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143 0.165 0.188 0.225	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449 0.603 0.742 0.595	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.054 0.056 0.070 0.103 0.119 0.069
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age 108.4 ± 22.3 Ma U (ppm)	16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11	500 600 700 850 210 225 260 300 300 310 310 330 340 350 350 350 370	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.50\\ 0.38\\ 0.51\\ 0.66\\ 0.66\\ 0.46\\ 0.45\\ 0.48\\ 0.66\\ 0.53\\ \end{array}$	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143 0.165 0.188 0.225 0.262	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449 0.603 0.742 0.595 0.798	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.056 0.070 0.103 0.119 0.069 0.092
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age 108.4 ± 22.3 Ma J (ppm)	16 17 18 19 20 1 2 3 4 5 6 7 7 8 9 10 11 11 12	500 600 700 850 210 225 260 300 300 310 330 340 350 350 350 370 400	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.50\\ 0.38\\ 0.51\\ 0.66\\ 0.66\\ 0.46\\ 0.45\\ 0.45\\ 0.48\\ 0.66\\ 0.53\\ 0.48\\ \end{array}$	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143 0.165 0.188 0.225 0.262 0.334	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449 0.603 0.742 0.595 0.798 0.864	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.056 0.070 0.103 0.119 0.069 0.092 0.063
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age 108.4 ± 22.3 Ma J (ppm) 15.5	16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13	500 600 700 850 210 225 260 300 310 330 310 330 340 350 350 370 400 410	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.50\\ 0.38\\ 0.51\\ 0.66\\ 0.66\\ 0.46\\ 0.45\\ 0.48\\ 0.66\\ 0.53\\ 0.48\\ 0.50\\ \end{array}$	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143 0.165 0.188 0.225 0.262 0.334 0.408	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449 0.603 0.742 0.595 0.798 0.864 0.927	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.056 0.070 0.103 0.119 0.069 0.092 0.063 0.067
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age 108.4 ± 22.3 Ma J (ppm) 15.5 Γh (ppm)	16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14	500 600 700 850 210 225 260 300 300 310 330 340 350 350 350 350 370 400 410 420	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.50\\ 0.38\\ 0.51\\ 0.66\\ 0.66\\ 0.46\\ 0.45\\ 0.45\\ 0.48\\ 0.66\\ 0.53\\ 0.48\\ 0.50\\ 0.56\\ \end{array}$	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143 0.165 0.188 0.225 0.262 0.334 0.408 0.496	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449 0.603 0.742 0.595 0.798 0.864 0.927 0.911	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.054 0.054 0.056 0.070 0.103 0.119 0.069 0.092 0.063 0.067 0.059
3000 Sample Name ScT10 (apatite ScT10_a) Radial equivalence: 50.0 μm Average age 108.4 ± 22.3 Ma	16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13	500 600 700 850 210 225 260 300 310 330 310 330 340 350 350 370 400 410	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.50\\ 0.38\\ 0.51\\ 0.66\\ 0.66\\ 0.46\\ 0.45\\ 0.48\\ 0.66\\ 0.53\\ 0.48\\ 0.50\\ \end{array}$	0.584 0.911 0.989 1.000 0.008 0.012 0.023 0.068 0.091 0.117 0.143 0.165 0.188 0.225 0.262 0.334 0.408	1.018 1.103 1.189 1.004 0.077 0.207 0.202 0.215 0.311 0.355 0.449 0.603 0.742 0.595 0.798 0.864 0.927	0.030 0.022 0.049 0.140 0.058 0.156 0.067 0.024 0.056 0.070 0.103 0.119 0.069 0.092 0.063 0.067

Model iterations	17	500	0.50	0.835	1.252	0.070
3000	18 #	600	0.50	0.981	1.582	0.075
	19 #	700	0.50	1.000	2.859	0.507

* Cumulative released fraction of ³He † *R*_{step} is the ⁴He/³He ratio of each step and is normalized to *R*_{bulk} the total ⁴He/³He ratio. § Due to low analytical error on bulk grain age we input 2x error in model runs to allow more t-T paths to be compared to release spectrum # Indicates step was removed from the model scoring. ** Below Detection Limit